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Abstract—Restricted Boltzmann Machines (RBMs) have re-
ceived special attention in the last decade due to their outstanding
results in number of applications, such as face and human
motion recognition, and collaborative filtering, among others.
However, one of the main concerns about RBMs is related to
the number of hidden units, which is application-dependent.
Infinite RBM (iRBM) was proposed as an alternative to the
regular RBM, where the number of units in the hidden layer
grows as long as it is necessary, dropping out the need for
selecting a proper number of hidden units. However, a less
sensitive regularization parameter is introduced as well. This
paper proposes to fine-tune iRBM hyper-parameters by means of
meta-heuristic techniques such as Particle Swarm Optimization,
Bat Algorithm, Cuckoo Search, and the Firefly Algorithm. The
proposed approach is validated in the context of binary image
reconstruction over two well-known datasets. Furthermore, the
experimental results compare the robustness of the iRBM against
the RBM and Ordered RBM (oRBM) using two different learning
algorithms, showing the suitability in using meta-heuristics for
hyper-parameter fine-tuning in RBM-based models.

Keywords-Deep Learning; Infinity Restricted Boltzmann Ma-
chines; Meta-heuristics

I. INTRODUCTION

Restricted Boltzmann Machines (RBMs) are two-layered
undirected graphical models that use a layer of hidden units to
model the distribution over a set of inputs, thus compounding
a generative stochastic neural network [1], [2]. RBMs have
been highlighted in the scientific community over the last
years, as well as some variants concerning deep learning
models, e.g., Deep Belief Networks (DBNs) [3] and Deep
Boltzmann Machines (DBMs) [4], due to their outstanding
results in a number of domains, such as human motion [5],
classification [1], spam [6] and anomaly detection [7], and
collaborative filtering [8], just to cite a few.

However, one of the main concerns related to RBMs is asso-
ciated with the number of hidden units, which is application-
dependent and has a great impact in the final results. Montufar
and Ay [9] showed that an RBM with 2m−1 − 1 hidden units
is a universal approximator, where m stands for the number
of visible (input) units. Moreover, such a big representation
may not be efficient in practice, which motivated researchers
to study models that can automatically increase their capacity
during learning.

Cotê and Larochelle [10] proposed an extension of the RBM
that does not require specifying the number of hidden units,
and it can increase its capacity (i.e., number of hidden units)

during training, hereinafter called infinite RBM (iRBM). In
this work, they also presented an extension of the RBM that is
sensitive to the position of each unit in the hidden layer, named
ordered Restricted Boltzmann Machines (oRBM), which can
be interpreted as a special case of an implicit mixture of
RBMs [11]. This is achieved by adding new units in the hidden
layer, where each one is trained gradually from left to right.
Effectively, the model is growing in capacity during training
until it reaches the maximum capacity defined previously.

Based on the aforementioned assumption, it turns out to
be possible to devise a model where the number of hidden
units increases automatically to a capacity that is similar to
the universal approximator (i.e., when the number of hidden
units tends to infinite), though being much smaller. Such model
is possible due to the following assumptions: (i) that a finite
number of hidden units has non-zero weights and biases, and
(ii) the parametrization of the per-unit energy penalty (β)
ensures the infinite sums during probability computation will
converge. Since the role of this energy penalty is to ensure
the iRBM is properly defined only, the penalty imposed in the
energy function can be compensated by the learned parameters
(weight decay). Therefore, we can remove one the RBM
hyper-parameters from its project, i.e., the number of hidden
units.

Despite dropping out the number of hidden units that is
usually required beforehand, the iRBM still demands the
selection of the remaining hyper-parameters, such as the
learning rate, momentum and weight decay. Furthermore, its
formulation incorporates the β hyper-parameter, which is less
sensitive than the number of hidden units, but still requires its
fine-tuning. In this paper, we propose to find suitable hyper-
parameters concerning the iRBM model by means of meta-
heuristic optimization techniques, such as the Particle Swarm
Optimization (PSO) [12], Bat Algorithm (BA) [13], Cuckoo
Search (CS [14], and the Firefly Algorithm (FFA) [15]. Al-
though one can use any other optimization technique, we opted
to use these ones mainly because they are well recognized in
the literature, and they do not require computing derivatives
as usually demanded by standard optimization techniques.

