
Detecting Computer Generated Images with
Deep Convolutional Neural Networks
Edmar R. S. de Rezende∗, Guilherme C. S. Ruppert∗, and Tiago Carvalho†

∗CTI Renato Archer, Campinas-SP, Brazil 13069-901
Email: {edmar.rezende,guilherme.ruppert}@cti.gov.br

†Federal Institute of São Paulo (IFSP), Campinas-SP, Brazil 13069-901
Email: tiagojc@gmail.com

Abstract—Computer graphics techniques for image generation are
living an era where, day after day, the quality of produced content is
impressing even the more skeptical viewer. Although it is a great advance
for industries like games and movies, it can become a real problem when
the application of such techniques is applied for the production of fake
images. In this paper we propose a new approach for computer generated
images detection using a deep convolutional neural network model based
on ResNet-50 and transfer learning concepts. Unlike the state-of-the-
art approaches, the proposed method is able to classify images between
computer generated or photo generated directly from the raw image data
with no need for any pre-processing or hand-crafted feature extraction
whatsoever. Experiments on a public dataset comprising 9700 images
show an accuracy higher than 94%, which is comparable to the literature
reported results, without the drawback of laborious and manual step of
specialized features extraction and selection.

I. INTRODUCTION

Data from the Global Games Market Report1 shows that, in 2015,
digital games industry moved more than 91.8 billions of dollars. Such
industry is always looking for innovation and improvements, in a way
to respond to it’s consumers wishes for realistic games, with almost
perfect graphics.

In the same way, cinematographic industry also lives a “gold
rush”, using techniques able to produce movies so realistic that its
impressive results could deceive an inattentive person, even when
using just Computer Graphics (CG) characters.

This crusade for perfect visual quality, result in more and more
robust and precise CG methods for people, objects, and digital sce-
narios generation. Associated with high processing power in current
computers, such methods are able to generate results so impressive
as the one depicted in the last Star Wars movie 2 where the actress
Carrie Fisher has been digitally reproduced with the same appearance
of the beginning of her carrier, in the 70’s.

However, as pointed by Holmes et.al. [1], once the perfect CG
image generation goal is achieved, it brings with itself challenges
for other science areas as, for example, the challenge of discerning
between a photo generated (PG) — the one generated by a digital
camera — and an image generated by CG methods. Figure 1, depicts
an example of how difficult is to discern between PG and CG images.
Imagine, for example, the retaliation that a CG image reporting a
terroristic act, as the execution of a missing reporter, spreading out
on the Internet could cause. In this context, the accurate detection
of CG images has become more important in the last years. Such
differentiation has even more legal implications when attached to
child pornography detection. In Brazil, for example, according to
Law 11.829, of 2008 November 25th, any person who produces,
reproduces, direct, take pictures or record, in any way, scenes
involving explicit sexual or pornographic act involving children or

1https://goo.gl/xkWPon
2http://www.imdb.com/title/tt3748528/

(a) PG (b) CG

Fig. 1. Example of how challenging is recognize a PG and a CG image by
simple visual analysis.

teenagers can be sentenced from 4 to 8 years in jail. But what
happen if the scene has been produced by CG methods? The legal
consequences are the same?

Different methods on Digital Forensics have been proposed to
identify the difference between CG and real images and videos [2]–
[5] but, despite to present improvements, such methods are far from
the complete problem resolution. Usually, such methods works with
approaches focused in discovery inconsistency in very specific details,
as the work proposed by Conotter et.al. [6], which uses information
associated with blood flow captured from videos involving people
constructed using CG. Another kind of approach involves machine
learning application for CG images identification [2].

In the last few years, Deep Neural Networks (DNN) have become
the standard approach for image classification tasks. Deep learning
algorithms [7]–[9] are learning methods with multiple levels, each
transforming the representation at one level (starting with the raw
input) into a representation at a higher, slightly-more-abstract level.
With the composition of enough such transformations, very complex
functions can be learned. Its key aspect is that these feature layers
are not designed by human engineers, rather they are learned from
data using a general purpose learning procedure.

