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Abstract—Computer-assisted analysis of endoscopic images
can be helpful to the automatic diagnosis and classification
of neoplastic lesions. Barrett’s esophagus (BE) is a common
type of reflux that is not straightforward to be detected by
endoscopic surveillance, thus being way susceptible to erroneous
diagnosis, which can cause cancer when not treated properly.
In this work, we introduce the Optimum-Path Forest (OPF)
classifier to the task of automatic identification of Barrett’s
esophagus, with promising results and outperforming the well-
known Support Vector Machines (SVM) in the aforementioned
context. We consider describing endoscopic images by means of
feature extractors based on key point information, such as the
Speeded up Robust Features (SURF) and Scale-Invariant Feature
Transform (SIFT), for further designing a bag-of-visual-words
that is used to feed both OPF and SVM classifiers. The best
results were obtained by means of the OPF classifier for both
feature extractors, with values lying on 0.732 (SURF) - 0.735
(SIFT) for sensitivity, 0.782 (SURF) - 0.806 (SIFT) for specificity,
and 0.738 (SURF) - 0.732 (SIFT) for the accuracy.

I. INTRODUCTION

The incidence of adenocarcinoma in patients affected by
Barrett’s esophagus (BE) has increased significantly in western
populations, explained mainly by the obesity, a well-known
risk factor [1]–[3]. As such, the expectation of this disease
to rise up in the next years must be considered. Addition-
ally, the bad prognosis for patients that have esophageal
adenocarcinoma is related to its late diagnosis. However, the
prognosis of the disease can be largely improved through
early identification and surgical treatment, thus achieving very
successful rates of handling the disease with 93% of the
patients having complete remission after 10 years [2], [4], [5].

Developments in interventional therapies, such as photo-
dynamic therapy, cryotherapy and radio-frequency ablation,
showed promising results concerning the treatment of Barrett’s
esophagus. However, most of such methods are not able
to describe properly the disease’s level [6]–[8]. Once the
identification of the BE is needed for the further evaluation
of its region of interest by any computer or physician, some
studies have focused on the definition of the area affected by
the disease using the tissue properties in order to define a
pattern to be followed.

Sonmmen et al. [9] presented a novel algorithm that com-
putes local color and texture features based on the original
and on the Gabor-filtered image for the automatic detection of

early cancerous tissue in high definition endoscopic images.
Appropriate filters based on spectral the characteristics of
cancerous regions were designed for further feature extrac-
tion. A Support Vector Machine (SVM) classifier was used
for classification purposes. Considering 7 patients evaluated,
the experiments compared 32 annotations performed by the
algorithm with the corresponding delineations provided by an
gastroenterologist expert. With respect to 38 lesions indicated
independenty by the gastroenterologist, the system detected
correctly 36 of those lesions, with a recall as of 0.95 and a
precision as of 0.75.

Kandemir et al. [10] performed a study for the diagnosis of
Barrett’s cancer from hematoxylin-eosin stained histopatho-
logical biopsy images using multiple instance learning (MIL)
and SVM classifiers. In regard to the experiments, the tissue
cores were partitioned into rectangular patches, and a feature
vector was calculated based on a large set of cell-level and
patch-level features for each patch. The tissue core was
considered a bag (group of instances with a single group-level
ground-truth label) and each patch an instance. The authors
achieved an accuracy of around 82%, and 0.89 of AUC (area
under the curve) using Bayesian logistic regression.

Rosenfeld et al. [11] aimed at studing how data mining
can be applied to aid the diagnosis of patients with high-
risk lesions and BE. As the patient’s information is open to
interpretation, the authors demonstrated that composite rules
learned from multiple experts can be more accurate than that of
one single expert. Such fact can be explained because even ex-
pert doctors may interpret endoscopy scans differently, which
turns out to be way important to aggregate multiple opinions.
Also, the authors demonstrated that decision trees can generate
simple rules for dysplasia diagnosis. These rules can either
be used to encapsulate the rules of the most accurate expert
for training purposes or to help identifying diagnostic errors.
The authors employed two decision models: one considering
the expert decisions about dysplasia and non-dysplasia, and
another without the expert decisions. The overall accuracies
concerning the aforementioned models were around 79% (with
the experts’ decision) and 77% (without the experts’ decision).

