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Abstract—During the image acquisition process, some level
of noise is usually added to the real data mainly due to
physical limitations of the acquisition sensor, and also regarding
imprecisions during the data transmission and manipulation.
Therefore, the resultant image needs to be processed in order
to attenuate its noise without loosing details. Machine learning
approaches have been successfully used for image denoising.
Among such approaches, Restricted Boltzmann Machine (RBM)
is one of the most used technique for this purpose. Here, we
propose to enhance the RBM performance on image denoising
by adding a posterior supervision before its final denoising step.
To this purpose, we propose a simple but effective approach that
performs a fine-tuning in the RBM model. Experiments on public
datasets corrupted by different levels of Gaussian noise support
the effectiveness of the proposed approach with respect to some
state-of-the-art image denoising approaches.

I. INTRODUCTION

Noise is an undesirable artifact in images, being often
caused by physical limitations of the image acquisition sensor
or by unsuitable environmental conditions. These issues, how-
ever, are often unavoidable in practical situations, which turns
the noise in images a prevalent problem. While qualitatively
noise confers bad aspect to images (Figure 1), quantitatively
it can impose difficulties to computational tasks such as
edge detection, segmentation, and image classification. Hence,
denoising is an important field in digital image processing.

(a) (b)
Fig. 1. An image can be visually ruined when contaminated by noise: (a)
original noiseless image, and (b) its noise-contaminated version.
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Denoising an image is challenging because the noise is
related to the high-frequency content of the image, that is,
the details [1]. The goal, therefore, is to find a compromise
between suppressing noise as much as possible and not losing
too much image details. The most common approaches for
image denoising are the filter-based ones such as the Median,
Kuan, Wiener and BM3D filter [2]. They are simple and
efficient; however, their effectiveness is highly dependent on
the prior knowledge about the type of noise (e.g., Gaussian,
salt-and-pepper, speckle) and its statistical properties (e.g.,
mean and variance) [1].

Machine learning approaches have been successfully used
for image denoising (e.g., [4]–[6]). They are a natural option
for the filter-based approaches because they are less affected
by the non-specification of noise generative mechanism. The
goal is to learn the noise characteristics without any prior
knowledge related to its type and statistical properties. Among
such approaches, Neural Networks have been one of the
most explored techniques to model the image denoising prob-
lem [7]–[9]. The recent development in deep neural network
architectures (e.g., deep Convolution Neural Networks) has
also moved more eyes from the machine learning and com-
puter vision communities to the image denoising task (e.g.,
[10]). Autoencoders are another prominent members of neural
networks used for denoising [11]–[13], highlighting Restricted
Boltzmann Machines (RBMs) [14]–[16].

RBMs are two-layers bidirectional neural networks that
can be seen as a probabilistic graph model [3]. The most
common used version of RBMs, known as Bernoulli-Bernoulli
Restricted Boltzmann Machine (BB-RBM), has binary-valued
units (or neurons) in its layers [14]. In the context of image
denoising, the BB-RBM goal is to build a probabilistic model
on a set of noise-contaminated images by using a single layer.
The posterior probability of each noise-contaminated image
is estimated. Finally, a noiseless image is then reconstructed
by sampling from a conditional probability over the posterior
probability [16]. BB-RBM performs well on low level amount
of noise; however, as the noise increases, its performance may
degrade. We hypothesize that this shortcoming may be related
to the way BB-RBM model is learned, that is, in a fully



unsupervised fashion.
Here, we propose to enhance the BB-RBM performance on

image denoising by adding a posterior supervision before its
final denoising phase (i.e., the decoding phase). Indeed, we
demonstrate that this process enhances the BB-RBM capacity
of learning the noise model. To this purpose, we propose a
simple but effective approach that performs a fine-tuning in the
BB-RBM parameters concerning the decoding phase in order
to reduce the noise levels. Experiments on public datasets
corrupted by different levels of Gaussian noise support the
effectiveness of the proposed approach with respect to some
state-of-the-art image denoising methods.

II. DESCRIPTION OF THE PROPOSED APPROACH

In this section, some fundamental concepts about BB-RBM
are first presented in Section II-A, for the further discussion
of the proposed approach in Section II-B.

A. Bernoulli-Bernoulli Restricted Boltzmann Machine

RBMs are energy-based stochastic neural networks com-
posed of two layers of units, a visible and a hidden, whose the
learning phase is performed in an unsupervised fashion [14],
[17]. They were originated based on the classical Boltzmann
Machine (BM) [18] with the restriction that no connections
among neurons of the same layer are allowed. This restriction
allows training RBM in a significantly lower complex way
in comparison to BM without high losses of performance.
Roughly speaking, RBMs can be seen as a bipartite graph
(Figure 2).
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Fig. 2. The RBM architecture as a bipartite graph. Each neuron in the visible
layer (v) is connected to all the neurons in the hidden layer (h). Note that
there is no connection among units of the same layer.