This transition from traditional approach based on hand-crafted
feature extractors combined with shallow classifiers to DNNs is
due to the overwhelming performance of deep Convolutional Neural
Networks (CNNs) on classification challenges such as the ILSVRC
(ImageNet Large Scale Visual Recognition Challenge) [10].

Over the years, there has been a trend where the deeper the
model is, the better performance the model can get on the ImageNet
challenge. In 2012, the AlexNet architecture with 8 layers resulted in
a top-5 classification error of 16.4% on the ImageNet challenge [11].
In 2014, the VGG16 model with 16 layers and VGG19 model with 19
layers resulted in a top-5 classification error of 7.3% [12], and the
GoogleNet model with 22 layers resulted in a top-5 classification
error of 6.7% [13]. And finally in 2015, the Residual Network
(ResNet) model with 152 layers resulted in a top-5 classification error
of 3.57% [14].



In this paper we present a new method for CG image detection
using a deep CNN based on the Residual Network model with 50
layers (ResNet-50) [14]. Using a transfer learning approach [15], we
transfered the weights of ResNet-50 layers pre-trained on ImageNet
dataset to our model, replacing the last layer by a trained classifier,
being able to classify PG and CG images with 94% accuracy.

Among the main contributions of this paper we can highlight: (1)
proposition of a new approach for CG images detection based on a
deep CNN model combined with a transfer learning approach; (2)
an accuracy around 94%, comparable with state-of-the-art methods;
(3) decrease of complexity in features engineering process when
compared with state-of-the-art methods.

The rest of the paper is organized as follows: Section II describes
some of the main works related with CG images detection in Digital
Forensics literature. Section III describes in details the proposed
methodology. Section IV presents the main experiments performed
for methodology validation, exposing the obtained results and com-
paring them with literature methods. Finally, Section V presents the
main conclusions and future research directions.

II. RELATED WORK

When talking about the topic of discern between CG and real
images, many literature works have been developed. Some of these
works investigate how is the behavior of people when exposed to this
kind of image and its impact in law. Is the case of Holmes et.al. [1]
work, where the authors discuss the legal problems caused by
highly realistic images generated by CG methods, specially for child
pornography. To show how easy, or not, is to deceive users using
this kind of images, the authors propose two experiments: the first
one involves a training stage for users, and the second one, where the
users did not receive this training. This experiment consists in expose
each user to 60 images (15 real images containing one man each, 15
CG images containing one man each, 15 real images containing one
woman each, and 15 CG images containing one woman each). The
user were asked to answer the sex (man or woman) and if the image
has been generated by CG or not. In the first round of experiments, the
users did not receive the training and users accuracy stayed around
50% in CG images detection. In the second experiment, the users
received a simple training, which shows that they improved their
accuracy at the task. Based on these experiments, and also using
images information, the authors conclude that when CG image quality
is improved, it becomes even harder for people to detect differences
based on a simple visual analysis.

Farid [16] emphasizes that in the United States, when analyzing
child pornography images, if the child in the image has been
generated by CG, not being a real human being, the content does
not represent a crime. The work also presents approaches to detect
some kinds of deformation and retouches in images using color filters.

Looking for detecting computer generated person in videos, but
also using perceptual details, Conotter et.al. [6] proposed to use
information associated with blood flow. Capturing tiny movements
on cheeks and forehead, the authors produce a characteristics signal
for real and CG images. In CG images, this signal is characterized
by the presence of many peaks, while in real images the sinal is most
of time flat.

In machine learning field, proposed methods usually extract differ-
ent features for training a specialized classifier to identify patterns of
CG and real images. Tokuda et.al. [2] propose to use a combination
of a big number of feature extraction algorithms associated with
different classifiers fusion techniques in a way to detect CG images.
The authors report an 97% accuracy in a dataset of 9700 images.