Souza Jr. et al. [12] conducted a study to test the feasibil-
ity of automatic adenocarcinoma classification in endoscopic
images. A database composed of 100 expert-annotated endo-



scopic images were used for further feature extraction using
Speeded up Robust Features (SURF) and classification with
SVM using the leave-one patient out protocol for training and
testing sets. The authors also considered two distinct protocols
in the experimental section: using the full images and using
only the adenocarcinoma regions annotated by the experts.
The work obtained sensitivity as of 0.77 and specificity as of
0.82 considering the full images, and sensitivity as of 0.89 and
specificity as of 0.95 considering the region-based approach.

Considering the growth of studies related to BE and adeno-
carcinoma automatic identification, we observed that a number
of machine learning techniques have not yet been considered
in this context to date. As an example, one can refer to
the Optimum-Path Forest (OPF) classifier [13]–[15], which is
a graph-based pattern recognition technique that models the
problem of learning decision boundaries as a competition-
reward process, where some key samples compete among
themselves in order to conquer the remaining samples. The
output of the competition-reward process is a graph partitioned
into optimum-path trees, which stand for clusters of samples
that share some content.

The Optimum-Path Forest classifier has been applied in a
number of problems related to public health, including breast
cancer [16]–[18] and laryngeal pathology detection [19], as
well as human intestinal parasites identification [20], among
others. However, as far as we are concerned, OPF has never
been applied to the context of Barrett’s esophagus identifica-
tion so far, which turns out to be the main contribution of
this paper. We showed OPF can outperform by far the well-
known Support Vector Machines using two distinct feature
extraction approaches and different kernels, thus showing to
be a promising technique for BE automatic identification. The
remainder of this paper is organized as follows. Section II
and III present a brief background about Barrett’s esophagus
and the OPF classifier, respectively. Section IV discusses the
methodology employed in this work, and Section V presents
the experimental results. Finally, Section VI states conclusions
and future works.

II. BARRETT’S ESOPHAGUS

The condition in which columnar cells replace the usual
squamous cell in the mucosa of the esophagus is known
as Barrett’s esophagus. This condition is recognized as a
complication of gastroesophageal reflux disease, and in some
critical stages, it can progress and evolve into esophageal
cancer [2], [21], [22].

Squamous cells similar to those of the skin or mouth
compose the mucosa of the normal esophagus. The normal
squamous mucosal surface appears whitish-pink in color, while
the gastric mucosa appearance goes sharply from salmon
pink to red, composed of columnar cells [2], [22]. A de-
marcation line, the squamocolumnar (SC) junction or “Z-
line”, represents the normal esophagogastric junction where
the squamous mucosa of the esophagus and columnar mucosa
of the stomach meet [21]. Barrett’s mucosa may extend upward
in a continuous pattern in which the entire circumference

of the distal esophagus is covered by columnar mucosa. A
distinction is drawn among patients with more than 3 cm
of Barrett’s esophagus (“long-segment Barrett’s esophagus”)
and those with less than 3 cm of Barrett’s esophagus (“short-
segment Barrett’s esophagus” [21]. The esophageal mucosa
of patients with suspected BE is carefully examined for the
presence of any visible lesions, which are then characterized
by the Paris classification [23].

Multiple endoscopic image enhancement technologies, such
as chromoendoscopy, electronic image enhancement (narrow
band imaging, flexible spectral imaging color enhancement,
i-Scan), confocal laser endomicroscopy, and optical coher-
ence tomography, have been developed for BE diagnosis,
which may enable endoscopists to conduct a more accurate
endoscopic assessment of the dysplasia with in vivo charac-
terization of esophageal histology. This ability could result
in improvements regarding the detection of BE (screening),
detection of dysplasia based on BE surveillance, characterizing
abnormalities within BE (selecting lesions and delineating
margins during endoscopic therapy), and detection of recurrent
neoplasia in patients who have received endoscopic therapy
(post-treatment surveillance) [22].

BE is often misdiagnosed during endoscopy, and this fact
can be attributed to one out of two main reasons: (1) inability
to differentiate columnar mucosa of the proximal stomach
(cardia) from metaplastic epithelium in the distal esophagus,
or (2) lack of goblet cells in biopsies obtained from columnar
lined epithelium in the esophagus. Areas of dysplasia or
early cancer in BE are sometimes not visible with standard
white-light endoscopy. Hence, the Seattle biopsy protocol is
recommended in which 4-quadrant biopsies are taken every
1 cm of the Barrett’s mucosa. However, this biopsy protocol
is prone to sampling error because only a small fraction of
the entire BE mucosa is sampled (especially in patients with
extensive disease) [22]. In addition, the biopsy protocol can be
costly and time-consuming (because of the number of biopsies
submitted to pathology). Therefore, endoscopists usually do
not follow the recommended procedure for extensive biopsies,
thus causing a significant rise in the risk of missed dysplasia
or cancer [24].