In this paper, the proposed approach models the image
denoising problem using the well-known Bernoulli-Bernoulli
Restricted Boltzmann Machine whose both layers of units fol-
low the Bernoulli distribution. The goal, therefore, is to model
the image distribution content avoiding the noise distribution,
which follows a Gaussian distribution in this work.

BB-RBM has a visible v = {vi}mi=1 and a hidden layer
h = {hi}ni=1, ∀vi, hi ∈ {0, 1} (i.e., binary-valued units). A
matrix W ∈ Rm×n models the weights among the units in
v and those in h; thus, an entry wij is the weight between
the visible unit vi and the hidden unit hj . Furthermore, there
are visible biases bv = {bvi}mi=1 associated to each visible
unit, and hidden biases bh = {bhi}ni=1 associated to each

hidden unit. The training goal, therefore, is to find the set of
parameters η = {W,bv,bh} that maximizes the likelihood of
a set of observations V = {vi}Ni=1 (e.g., N images) as follows:

η̂ = argmax
η

N∏
i

P (vi; η). (1)

The marginal probability of an observation v is given by:

P (v) =
∑

h

P (v,h) =
1

Z

∑
h

e−E(v,h), (2)

in which

E(v,h) = −
m∑
i=1

aivi −
n∑
j=1

bjhj −
m∑
i=1

n∑
j=1

vihjwij (3)

is the energy function, and Z stands for the well-known
partition function, which is computed as follows:

Z =
∑

v

∑
h

e−E(v,h), (4)

Roughly speaking, Z is a normalization factor. Computing Z,
however, is an intractable task because it is needed to compute
all the possible configurations involving the visible and hidden
units. Consequently, computing the joint probability P (v,h)
is also intractable.

Fortunately, this issue can be overcome by using Gibbs
sampling since the conditional probabilities in terms of h and
v can be easily computed as follows:

P (vi = 1|h) = φ

bvi + n∑
j=1

wijhj

 (5)

and

P (hj = 1|v) = φ

(
bhj +

m∑
i=1

wijvi

)
, (6)

in which φ(·) is the sigmoid function.
In practice, the BB-RBM model is trained by sampling from

P (hj = 1|v) and P (vi = 1|h) alternated. An approximation to
the gradient descent, called the Contrastive Divergence (CD),
is often used to this end [14].

B. Proposed approach

BB-RBM learns its hyper-parameters in an unsupervised
fashion. Here, we describe the proposed approach that adds
a posterior supervision to the BB-RBM model, and how it
can be used to suppress noise in images.

Let V = {vi}Ni=1 be a set of noisy images, and V ′ = {v′i}Ni=1

be the set of their respectively noiseless version. Furthermore,
let W and bv be the weight matrix and the visible bias
learned by training the BB-RBM on the set of noisy images
V , respectively. The proposed approach attempts at fine tuning
W and bv such that the difference between V and V ′ is
then reduced. To this end, the proposed approach models the
problem of hyper-parameter fine-tuning in terms of the cross
entropy, as follows:



J(θ) = − 1

N

N∑
i=1

v′i log(z(vi; θ)) + (1− v′i) log(1− z(vi; θ)),

(7)
where

z(vi; θ) = φ
(

b̂v + Ŵ
>

vi
)
, (8)

in which θ = {Ŵ, b̂v} is the set of parameters of interest,
that is, Ŵ and b̂v stand for the weight matrix and the visible
bias after the fine-tuning process, respectively. In order to
minimize Equation 7, we use the gradient descent algorithm
as implemented in Algorithm 1.

Algorithm 1: Proposed algorithm.
Input : V ′, V , W, bv, α (learning rate), and T (number

of iterations)
Output: Ŵ and b̂v

1 for t ∈ {1, 2, . . . , T} do
2 θt+1 ← θt + α∂J(θ

t)
∂θt

After finding Ŵ and b̂v, we can use them to suppress the
noise in a test set (i.e., noisy images) Vtest as follows:

V̂test = VtestŴ
>
+ b̂v, (9)

in which V̂test is the filtered (reconstructed) version of Vtest.

III. EXPERIMENTAL DESIGN

A. Datasets

Four public datasets were use to evaluate the robustness of
the proposed approach:

MNIST: contains 60, 000 training images and 10, 000 test
images of handwritten digits [19]. A subset of 10, 000 images
was sampled from the training set; hereinafter this subset will
be called noiseless training set. Three copies of the noiseless
training set, referred to as pre-training noisy sets, were created
and they were respectively contaminated with Gaussian noise
with variance (σ) of 0.1, 0.2, and 0.3. For testing purposes,
a subset of 1, 000 images was sampled from the test set and
three copies of this subset, referred to as noisy test sets, were
created and contaminated with the same noise level used for
the pre-training noisy sets.