Tan et.al. [17], based upon the statement that texture features
has a strong ability to distinguish CG and real images, have used
Local Ternary Patterns (LTP) for features extraction and posterior
classification. Using a Support Vector Machine (SVM) [18] classifier,
the authors achieve an accuracy of approximately 97% in a dataset
of 2200 images collected from different sources, as for example, the
Columbia University natural image library [19].

III. PROPOSED METHOD

The CG detection method proposed in this work relies upon a deep
CNN architecture to classify each image from the dataset using their
raw RGB values of the pixels as features, without necessity of manual
feature extraction. Figure 2 depicts an overview of entire method’s
pipeline.

The dataset consists of variable-resolution images, while our model
requires a constant input dimensionality. Therefore, we resize the
images to a fixed resolution of 224 × 224. The only pre-processing
we do is subtracting the mean RGB value computed on the ImageNet
dataset from each pixel, as proposed by Krizhevsky et.al. [11].

Using a transfer learning approach, we transfer the weights of
ResNet-50 layers pre-trained on ImageNet dataset to our deep CNN
model, removing the last 1000 fully-connected (fc) softmax layer.
Then, we pass the pre-processed training set images through the deep
CNN to extract the bottleneck features3. In our model, the bottleneck
features are the activation maps generated by the average pooling
layer.

The bottleneck features are then used to train a new classifier for
CG image detection. This approach is equivalent to replace the last
1000 fc softmax layer of ResNet-50 by the new classifier freezing
the parameters of the convolutional layers during the training process,
with the advantage of a much smaller training time.

Finished the training process, the new trained classifier is stacked
on the top of the layers transfered from ResNet-50 to build our deep
CNN model, which is used to classify the test images. In this work,
we propose two distinct deep CNN models: the first one with a 2
fully-connected softmax layer at the top, and the second one with a
SVM classifier at the top. Fig. 3 shows a comparison between the
original ResNet-50 and the two proposed deep CNN architectures.

A. Transfer Learning Process

Transfer learning consists in transferring the parameters of a neural
network trained with one dataset and task to another problem with a
different dataset and task [15].

The usual transfer learning approach consists in training a base
network and then copying its first n layers to the first n layers of a
target network. The remaining layers of the target network are then
trained toward the target task. One can choose to backpropagate the
errors from the new task into the base (copied) features to fine-tune
them to the new task, or the transferred feature layers can be left
frozen, meaning that they do not change during training on the new
task. The choice of whether or not to fine-tune the first n layers of
the target network depends on the size of the target dataset and the
number of parameters in the first n layers. If the target dataset is
small and the number of parameters is large, fine-tuning may result
in overfitting, so the features are often left frozen. On the other hand,

3Bottleneck term refers to a topology of a neural network where the hidden
layer has significantly lower dimensionality than the input layer, assuming that
such layer — referred to as the bottleneck — compresses the information
needed for mapping the neural network input to the neural network output,
increasing the system robustness to noise and overfitting. Conventionally,
bottleneck features are the output generated by the bottleneck layer.



Pr
e-

pr
oc

es
si

ng

(F1, F2, F3, … , Fn-2, Fn-1, Fn, ?)

Bottleneck Features
Test Image

Test Stage

Pr
e-

pr
oc

es
si

ng

Pre-processed
Images

CG Images

PG Images

7x
7 

co
nv

, 6
4,

 /2

3x
3 

m
ax

 p
oo

l, 
/2

3x
1x

1 
co

nv
, 6

4
3x

3 
co

nv
, 6

4
1x

1 
co

nv
, 2

56

4x
1x

1 
co

nv
, 1

28
3x

3 
co

nv
, 1

28
1x

1 
co

nv
, 5

12

6x
1x

1 
co

nv
, 2

56
3x

3 
co

nv
, 2

56
1x

1 
co

nv
, 1

02
4

3x
1x

1 
co

nv
, 5

12
3x

3 
co

nv
, 5

12
1x

1 
co

nv
, 2

04
8

av
g.