Recently, Papa et al. [16], [17], [18], Rosa et al. [19], [20]
and Rodrigues et al. [21] demonstrated the robustness of these
algorithms to the optimization of RBMs and DBNs, but to the
best of our knowledge, we have not observed any work that
dealt with the problem of iRBM fine-tuning by means of meta-



heuristic techniques to date. Therefore, the main contributions
of this paper are twofold: (i) to foster the scientific literature
concerning iRBMs, and (ii) to deal with the problem of iRBM
hyper-parameter optimization. Additionally, we also consid-
ered both standard RBMs and oRBM for comparison purposes
concerning the task of binary image reconstruction over two
public datasets. The remainder of this paper is organized as
follows. Sections II and III present theoretical details about
the iRBM and the proposed fine-tuning process, respectively.
Section IV discusses the methodology and Section V presents
the experimental results. Finally, Section VI states conclusions
and future works.

II. THEORETICAL BACKGROUND

In this section, we briefly explain the theoretical background
related to RBMs, oRBMs and iRBMs.

A. Restricted Boltzmann Machines

Restricted Boltzmann Machines are energy-based stochastic
neural networks composed of two layers of neurons (visible
and hidden), in which the learning phase is conducted by
means of an unsupervised fashion. A naı̈ve architecture of
a Restricted Boltzmann Machine comprises a visible layer v
with m units and a hidden layer h with n units. Additionally,
a real-valued matrix Wm×n models the weights between the
visible and hidden neurons, where wij stands for the weight
between the visible unit vi and the hidden unit hj .

Let us assume both v and h as being binary-valued units. In
other words, v ∈ {0, 1}m e h ∈ {0, 1}n. The energy function
of a Restricted Boltzmann Machine is given by:

E(v,h) = −
m∑
i=1

aivi −
n∑

j=1

bjhj −
m∑
i=1

n∑
j=1

vihjwij , (1)

where a e b stand for the biases of visible and hidden units,
respectively.

The probability of a joint configuration (v,h) is computed
as follows:

P (v,h) =
1

Z
e−E(v,h), (2)

where Z stands for the so-called partition function, which is
basically a normalization factor computed over all possible
configurations involving the visible and hidden units. Simi-
larly, the marginal probability of a visible (input) vector is
given by:

P (v) =
1

Z

∑
h

e−E(v,h). (3)

Since the RBM is a bipartite graph, the activations of both
visible and hidden units are mutually independent, thus leading
to the following conditional probabilities:

P (v|h) =

m∏
i=1

P (vi|h), (4)

and

P (h|v) =

n∏
j=1

P (hj |v), (5)

where

P (vi = 1|h) = φ

 n∑
j=1

wijhj + ai

 , (6)

and

P (hj = 1|v) = φ

(
m∑
i=1

wijvi + bj

)
. (7)

Note that φ(·) stands for the logistic-sigmoid function.
Let θ = (W, a,b) be the set of parameters of an RBM,

which can be learned through a training algorithm that aims at
maximizing the product of probabilities given all the available
training data V , as follows:

arg max
Θ

∏
v∈V

P (v). (8)

One can solve the aforementioned equation using the following
derivatives over the matrix of weights W, and biases a and b
at iteration t as follows:

Wt+1 = Wt + η(P (h|v)vT − P (h̃|ṽ)ṽT ), (9)

at+1 = at + η(v− ṽ) (10)

and

bt+1 = bt + η(P (h|v)− P (h̃|ṽ), (11)

where η stands for the learning rate. Notice the terms P (h̃|ṽ)
and ṽ can be obtained by means of the Contrastive Diver-
gence [22] technique, which basically ends up performing
Gibbs sampling using the training data as the visible units.
Roughly speaking, Equations 22, 23 and 24 employ the well-
known Gradient Descent as the optimization algorithm.