III. OPTIMUM-PATH FOREST

In this section, we explain the OPF working mechanism.
Although we have different versions in the literature, we
considered the first one proposed by papa et al. [13], [14],
since it is parameterless and quite fast for both training and
classification purposes.

Roughly speaking, the OPF classifier models the problem
of pattern recognition as a graph partition in a given feature
space. The nodes are represented by the feature vectors and the
edges connect all pairs of them, defining a full connectedness
graph. The partition of the graph is performed through a
competition process among some key samples (prototypes),
which offer optimum paths to the remaining nodes of the
graph. Each prototype sample defines its own optimum-path



tree (OPT), and the collection of all OPTs defines an optimum-
path forest, which gives the name to the classifier.

Let Z = Z1 ∪ Z2 be a dataset labeled with a function
λ, in which Z1 and Z2 stand for the training and test sets,
respectively, such that Z1 is used to train a given classifier
and Z2 is used to assess its accuracy. Let S ⊆ Z1 a set of
prototype samples. Essentially, the OPF classifier creates a
discrete optimal partition of the feature space such that any
sample s ∈ Z2 can be classified according to this partition.

The OPF algorithm may be used with any smooth path-cost
function which can group samples with similar properties [25].
Papa et al. [13], [14] employed the path-cost function fmax,
which is computed as follows:

fmax(〈s〉) =

{
0 if s ∈ S,
+∞ otherwise

fmax(π · 〈s, t〉) = max{fmax(π), d(s, t)}, (1)

in which d(s, t) denotes the distance between samples s and t,
and a path π is defined as a sequence of adjacent samples. As
such, we have that fmax(π) computes the maximum distance
among adjacent samples in π, when π is not a trivial path.

The OPF algorithm assigns one optimum path P ∗(s) from
S to every sample s ∈ Z1, forming an optimum path forest
P (a function with no cycles that assigns to each s ∈ Z1\S
its predecessor P (s) in P ∗(s) or a marker nil when s ∈ S .
Let R(s) ∈ S be the root of P ∗(s) that can be reached from
P (s). The OPF algorithm computes for each s ∈ Z1, the cost
C(s) of P ∗(s), the label L(s) = λ(R(s)), and the predecessor
P (s).

A. Training

In the training phase, the OPF algorithm aims to find the set
S∗, that is the optimum set of prototypes, by minimizing the
classification errors for every s ∈ Z1 through the exploitation
of the theoretical relation between minimum-spanning tree
(MST) and optimum-path tree (OPT) for fmax [26]. The
training essentially consists in finding S∗ from Z1 and an
OPF classifier rooted at S∗.

By computing an MST, we obtain a connected acyclic graph
whose nodes are all samples of Z1 and the arcs are undirected
and weighted by the distances d between adjacent samples.
The spanning tree is optimum in the sense that the sum of its
arc weights is minimum as compared to any other spanning
tree in the complete graph. In the MST, every pair of samples
is connected by a single path which is optimum according
to fmax. That is, the minimum-spanning tree contains one
optimum-path tree for any selected root node.

The optimum prototypes are the closest elements of the
MST with different labels in Z1 (i.e., elements that fall in
the frontier of the classes). After finding prototypes, we run
the competition process in order to build the optimum-path
forest.

B. Testing

For any sample t ∈ Z2, we consider all arcs connecting t
with samples s ∈ Z1, as though t were part of the training

graph. Considering all possible paths from S∗ to t, we find
the optimum path P ∗(t) from S∗ and label t with the class
λ(R(t)) of its most strongly connected prototype R(t) ∈ S∗.
This path can be identified incrementally by evaluating the
optimum cost C(t) as

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ Z1. (2)

Let the node s∗ ∈ Z1 be the one that satisfies Equation 2
(i.e., the predecessor P (t) in the optimum path P ∗(t)). Given
that L(s∗) = λ(R(t)), the classification simply assigns L(s∗)
as the class of t. An error occurs when L(s∗) 6= λ(t).

IV. MATERIALS AND METHODS

This section describes the steps to develop a computerized
system for the detection, delineation and characterization of
endoscopic images obtained from individuals with clinically
manifest tissue abnormalities in the esophagus. Based on a
given set of endoscopic photographs (benchmark database),
features are extracted (SURF- and SIFT-based) for the further
classification using supervised learning (SVM and OPF). The
next sections describe in more details the techniques used in
this work.