 p
oo

l

7x
7 

co
nv

, 6
4,

 /2

3x
3 

m
ax

 p
oo

l, 
/2

3x
1x

1 
co

nv
, 6

4
3x

3 
co

nv
, 6

4
1x

1 
co

nv
, 2

56

4x
1x

1 
co

nv
, 1

28
3x

3 
co

nv
, 1

28
1x

1 
co

nv
, 5

12

6x
1x

1 
co

nv
, 2

56
3x

3 
co

nv
, 2

56
1x

1 
co

nv
, 1

02
4

3x
1x

1 
co

nv
, 5

12
3x

3 
co

nv
, 5

12
1x

1 
co

nv
, 2

04
8

av
g.

 p
oo

l

10
00

 fc
, s

of
tm

ax

ResNet 50

(F1, F2, F3, … , Fn-2, Fn-1, Fn, CG1)

...

(F1, F2, F3, … , Fn-2, Fn-1, Fn, CG2)

(F1, F2, F3, … , Fn-2, Fn-1, Fn, CGN)
(F1, F2, F3, … , Fn-2, Fn-1, Fn, PG1)

...

(F1, F2, F3, … , Fn-2, Fn-1, Fn, PG2)

(F1, F2, F3, … , Fn-2, Fn-1, Fn, PGN)

Training Set
PG Images

CG Images

Bottleneck Features

Training Stage

Tr
an

sf
er

 L
ea

rn
in

g
Pr

oc
es

s

7x
7 

co
nv

, 6
4,

 /2

3x
3 

m
ax

 p
oo

l, 
/2

3x
1x

1 
co

nv
, 6

4
3x

3 
co

nv
, 6

4
1x

1 
co

nv
, 2

56

4x
1x

1 
co

nv
, 1

28
3x

3 
co

nv
, 1

28
1x

1 
co

nv
, 5

12

6x
1x

1 
co

nv
, 2

56
3x

3 
co

nv
, 2

56
1x

1 
co

nv
, 1

02
4

3x
1x

1 
co

nv
, 5

12
3x

3 
co

nv
, 5

12
1x

1 
co

nv
, 2

04
8

av
g.

 p
oo

l

?
Classifier

CG 
Detection

Fig. 2. Overview of proposed method. Transferring ResNet-50 parameters to our model to extract bottleneck features, which are used to train a classifier.

if the target dataset is large or the number of parameters is small,
so that overfitting is not a problem, then the base features can be
fine-tuned to the new task to improve performance.

At first glance, this process could sound meaningless because
the traditional common sense in machine learning expects that the
training should be performed specifically for the target dataset and
task. However, many deep neural networks trained on natural images
exhibit a curious phenomenon in common: on the first layers they
learn features that appear not to be specific to a particular dataset
or task, but general in that they are applicable to many datasets and
tasks. Features must eventually transition from general to specific by
the last layers of the network.

When the target dataset is significantly smaller than the base
dataset, transfer learning can be a powerful tool to enable training
a large target network without overfitting. Recent studies have taken
advantage of this fact to obtain state-of-the-art results [20] [21] [22],
collectively suggesting that these layers of neural networks do indeed
compute features that are fairly general.

In our transfer learning approach, we use ResNet-50 as the base
model. ResNet-50 was pre-trained for object detection task on the
ImageNet 2012 dataset [10] containing 1.28 million images of 1000
classes. We copied the first 49 layers of ResNet-50, replacing its
top layer by a 2 fully-connected softmax layer in the first proposed
model, and by a SVM classifier in the second proposed model. In
both models, the transferred feature layers were left frozen during
training on the CG detection task.

B. ResNet-50 Architecture

Residual Networks (ResNets) [14] are deep convolutional networks
where the basic idea is to skip blocks of convolutional layers by using
shortcut connections to form shortcut blocks named residual blocks.
The residual block can be expressed in a general form:

yl = h(xl) + F (xl,Wl),

xl+1 = f(yl)

where xl and xl+1 are input and output of the l-th block, respectively.
F is a residual mapping function, h(xl) = xl is an identity mapping
function, and f is a rectified linear unit (ReLU) function [23]. These
stacked residual blocks greatly improve training efficiency and largely
resolve the degradation problem present in deep networks.