B. Ordered Restricted Boltzmann Machines

The ordered Restricted Boltzmann Machine is a variant of
the RBM such that the hidden units are trained sequentially,
from the left to the right. The current number of trained units
at a given time step is represented by the variable z ≤ n, as
depicted in Figure 1.

Given a number z of hidden units, one can compute the
energy of the current model as follows:

E(v,h, z) = −
m∑
i=1

aivi −
z∑

j=1

bjhj −
m∑
i=1

z∑
j=1

(vihjwij − βj) ,

(12)



Fig. 1. An oRBM with z = 2 and n = 4.

where βj represents the energy penalty associated to the hid-
den unit hj . Actually, βj forces the model to avoid using more
hidden units than needed, thus generating smaller networks.

Therefore, the joint probability over v, h and z is given as
follows:

P (v,h, z) =
1

Z
e−E(v,h,z). (13)

and the marginal probability is given by:

P (v) =
1

Z

∑
h

e−E(v,h,z). (14)

Similarly to the RBM, since Z is intractable in the above
equation, the probabilities over v and h are estimated by means
of Gibbs sampling:

P (hj = 1|v, z) =

 φ

(
m∑
i=1

wijvi + bj

)
if j ≤ z

0 otherwise,
(15)

and

P (vi = 1|h, z) = φ

 z∑
j=1

wijhj + ai

 . (16)

However, oRBM has an additional information that concerns
the maximum number of hidden units that is going to be
used, i.e., variable z. Given an input data v, the conditional
distribution over the value of z is given as follows:

P (z|v) =
exp(−F (v, z))∑n

z′=1 exp(−F (v, z′))
, (17)

where F (v, z) is the so-called “free energy”, being computed
as follows:

F (v, z) = −
m∑
i=1

aivi −
z∑

j=1

(
ψ

(
m∑
i=1

wijvi + bj

)
− βj

)
,

(18)
where ψ(x) = ln(1 + ex).

Equation 17 tells us we need to consider sampling z from
the Markov chain as well. In this case, Gibbs steps alternate
between sampling (h, z) ∼ P (h, z|v) and v ∼ P (v|h, z).
Notice the sampling from P (h, z|v) can be performed in two
steps: z ∼ P (z|v) followed by h ∼ P (h|v, z).

Finally, the weight matrix W and the biases a and b in the
oRBM model are than updated by the following equations:

Wt+1 = Wt + η(ξvT − ξ̃ṽT ), (19)

where ξ = P (h|v)�(1−ρ(z|v)) and ξ̃ = P (h̃|ṽ)�(1−ρ(z|ṽ)).
Notice the operator � stands for the element-wise product, and
ρ(z|v) = [P (z < 1|v), P (z < 2|v), . . . , P (z < n|v)]T .

The biases can be updated as follows:

at+1 = at + η(v− ṽ) (20)

and

bt+1 = bt + η(λ− λ̃), (21)

where λ = (P (h|v) − βφ(b)) � (1 − ρ(z|v)) and λ̃ =
(P (h̃|ṽ) − βφ(b)) � (1 − ρ(z|ṽ)). Notice that β =
[β1, β2, . . . , βz], and φ is the same sigmoid-logistic function
as before, but now applied to the array b.

Roughly speaking, the rationale of oRBMs is to perform
the training step adding one hidden unit at time, from the
left to the right. Since P (z|v) usually increases according to
greater values of z (i.e., we have more complex models), the
term (1 − ρ(z|v)) decreases monotonically from the left to
the right, thus forcing the model using less hidden units (i.e.,
smaller values of z).

C. Infinity Restricted Boltzmann Machines

The infinity RBM mimics the same growing behavior of
the oRBM, but the maximum number of hidden units is
not specified. This number increases automatically until its
capacity is sufficiently high, which is possible by taking the
limit of n→∞. The model is presented in Figure 2.