A. Image Database

The set of images used as a benchmark database was
provided at the MICCAI 2015 EndoVis Challenge [27], being
composed of 100 endoscopic pictures of the lower esophagus
captured from 39 individuals, 17 of them being diagnosed with
early stage Barrett’s, and 22 displaying signs of esophageal
adenocarcinoma. From each proband, several endoscopic im-
ages were available, ranging from one to a maximum of
eight. The database contained a total of 50 images displaying
cancerous tissue areas, plus 50 images showing dysplasia
without signs of cancer. Suspicious lesions observed in the
cancerous images had been delineated individually by five
endoscopy experts.

B. Speeded up Robust Features

The SURF algorithm [28] operates on integral images to
detect dominant structures and their spatial orientation. To
ensure scale and spatial invariance, SURF seeks for maxima
of the determinant of the Hessian matrix, demarcating specific
key points in the image, which are further explored in their
local neighborhood. These sub-regions are evenly split into
square patches while their wavelet responses in horizontal and
vertical directions generate the elements of a high-dimensional
feature vector of size 64.

C. Scale-Invariant Feature Transform

The SIFT algorithm [29] operates on image local regions
aiming to calculate features that are invariant to image scaling
and rotation, and partially invariant to change in illumination
and 3D camera viewpoint. First, the algorithm seeks for the
scale-space extrema detection evaluating all the image scales
and regions using difference-of-Gaussian function to provide
the potential image regions that are invariant to scale and



orientation. The key point localization is performed based
on the candidate regions previously defined, and aims at
measuring their stability. The final steps of SIFT algorithm
are related to the definition of the orientation of each key
point by means of the calculation of the gradient directions,
and the key point descriptor calculation based on gradients
measurement at the selected scale in the region around the
key point [29]. These local descriptors are mapped into a
global high-dimensional feature vector of size 128 that allows
invariability for significant levels of local shape distortion and
changes in the illumination.

D. Points of Interest

The computation of the points of interest (PoI) was per-
formed with the SURF and SIFT algorithms using the OpenCV
support package. The assessment of suitable IPs was based
on two major approaches: one using SURF features, and
other using SIFT features. Both approaches simulate “real
life situations”, thus lacking detailed information about tissue
abnormalities. The analysis worked on the original full images.
Two attributes were defined for the SVM and OPF training
process: class ‘0’ images (non-cancerous but with possible
signs of early dysplasia), and class ‘1’ images (exhibiting
cancerous tissue regions). Figure 1 depicts some images of
the database with delineations performed by five different
physicians. Notice that some of the experts’ demarcations
exhibited substantial regional deviations, even for identical
images.

E. Bag-of-Visual-Words

Bag-of-Visual-Words (BoVW) constitutes a robust represen-
tation approach in which each image is treated as a collection
of regions. For this representation, the only information cared
about is the appearance of each region. The objective when
visual dictionaries are created is to learn, from a training set
of examples, the generative model that selects the k most
representative visual words for a given problem [30]. In order
to fulfill that purpose, the original image’s regions are mapped
from the original space to a new representation encoded the
visual words. Therefore, BoVW uses the PoIs from a set of
reference images in order to generate a visual dictionary that
is employed in the training and testing phases.

In order to select the most discriminative visual words, we
used two approaches: k-means and a random selection. Once
the visual dictionary is generated, a feature vector is created
for each image by computing the frequency of each visual
word in the image, and the feature vectors of all the images
are now in the very same dimension [30]. We also considered
dictionaries with three different sizes: 100, 500 and 1, 000,
being such numbers chosen empirically. The pipeline adopted
in this work is summarized in Figure 2.

F. Classification

In order to evaluate the robustness of the OPF classifier for
automatic Barrett’s esophagus identification, we also consid-
ered SVM with Radial Basis Function (SVM-RBF) and Linear

(SVM-Linear) kernels with parameters optimized by cross-
validation for comparison purposes.

In order to compose the dictionary of PoIs, we considered
two techniques: (i) k-means and (ii) random. The former
is a well-known unsupervised pattern recognition technique
that aims at minimizing the distance between a given dataset
sample and its nearest center, meanwhile the random approach
simply chooses the visual words that will compose the dictio-
naries at random.