USPS: contains 11, 000 images of handwritten digits [20].
The dataset was split into a noiseless training set containing
10, 000 images and a test set containing 1, 000 images. Three
pre-training noisy sets were created from the noiseless training
in the same fashion performed for MNIST. Additionally, three
noisy test sets were created from the test set also in the same
fashion performed for MNIST.

Semeion: contains 1, 593 images of handwritten digits [21].
The dataset was split into a training set containing 1, 000
images and a test set containing 593 images. A noiseless
training set was created from the training set by increasing
the number of images from 1, 000 to 10, 000. For this end,

we created 10 copies of the training set. One copy was kept
without any noise, whereas in the remaining nine copies
we applied the Gaussian noise with a small variance of
0.0001, 0.0002, . . . , 0.0009, respectively. Furthermore, three
pre-training noisy sets were created from the noiseless training
in the same fashion conducted for MNIST and USPS datasets.
Finally, three noisy test sets were created from the test set also
in the same fashion performed for MNIST and USPS. Note
that MNIST contains 28 × 28-sized images, wheres Semeion
and USPS contain 16× 16-sized images. Hence, we centered
the images from Semeion and USPS datasets into a 28× 28-
black-squared window to obtain all the digits with same size.

Caltech: contains 4, 100 training images and 2, 307 test
images of object’s silhouette [22]. A noiseless training set
was created from the training set by increasing the number
of images from 4, 100 to 8, 200. For this purpose, we created
two copies of the training set. One copy was kept without any
noise, whereas in the remaining one we applied a Gaussian
noise with a small variance of 0.0001. Besides, three pre-
training noisy sets were created from the noiseless training
set in the same fashion conducted for the previous dataset.
Finally, three noisy test sets were created from the test set
also in the same fashion conducted for the previous dataset.

B. Experimental settings

The proposed approach was compared against four tech-
niques:
• BM3D: denoising method based on an enhanced sparse

representation [2];
• ND (No-denoising): simple comparison between a noise-

contaminated image and its noiseless version;
• BB-RBM: standard Bernoulli-Bernoulli Restricted Boltz-

mann Machine; and
• Wiener Filter: filter with a 3× 3-window-size [1].
We evaluated the proposed approach in three different

experimental settings:
• Standard: the training (including the pre-training with

BB-RBM) and the test phases were performed on the
same dataset. BB-RBM was pre-trained on each one
of the pre-training sets and the proposed approach was
trained on the noiseless training set (recall the training
of the proposed approach consists in a pre-training and
a training phases). The denoising was performed on
the noisy test sets. Here, the proposed approach was
compared against all baselines. Techniques ND, BM3D,
and the Wiener filter were performed only on the noisy
test sets. BB-RBM was trained on the pre-training noisy
sets and tested on the noisy test sets.

• Cross-dataset: the training and the test phases were per-
formed on different datasets, and only the digit datasets
(MNIST, USPS and Semeion) were considered in this
setting. Both BB-RBM and the proposed approach were
pre-trained on each one of the pre-training sets, and the
proposed approach was trained on the noiseless training
set. The denoising was performed on the noisy test



set of a different dataset. Here, the proposed approach
was compared against BM3D and BB-RBM. BM3D was
applied only on the noisy test sets, and BB-RBM was
evaluated on the noisy test set of another dataset not used
for its training step.

• Transfer learning: the training and the test phases were
performed on the same dataset, and only the digit datasets
(MNIST, USPS and Semeion) were considered in this
setting. Both BB-RBM and the proposed approach were
pre-trained on each one of the pre-training sets of a given
dataset, and only the proposed approach was trained (fine-
tuned) on the noiseless training set of a different dataset.
The test (denoising) was performed on the noisy test sets
belonging to the same dataset in which the approaches
were pre-trained on. We compared the performance of the
proposed approach in the transfer learning setting against
the performances achieved by BB-RBM and the proposed
approach in the standard setting.

The hyper-parameters used to train the BB-RBM and the
proposed approached are summarized in Table I. These values
were empirically chosen.

TABLE I
HYPER-PARAMETERS USED IN THREE EXPERIMENTAL SETTINGS.