Fig. 2. An iRBM trained previously with z = 2 units. There are some non-
zero (dashed lines) values connecting the third unit (l = 3) that is going to
be used for training. All remaining hidden units (i.e., l > 3) have zero-valued
weights.

The updating equations concerning iRBM are given as
follows:



Wt+1 = Wt + η(P (h|v, z)vT − P (h̃|ṽ, z̃)ṽT ), (22)

at+1 = at + η(v− ṽ) (23)

and

bt+1 = bt + η(α− α̃), (24)

where α = (P (h|v) − βφ(b)) � Iz and α̃ = (P (h̃|ṽ) −
βφ(b))� Iz , and Iz = [1, . . . , 1︸ ︷︷ ︸

z

, 0, . . . , 0︸ ︷︷ ︸
n−z

]T .

III. INFINITY RBM FINE-TUNING AS AN OPTIMIZATION
PROBLEM

The proposed approach requires the optimization of three
hyper-parameters for both RBM and iRBM, and four param-
eters for the oRBM, as follows:
• RBM: the learning rate η, the L1 regularization parameter,

and the number of hidden units n;
• oRBM: the learning rate η, the L1 regularization parame-

ter, the number of hidden units n, and the energy penalty
parameter β ∈ <n for each hidden unit; and

• iRBM: the learning rate η, the L1 regularization param-
eter, and the energy penalty parameter β ∈ <n for each
hidden unit.

Notice the regular learning rate (i.e., η ∈ <) is used to
update the RBM, and the ADAGRAD stochastic gradient
technique is used for both oRBM and iRBM [23]. In this
case, we have a per-dimension learning rate method, i.e.,
η ∈ <n, with ε = 10−6 [10]. This latter parameter stands
for a small number to avoid numerical instabilities. Cotê and
Larochelle [10] claims that one can throw away the parameter
n, thus replacing the RBM model by the iRBM one. However,
β is still a hyper-parameter to be optimized1.

Figure 3 depicts the proposed approach to optimize the
RBM, oRBM and iRBM models. Roughly speaking, the idea
is to initialize all decision variables techniques at random,
and then the optimization algorithm takes place. In this work,
we used the following ranges concerning the parameters:
n ∈ [5, 500], η ∈ [0.01, 0.5], β ∈ [0.01, 1.5] and L1 ∈
[0.00001, 0.01].

In order to fulfill the requirements of any optimization
technique, one shall design a fitness function to guide the
search into the best solutions. In this paper, we used the
average negative log-likelihood (NLL) over the training set
considering the task of binary image reconstruction as the
fitness function. Therefore, we adopted the very same method-
ology used by [10], but presenting the mean results obtained
over 20 runs in order to provide a statistical comparison2.

In short, the optimization technique selects the set of
hyper-parameters that minimize the NLL over the training

1Notice the regularization parameter β is way less sensitive than the number
of hidden units n

2Notice the work by Cotê and Larochelle [10] presents the best result over
all runs only.

Fig. 3. Proposed approach to model the fine-tuning problem as an optimiza-
tion task.

set considering a dataset of binary images as an input to the
model. After learning the hyper-parameters, one can proceed
to the reconstruction step concerning the testing images, whose
effectiveness is assessed by the NLL method.

IV. METHODOLOGY

In this section, we present the methodology employed
to evaluate the proposed approach, optimization techniques,
datasets, and the experimental setup.

A. Optimization Techniques

Below, we present a brief description of the metaheuristic
techniques employed in this paper:
• PSO: Any possible solution is represented as a particle

(agent) in a swarm. Each agent has a position that
represents a parameter value and velocity vector in the
search space. A fitness value is associated with each
position, and after some iterations iterations the global
best position is selected as the best solution to the
problem.