V. EXPERIMENTS

In this section, we present the experimental results con-
cerning the aforementioned methodology. In order to provide a
more robust analysis of the results, we employed the Wilcoxon
signed-rank statistical test [31] with confidence value as of
0.05 over 30 runs with randomly generated training and testing
sets. Concerning the database partition, we used 70% of the
data to compose the training set, and the remaining 30% for
classification purposes.

The above training set percentage generated 14, 411 and
28, 137 PoIs with respect to the SURF and SIFT descriptors,
respectively (on average). Additionally, the computational load
concerning SURF extraction was around 13, 77 minutes, while
SIFT algorithm took 5.95 minutes in an 8 GB memory
and Intel core i5 - 2.30 GHz computer. We employed the
OpenCV [32] implementation for both feature extraction tech-
niques.

Table I presents the average results of sensitivity (SE),
specificity (SP) and accuracy (AC) concerning the SURF
features. We first considered the influence of each dictionary
composition technique, i.e., k-means and random for BE
identification. The values in bold stand for the most accurate
ones (taking into account the statistical test) considering AC
measure for different sizes of dictionaries. Clearly, one can
observe that OPF obtained the best recognition rates in all
situations, i.e., different dictionary generation technique and
size.

The underlined values stand for the most accurate ones by
analyzing the three distinct dictionary sizes and fixing the
technique to generate it, i.e., if one considers k-means for
dictionary generation technique, the best result was achieved
by OPF with 500 words. With respect to k-means, the best
result was obtained by OPF with 500 words as well. However,
the statistical test did not point out that different dictionary
sizes influence the results. Finally, the best overall result
concerning different dictionary generation technique and size
stands for OPF with k-means and 500 works with an accuracy
as of 0.738 (highlighted with ?). This is the best result one
can summarize from Table I.

Table II presents the average results of sensitivity, speci-
ficity and accuracy concerning SIFT features. Once again, we
first considered the influence of each dictionary composition
technique for BE identification. One can observe that OPF
obtained the best recognition rates in all situations once more,
behaving similarly to SURF experiment.



Fig. 1. Annotation by five different experts from four different cancerous images. Each colored delineation stands for a different expert.
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Fig. 2. Pipelined adopted in the paper for feature extraction concerning BE automatic identification.

TABLE I
SENSITIVITY, SPECIFICITY AND ACCURACY RESULTS USING SURF FEATURES.

Dictionary 100 500 1,000
SE SP AC SE SP AC SE SP AC

k-means
OPF 0.698 0.711 0.700 0.732 0.7823 *0.738 0.714 0.777 0.736

SVM-RBF 0.644 0.704 0.636 0.657 0.692 0.648 0.639 0.665 0.626
SVM-Linear 0.614 0.672 0.620 0.582 0.593 0.586 0.608 0.627 0.628

random
OPF 0.688 0.739 0.697 0.692 0.718 0.702 0.664 0.695 0.661

SVM-RBF 0.615 0.656 0.610 0.651 0.678 0.634 0.629 0.657 0.621
SVM-Linear 0.548 0.590 0.517 0.591 0.631 0.576 0.586 0.627 0.565

If one considers k-means for dictionary generation tech-
nique, the best result was achieved by OPF with 500 words as
well. With respect to k-means, the best result were obtained
by OPF with 500 words as well. The statistical test did point
out that different dictionary sizes can influence the results
concerning k-means for visual words selection. Finally, the

best overall result considering different dictionary generation
technique and size stands for OPF with k-means and 500
works with an accuracy as of 0.723 (highlighted with ?). This
is the best result one can summarize from Table II. At the end,
the best results from SURF and SIFT approaches (? values)
did not show statistical similarity among themselves.



TABLE II
SENSITIVITY, SPECIFICITY AND ACCURACY RESULTS USING SIFT FEATURES.

Dictionary 100 500 1,000
SE SP AC SE SP AC SE SP AC

K-means
OPF 0.705 0.773 0.683 0.735 0.806 *0.723 0.727 0.761 0.714

SVM-RBF 0.645 0.658 0.641 0.672 0.706 0.655 0.642 0.686 0.641
SVM-Linear 0.552 0.572 0.552 0.577 0.631 0.568 0.583 0.617 0.673

Random
OPF 0.644 0.663 0.664 0.673 0.713 0.707 0.642 0.662 0.712

SVM-RBF 0.651 0.672 0.621 0.666 0.694 0.656 0.649 0.678 0.637
SVM-Linear 0.545 0.566 0.532 0.548 0.572 0.545 0.544 0.553 0.527