Parameters Standard Cross-
dataset

Transfer
learning

Pre-
training

Learning for weights 0.005 0.005 0.005
Learning for visible units 0.005 0.005 0.005
Learning for hidden units 0.005 0.005 0.005
Momentum (min) 0.5 0.5 0.5
Momentum (max) 0.9 0.9 0.9
Weight decay 0.0002 0.0002 0.0002
Epochs 50 50 50
Batch size 100 100 300

Training
Learning rate 0.1 0.1 0.001
Batch size 100 300 300
Number interations 5 1 1

Figure 3 displays the proposed pipeline for image denoising.
As aforementioned, the approach adopted in this work is
divided in two steps: pre-training and training. While the
former is in charge of an unsupervised learning process, the
latter one makes use of clean images to fine-tune the weights
learned in the previous step.

IV. EXPERIMENTAL SECTION

At first, we evaluated the proposed approach using the
standard setting, as described in the previous section. Fig-
ure 4a displays the Peak signal-to-noise Ratio (PSNR) of the
compared techniques over different levels of Gaussian noise
for the datasets considered in this work. On training and
testing in the same dataset, the proposed approach overcame
all baselines used in the experiments. Notice the proposed
approach has been less affected to increasing noise levels when
compared to the other methods. These quantitative results
impacted positively in the visual quality of the images, as one
can observe in Figure 4b.

Figure 5a depicts the cross-dataset experiment, in which
the proposed approach performed better once again. In most
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Fig. 4. Standard setting: (a) quantitative results over Caltech, MNIST, USPS,
and Semeion datasets; and (b) qualitative results over MNIST, USPS, and
Semeion datasets. Notice that σ denotes the variance of the Gaussian noise.

cases, the proposed approach overcame BM3D, mainly at
higher noise levels. It is important to highlight that BM3D
is considered one the best denoising techniques to date. With
respect to BB-RBM, the proposed approach has been slightly
better in reducing the noise regarding the quantitative and
qualitative results, as displayed in Figure 5b.

Finally, the proposed approach was evaluated in the transfer
learning setting. We observed the proposed approach with
transfer learning performed worse than its version with clean
data; however, it performed better than BB-RBM in all sit-
uation, mainly at higher noise levels, as one can observe in
Figures 6a and Figures 6b.

V. DISCUSSION AND CONCLUSIONS

In this work, we demonstrated that a posterior supervision of
the BB-RBM decoding phase enhances its capacity of image
denoising. To this end, we proposed a technique that performs
a fine-tuning in the BB-RBM hyper-parameters concerning the
decoding phase. The reasoning behind this idea is to reduce the
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Fig. 3. Proposed pipeline for image denoising based on Restricted Boltzmann Machines.

error between the visible conditional probabilities and a given
clean-image dataset. After applying the proposed approach,
we can use the new set of parameters as an image denoising
model to reduce the noise not suppressed by the BB-RBM,
thereby enhancing the visual quality of a noise-contaminated
image not seen in the learning phase. Experiments on public
datasets corrupted by different levels of Gaussian noise support
the effectiveness of the proposed approach in comparison to
state-of-the-art image denoising methods.

Due to its natural ability to reconstruct images, RBMs have
been studied in the context of image denoising (e.g., [12]).
However, they may fail to accomplish such a task if the level
of noise is considerably high. Consequently, its performance
degrades to results similar to the ones achieved by approaches
that do not need any kind of learning phase, such as filter-
based methods (Figures 4a and b). This drawback may be
related to its learning process, which is fully unsupervised.
However, the proposed approach is able to fine-tune the BB-
RBM parameters with the aid of clean image data, thus
enhancing significantly the visual image quality (Figure 4b).

Furthermore, the proposed approach enhances the quality of
images even more than BB-RBM in the cross-dataset setting,
that is, training in one dataset and testing in another one. The
results suggest the proposed approach is less sensitive to be
applied to another dataset (Figure 5a and b). We observe,
however, that the performance of the proposed approach in
the cross-dataset setting is lower than the one observed in
the standard setting (Figure 5a). This is likely because the
dataset may have a certain difference among their marginal
probabilities [23].

In certain cases, however, we may not have enough clean
images data to perform the fine-tuning as in the standard
and cross-dataset settings. What we can do then is somehow
share the knowledge of another dataset that contains clean
images [11]. In our experiments, we evaluated a simple
transfer learning strategy to exploit the knowledge of another
related dataset. In this setting, the proposed approach enhanced
the image quality even more than BB-RBM (Figure 6a and b).
This result suggested the proposed approach can handle the
absence of clean image data by simply transferring knowledge
from another dataset. We observe, however, that the perfor-
mance of this strategy was lower than the one using clean

image data from the same dataset (Figure 6a and b). This
was probably because we did not use any strategy to reduce
statistical differences among the datasets before applying the
fine-tuning.

In regard to future works, we intend to evaluate the proposed
approach in the context of gray-level images, as well as to
transfer knowledge from non-related datasets.
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