• BA: is a nature-inspired metaheuristic optimization algo-
rithm based on the echolocation behavior of bats. Each
bat flies with a randomly velocity, position and frequency.
Additionally, they can vary the wavelength and loudness
to search for prey/food (best solutions), adjusting the rate
of pulses depending on the proximity of their target.

• CS: it is based on the obligate brood parasitic behavior of
some cuckoo species in combination with the Lévy flight
behavior of some birds and fruit flies. Basically, the al-
gorithm follows three idealized rules: i) each cuckoo lays
one egg at a time in randomly chosen nests, ii) the nests
with best eggs will carry over to the next generations,
and iii) the egg laid by a cuckoo is discovered by the
host bird with a probability pa ∈ [0, 1]. Furthermore, the
host bird can either throw away the egg or abandon the
nest and build a new one, which means that a new random
solution is created.

• FFA: is derived from the fireflies’ flash attractiveness
when mating partners and attracting potential preys. Ba-
sically, the attractiveness of a firefly is computed by its



position related to other fireflies in the swarm, as well as
its brightness is determined by the value of the objective
function at that position.

Table I presents the parameters used for each aforemen-
tioned optimization technique, where five agents (initial so-
lutions) were used for all optimization techniques during 20
iterations for convergence purposes3. In regard to PSO, w
stands for the inertia weight, and c1 and c2 control the step
size towards the best local and global solutions, respectively.
With respect to BA, fmin and fmax bound the minimum
and maximum frequency values, and A and r denote the
the loudness and pulse rate values, respectively. Parameters
ϕ and τ are used to avoid the technique getting trapped from
local optima. FFA uses µ and γ, which stand for a random
perturbation and the light absorption coefficient, respectively.
Variable ς denotes the attractiveness of each firefly. Finally,
CS uses Γ to compute the Lévy distribution, ζ for the switch
probability (i.e., the probability of replacing the worst nests
by new ones), and s for the step size.

TABLE I
PARAMETER CONFIGURATION FOR EACH OPTIMIZATION TECHNIQUE.

Technique Parameters
PSO c1 = 1.7, c2 = 1.7, w = 0.7
BA ϕ = 0.9, τ = 0.9

fmin = 0, fmax = 100
A = 1.5, r = 0.5

CS Γ = 1.5, ζ = 0.25, s = 0.8
FFA γ = 1, ς = 1, µ = 0.2

B. Datasets

We propose to evaluate the behavior of different optimiza-
tion techniques to fine-tune RBM/oRBM/iRBM in the context
of binary image reconstruction using two public datasets, as
described below:
• MNIST dataset4: it is composed of images of handwritten

digits containing a training set with 70, 000 images from
digits ‘0’-‘9’, which is split as follows: 50, 000 for
training, 10, 000 for validation, and 10, 000 for testing
according to [24].

• CalTech 101 Silhouettes Dataset5: it is based on the
former Caltech 101 dataset, and it comprises silhouettes
of images from 101 classes with resolution of 28 × 28.
The dataset is composed of 8, 671 images, such that
4, 100 examples are used for training purpose, 2, 264 for
validation, and the 2, 307 remaining for testing.

Figure 4 displays some training examples from the above
datasets.

C. Experimental Setup

This work employs a cross-validation procedure with 20
runs in order to provide a statistical analysis by means of

3Notice these parameters were set empirically.
4http://yann.lecun.com/exdb/mnist/
5https://people.cs.umass.edu/ marlin/data.shtml

(a) (b)
Fig. 4. Some training examples from (a) MNIST and (b) Caltech 101
Silhouettes.

the Wilcoxon signed-rank test with significance of 0.05 [25].
The training step is conducted with 5, 000 epochs, with an
Annealed Importance Sampling (AIS) evaluation every 1, 000
epochs to keep the best NLL approximation [26].

For the learning procedure, we used ten Gibbs sampling
steps with mini-batches of size 64. In addition, we also
considered two learning algorithms: Contrastive Divergence
(CD) [22] and Persistent Contrastive Divergence (PCD) [27].
Furthermore, all NLL results were obtained by estimating the
log-partition function using AIS with 100, 000 intermediate
distributions and 5, 000 chains.