Considering the parameters defined for the experiments, the
k-means clustering for the BoVW calculation needs only one
parameter corresponding to the number of clusters, and hence,
the number of visual words for the dictionaries. As cited
before, the k values (100, 500, 1,000) were defined arbitrarily,
but the aim was to define diferent values to evaluate the impact
of the PoI number in the dictionarie calculation. For the SVM-
RBF, the gamma and cost parameters were optimized aiming
for a more accurate and problem-adjusted classification. The
gamma parameter defines how far the influence of the training
examples reach, changing the model’s behaviour. The cost
parameter trades off the missclassification, making it low and
allowing more errors (usually called soft margin), or making
it high, forcing the SVM to make input data stricter and
pottentially overfiting (usually called hard margin). In this
work, for each feature extraction and classification approach,
the values of gamma and cost were defined as the best
combination providing the best accuracy result, falling in the
ranges of [6104e−5, 0.0025] and [1, 8], respectively.

At some extent, one can conclude that SURF and SIFT
provided similar results considering OPF with k-means and
500 words. Interestingly, SIFT did not benefit from larger
dictionaries as occurred with SURF. Actually, SIFT extracted
considerably more PoIs than SURF, which may be a reason-
able explanation for that behavior, since using more words for
SIFT would be desired. As a matter of fact, our next work
will be guided to consider such scenario as well.

VI. CONCLUSIONS AND FUTURE WORKS

CAD systems are a promising approach to evaluate various
types and stages of dysplasia in patients suffering from Bar-
rett’s esophagus. In this paper, we introduced the Optimum-
Path Forest classifier in the context of BE automatic identifica-
tion by means of bag-of-visual words generated by SURF and
SIFT techniques. The proposed approach was applied to full
images annotated by five experts, providing a gold standard
for the identification of malignant lesions. Since one is dealing
with supervised classification problems, the proposed approach
required a reference database comprising endoscopy images
from patients with non-cancerous and cancerous linings in the
esophagus.

An analysis of the sensitivity, specificity and accuracy
results allows us to conclude the OPF classifier operating on
the BoVW approach can provide much more efficient results
than SVM with RBF and linear kernels for the problem of

BE identification. The experiments can be extended using the
annotated adenocarcinoma regions made by experts on the
images for the BoVW dictionary calculation.

Considering the dictionary generation techniques, k-means
showed as the best choice associated with OPF classifier. The
SURF-based PoI extraction step required much more compu-
tational load than SIFT, which seems to be a bottleneck since
the statistical test did not point out a clear difference between
SURF and SIFT considering the effectiveness. Therefore, SIFT
seems to be a better choice for feature description.

The SURF and SIFT techniques for the PoI extraction were
selected considering the applicability and satisfatory results
found in the medical image-description literature works [33]–
[36], providing satisfatory generalization and rotation and
translation invariance [28], [29]. SURF features were already
used in [12] for the Barrett’s esophagus analysis, but with a
different dimension reduction approach. On the other hand, the
SIFT technique was not yet applied for this problem. There-
fore, combined with BoVW, SURF and SIFT could provide
a new way for the Barrett’s esophagus automatic diagnosis
and analysis. These two feature extraction techniques provide
the PoI of each image, however, the label of each image is
based on the previous expert’s annotations. In light of that, in
the cancerous labeled images, PoI from non-cancerous regions
are considered cancerous ones, once the descriptors of each
image is composed of its PoI. The PoI label is basically an
approximation, but it is intrinsic to the supervised classification
in the full image approach, and there is the possibility of only
visual words from non-cancerous regions be generated in some
cancer labeled images. In this case, these visual words are
labeled as well as cancerous, and can provide misclassification
by inconsistent training.

In regard to future works, we intend to evaluate SIFT fea-
tures under larger dictionaries, to employ OPF clustering [37]
for BoVW selection, and to consider using deep learning right
after histogram generation for each image as a post-processing
feature learning approach. Also we consider to employ other
pattern recognition techniques, such as k-Nearest Neighbors
and Random Forest, as well as feature extraction techniques,
such as fisher vectors and AKAZE features.

ACKNOWLEDGMENT

The authors are grateful to FAPESP grants #2014/12236-1
and #2016/19403-6, Capes, CNPq grant #306166/2014-3, as



well as Capes/Alexander von Humboldt grant #BEX 0581-16-
0.

REFERENCES

[1] J. Lagergen, “Oesophageal cancer,” British Medical Journal, vol. 341,
no. c6280, 2010.

[2] J. Dent, “Barret’s esophagus: a historical perspective, an update on
core practicalities and predictions on future evolutions of management,”
Journal of Gastroenterology and Hepatology, vol. 26, pp. 11–30, 2011.

[3] C. Lepage, B. Rachet, and V. Jooste, “Continuing rapid increase in
esophageal adenocarcinoma in england and wales,” The American Jour-
nal of Gastroenterology, vol. 103, pp. 2694–2699, 2008.

[4] P. Sharma, J. J. G. H. M. Bergman, K. Goda, M. Kato, H. Messmann,
and et al, “Development and validation of a classification system
to identify high-grade dysplasia and esophageal adenocarcinoma in
barretts’ esophagus using narrow-band imaging,” Gastroenterology, vol.
150, pp. 591–598, 2016.

[5] K. N. Phoa, R. E. Pouw, R. Bisschops, and et al, “Multimodality
endoscopic eradication for neoplastic barret esophagus: results of an
european multicentre study (euro-ii),” Gut, 2015.

[6] N. J. Shaheen, P. Sharma, B. F. Overhold, and et al, “Radiofrequency
ablation in barret’s esophagus with dysplasia,” The New England Journal
of Medicine, vol. 360, pp. 2277–2288, 2009.

[7] M. H. Johnson, J. A. Eastone, J. D. Horwhat, and et al, “Cryoablation of
barret’s esophagus: a pilot study,” Gastrointestinal Endoscopy, vol. 62,
pp. 842–848, 2005.

[8] B. F. Overholt, M. Panjehpour, and D. L. Halberg, “Photodynamic ther-
apy for barret’s esophagus with dysplasia and/or early stage carcinoma:
long-term results,” Gastrointestinal Endoscopy, vol. 58, pp. 183–188,
2003.

[9] F. V. D. Sommen, S. Zinger, W. L. Curvers, and et al, “Computer-aided
detection of early neoplastic lesions in barrett’s esophagus,” Endoscopy
(online), 2016.

[10] M. Kandemir, A. Feuchtinger, A. Walch, and F. A. Hamprecht, “Digital
pathology: Multiple instance learning can detecte barrett’s cancer,” in
IEEE 11th International Symposium on Biomedical Imaging, 2014, pp.
1348–1351.

[11] A. Rosenfeld, V. Sehgal, D. G. Graham, M. R. Banks, R. J. Haidry,
and L. B. Lovat, “Using data mining to help detect dysplasia: Extended
abstract,” in IEEE International Conference on Software Science, Tech-
nology and Engineering, 2014, pp. 65–66.

[12] L. A. Souza Jr, C. Hook, J. P. Papa, and C. Palm, Barrett’s Esophagus
Analysis Using SURF Features. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2017, pp. 141–146.

[13] J. P. Papa, A. X. Falcão, and C. T. N. Suzuki, “Supervised pattern
classification based on optimum-path forest,” International Journal of
Imaging Systems and Technology, vol. 19, no. 2, pp. 120–131, 2009.

[14] J. P. Papa, A. X. Falcão, V. H. C. Albuquerque, and J. M. R. S.
Tavares, “Efficient supervised optimum-path forest classification for
large datasets,” Pattern Recognition, vol. 45, no. 1, pp. 512–520, 2012.

[15] J. P. Papa, S. E. N. Fernandes, and A. X. Falcão, “Optimum-path forest
based on k-connectivity: Theory and applications,” Pattern Recognition
Letters, vol. 87, pp. 117–126, 2017.

[16] P. B. Ribeiro, K. A. P. Costa, J. P. Papa, and R. A. F. Romero, “Optimum-
path forest applied for breast masses classification,” in IEEE 27th
International Symposium on Computer-Based Medical Systems, 2014,
pp. 52–55.

[17] P. B. Ribeiro, L. A. Passos, L. A. Silva, K. A. P. Costa, J. P.
Papa, and R. A. F. Romero, “Unsupervised breast masses classification
through optimum-path forest,” in IEEE 28th International Symposium
on Computer-Based Medical Systems, 2015, pp. 238–243.

[18] P. B. Ribeiro, J. P. Papa, and R. A. F. Romero, “An ensemble-based
approach for breast mass classification in mammography images,” in
SPIE Medical Imaging, 2017, pp. 101 342N–1–101 342N–8.