Finally, the codes used to reproduce the experiments of
the paper are available on GitHub67. The experiments were
conducted using a Ubuntu 16.04 Linux machine with 16Gb of
RAM running an Intel R© CoreTMi7 − 4790 with a frequency
of 3.60 GHz and a GPU GeForce R© GTX970 with 4GB. The
source-codes run on top of Python with Theano [29] and
C for the RBM/oRBM/iRBM and optimization approaches,
respectively.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results concern-
ing iRBM, oRBM and RBM hyper-parameter optimization
in the task of binary image reconstruction. Additionally, all
techniques are compared using two different learning algo-
rithms, i.e., Contrastive Divergence and Persistent Contrastive
Divergence. In order to validate the proposed approach, we
also considered a random search (RS) as a baseline for hyper-
parameter optimization.

Table II presents the averaged NLL results concerning the
MNIST dataset, being the values in bold the best results con-
sidering the Wilcoxon signed-rank. Although RBM achieved
the best results using PSO, both iRBM and the oRBM obtained
similar results according to the Wilcoxon signed-rank test,
using BA and FFA techniques, respectively. This behavior
is expected as it matches the results obtained in [10], which
concluded that RBMs are still more accurate, but at the price of
having a more sensitive parameter to be set (i.e., the number of
hidden units). Also, one can clearly observe the meta-heuristic

6iRBM: http://github.com/MarcCote/iRBM
7LibOPT [28]: https://github.com/jppbsi/LibOPT



techniques are able to achieve much more accurate results than
the baseline provided by the random search.

It is worth mentioning that PCD has provided better results
only for oRBM and iRBM. As a matter of fact, it is arguable
that PCD may provide more accurate results than CD, since
it does not restart the Markov chain when a new training
sample is presented to the network, but it uses the last sampled
data from the previous training sample to initiate the chain.
However, such behavior was not observed for RBMs, and it
quite reasonable to assume that PCD learning can really work
well for iRBM and oRBM, since such models may not achieve
results so accurate than standard RBMs due to their smaller
hidden layers, which means they may have a poorer capacity
for learning.

Figure 5 depicts some testing images reconstructed by
RBM, oRBM and iRBM. One can observe the images are
better reconstructed by RBM, with less noise as well, thus
confirming the numerical results presented in Table II. Addi-
tionally, one can refer to the network’s weights, as displayed
in Figure 6, in which a more variety of filters can be observed
for standard RBM. Such behavior evidences a greater capacity
for learning, which can also be observed for oRBM as well.

(a) (b)

(c) (d)
Fig. 5. Random (a) MNIST testing images reconstructed by (b) RBM fine-
tuned with FFA and trained with CD, (c) oRBM fine-tuned with FFA and
trained with PCD, and (d) iRBM fine-tuned with CS and trained with CD.

Finally, we also considered the computational load of each
technique for comparison purposes, as presented in Table III.
The fastest optimization technique has been the Cuckoo Search
for RBM, oRBM and iRBM, being RBM the fastest of all since
its formulation is less complex than oRBM and iRBM.

Table IV presents the average NLL results concerning
Caltech 101 Silhouettes dataset. In this case, iRBM achieved
the best results with all meta-heuristic techniques using CD
for learning, except for CS. Additionally, oRBM obtained the

(a) (b)

(c)
Fig. 6. “The network’s mind” considering MNIST dataset: comparing the
filters obtained by (a) RBM fine-tuned with FFA and trained with CD, (b)
oRBM fine-tuned with FFA and trained with PCD, and (c) iRBM fine-tuned
with CS and trained with CD.

best results with the FFA algorithm. Actually, iRBM trained
with CD and optimized by FFA achieved the best result so far.
Such results are pretty much interesting, since Caltech dataset
poses a greater challenge than MNIST (greater NLL values).
Although oRBM and iRBM were not proposed to outperform
RBM, one can observe that more accurate models can be
obtained by avoiding complex architectures. As a matter of
fact, RBMs may be more prone to overfit when one does not
choose the number of hidden units properly.