[19] J. P. Papa, A. A. Spadotto, A. X. Falcão, and J. C. Pereira, “Optimum
path forest classifier applied to laryngeal pathology detection,” in 15th
International Conference on Systems, Signals and Image Processing,
2008, pp. 249–252.

[20] C. T. N. Suzuki, J. F. Gomes, A. X. Falcão, J. P. Papa, and S. Hoshino-
Shimizu, “Automatic segmentation and classification of human intestinal
parasites from microscopy images,” IEEE Transactions on Biomedical
Engineering, vol. 60, no. 3, pp. 803–812, 2013.

[21] J. Hopkins, “Barrett’s esophagus: Introduction,” Gastroenterology &
Hepatology, pp. 1–5, 2008.

[22] P. Sharma, J. Brill, M. Canto, D. DeMarco, B. Fennerty, N. Gupta,
L. Laine, D. Lieberman, C. Lightdale, E. Montgomery, R. Odze, J. Tokar,
and M. Kochman, “White paper aga: Advanced imaging in barretts
esophagus,” Clinical Gastroenterology and Hepatology, vol. 13, no. 13,
pp. 2209 – 2218, 2015.

[23] M. Fujishiro, N. Yahagi, N. Kakushima, S. Kodashima, Y. Muraki,
S. Ono, N. Yamamichi, A. Tateishi, Y. Shimizu, M. Oka, K. Ogura,
T. Kawabe, M. Ichinose, and M. Omata, “Endoscopic submucosal
dissection of esophageal squamous cell neoplasms,” Clinical Gastroen-
terology and Hepatology, vol. 4, no. 6, pp. 688 – 694, 2006.

[24] J. A. Abrams, R. C. Kapel, G. M. Lindberg, M. H. Saboorian, R. M.
Genta, A. I. Neugut, and C. J. Lightdale, “Adherence to biopsy guide-
lines for barrett’s esophagus surveillance in the community setting in the
united states,” Clinical Gastroenterology and Hepatology, vol. 7, no. 7,
pp. 736–742, 2009.

[25] A. Falcão, J. Stolfi, and R. Lotufo, “The image foresting transform
theory, algorithms, and applications,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 26, no. 1, pp. 19–29, 2004.

[26] C. Allène, J.-Y. Audibert, M. Couprie, and R. Keriven, “Some links
between extremum spanning forests, watersheds and min-cuts,” Image
and Vision Computing, vol. 28, no. 10, pp. 1460–1471, 2010, image
Analysis and Mathematical Morphology.

[27] “Miccai 2015: 18th international conference,” 2015.
[28] H. Bay, A. Ess, T. Tuytelaars, and et al, “Speeded-up robust features

(surf),” Computer Vision and Image Understanding, vol. 110, no. 3, pp.
346–359, 2008.

[29] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
Nov. 2004.

[30] L. C. S. Afonso, J. P. Papa, L. Papa, A. N. Marana, and A. Rocha,
“Automatic visual dictionary generation through optimum-path forest
clustering,” in 19th IEEE International Conference on Image Processing,
Sept 2012, pp. 1897–1900.

[31] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[32] Itseez, “Open source computer vision library,” https://github.com/itseez/
opencv, 2015.

[33] L. j. Zhi, S. m. Zhang, D. z. Zhao, H. Zhao, and S. k. Lin, “Medical
image retrieval using sift feature,” in 2009 2nd International Congress
on Image and Signal Processing, Oct 2009, pp. 1–4.

[34] A. Wojnar and A. M. G. Pinheiro, “Annotation of medical images using
the surf descriptor,” in 2012 9th IEEE International Symposium on
Biomedical Imaging (ISBI), May 2012, pp. 130–133.

[35] S. Cui, H. Jiang, Z. Wang, and C. Shen, “Application of neural network
based on sift local feature extraction in medical image classification,”
in 2017 2nd International Conference on Image, Vision and Computing
(ICIVC), June 2017, pp. 92–97.

[36] S. Khan, S. P. Yong, and J. D. Deng, “Ensemble classification with mod-
ified sift descriptor for medical image modality,” in 2015 International
Conference on Image and Vision Computing New Zealand (IVCNZ), Nov
2015, pp. 1–6.

[37] L. M. Rocha, F. A. M. Cappabianco, and A. X. Falcão, “Data clustering
as an optimum-path forest problem with applications in image analysis,”
International Journal of Imaging Systems and Technology, vol. 19, no. 2,
pp. 50–68, 2009.