Figure 7 depicts some testing images reconstructed by
RBM, oRBM and iRBM concerning Caltech 101 Silhouettes
dataset. In this case, it is difficult to visualize a clear difference
among the techniques. Also, Caltech dataset has much more
classes than MNIST, thus resulting in poorer reconstructed
images. The weights of the networks are displayed in Figure 8,
in which a richer representation in the iRBM’s weights can be
observed. One can notice a considerable number of full-gray
patches, which means they did not learn so much information
from the training step.

Table V presents the average computational load concerning
Caltech 101 Silhouettes dataset. Considering the worst case,
iRBM was around 14.75 times slower than RBM, which
showed to be the fastest approach once again. As a matter
of fact, both oRBM and iRBM tend to be faster than RBMs
for the reconstruction step, since one has less hidden units for
computation purposes.

VI. CONCLUSIONS AND FUTURE WORKS

This paper addressed the problem of iRBM fine-tuning
by means of meta-heuristic techniques. Ordered and Infinity



TABLE II
AVERAGE NLL VALUES CONSIDERING MNIST DATASET.

RBM oRBM iRBM
CD PCD CD PCD CD PCD

RS 192.84±24.31 195.25±18.61 163.80±28.44 153.16±16.39 160.94±20.54 153.91±18.53
BA 188.07±66.12 220.75±24.35 179.15±37.24 166.13±46.36 184.18±42.05 165.83±85.07
CS 154.35±20.82 178.21±20.13 161.33±18.96 156.39±20.71 149.40±8.34 150.71±23.32

FFA 125.39±39.59 243.55±42.11 156.50±23.11 133.82±40.26 206.24±18.78 171.92±153.11
PSO 124.60±44.96 216.94±41.43 171.24±40.32 164.13±41.18 208.10±37.19 179.25±72.79

TABLE III
AVERAGE TIME (MINUTES) FOR LEARNING HYPER-PARAMETERS

CONSIDERING MNIST DATASET.

RBM oRBM iRBM
CD PCD CD PCD CD PCD

RS 13.07 14.10 20.26 19.72 16.64 19.01
BA 68.34 65.73 121.36 122.48 111.00 300.96
CS 49.49 50.29 92.36 92.84 100.56 349.06

FFA 63.37 64.97 126.24 120.36 120.03 411.30
PSO 68.40 68.80 108.67 127.56 143.02 234.91

(a) (b)

(c) (d)
Fig. 7. Random (a) Caltech 101 Silhouettes testing images reconstructed
by (b) RBM fine-tuned with FFA and trained with CD, (c) oRBM fine-tuned
with FFA and trained with CD, and (d) iRBM fine-tuned with CS and trained
with CD.

RBMs are very recent models that avoid choosing the number
of hidden units, but at the price of introducing one more
variable related to the penalty in adding one more hidden unit
to the learning process. However, such parameter is way less
sensitive to the number of hidden units, thus requiring less
effort by the user and setting up the model.

Experiments over two public datasets concerning the task
of binary image reconstruction using four meta-heuristic tech-

(a) (b)

(c)
Fig. 8. “The network’s mind” considering Caltech 101 Silhouettes dataset:
comparing the filters obtained by (a) RBM fine-tuned with FFA and trained
with CD, (b) oRBM fine-tuned with FFA and trained with CD, and (c) iRBM
fine-tuned with FFA and trained with CD.

niques showed they are suitable for hyper-parameter fine-
tuning, being the Cuckoo Search the fastest technique, and
FFA one of the most accurate.

In regard to future works, we intend to investigate the suit-
ability of deep versions of both oRBMs and iRBMs, as well
as their fine-tuning by means of meta-heuristic techniques.
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