In ResNet-50 architecture, the basic blocks are composed of a
sequence of convolutional layers with 1 × 1, 3 × 3 and 1 × 1
filters respectively, that follow two simple design rules: (i) for the
same output feature map size, the layers have the same number
of filters; and (ii) if the feature map size is halved, the number
of filters is doubled. The down-sampling is performed directly by
convolutional layers that have a stride of 2 and batch normalization
[24] is performed right after each convolution and before ReLU
activation.

The identity shortcuts can be directly used when the input and
output are of the same dimensions. When the dimensions increase,
two options are considered: (i) The shortcut still performs identity
mapping, with extra zero entries padded for increasing dimensions.
This option introduces no extra parameter; (ii) The projection shortcut
is used to match dimensions (done by 1× 1 convolutions). For both
options, when the shortcuts go across feature maps of two sizes, they
are performed with a stride of 2.

The network ends with a global average pooling layer and a 1000-
way fully-connected layer with softmax activation. The total number
of weighted layers is 50.

C. Top Classifier

The original work that presented ResNet-50 [14] proposes an
architecture where the last layer is a 1000 fully-connected softmax
layer. In our method, we explore the same architecture adapting to a
2 fully-connected softmax since we only have two classes here. This
last layer works as the top classifier, doing the classification task
itself, while the previous layers can be seen as feature extraction
layers.

Furthermore, we also extend the method by replacing this last
layer for a SVM classifier, to evaluate the performance of a different



7x7 conv, 64, /2

3x3 max pool, /2

3x
1x1 conv, 64
3x3 conv, 64
1x1 conv, 256

4x
1x1 conv, 128
3x3 conv, 128
1x1 conv, 512

6x
1x1 conv, 256
3x3 conv, 256
1x1 conv, 1024

3x
1x1 conv, 512
3x3 conv, 512
1x1 conv, 2048

avg. pool

1000 fc, softmax

Original ResNet

Input Image

7x7 conv, 64, /2

3x3 max pool, /2

3x
1x1 conv, 64
3x3 conv, 64
1x1 conv, 256

4x
1x1 conv, 128
3x3 conv, 128
1x1 conv, 512

6x
1x1 conv, 256
3x3 conv, 256
1x1 conv, 1024

3x
1x1 conv, 512
3x3 conv, 512
1x1 conv, 2048

avg. pool

2 fc, softmax

Softmax Top

Input Image

7x7 conv, 64, /2

3x3 max pool, /2

3x
1x1 conv, 64
3x3 conv, 64
1x1 conv, 256

4x
1x1 conv, 128
3x3 conv, 128
1x1 conv, 512

6x
1x1 conv, 256
3x3 conv, 256
1x1 conv, 1024

3x
1x1 conv, 512
3x3 conv, 512
1x1 conv, 2048

avg. pool

SVM

SVM Top

Input Image

Fig. 3. Comparison between the original ResNet-50 and the two proposed
deep CNN architectures, the first one replacing the 1000 fully-connected
softmax by a 2 fully-connected softmax layer and the second one by a SVM
classifier in the top layer.

classifier on top of the architecture. Figure 3 shows the comparison
of the architectures.

IV. EXPERIMENTS AND RESULTS

This section presents the main experiments performed to validate
proposed approach.

A. Dataset

Proposed method has been tested over a public dataset proposed
by Tokuda et.al. [2]. The dataset comprises 9700 equally divided
between CG and PG images of different kinds of scenarios as outdoor,
animals, objects, people, cars and others. As reported by the authors,
all of the images have been collected from Internet and compressed in
JPEG format, presenting physical sizes between 12 KB and 1.8 MB.
The dataset contains images with different resolutions and, different
from Tokuda et.al., we worked over the entire image, without crop
its central region.

B. Validation Protocol

In a way to guarantee a fair comparison with results reported by
Tokuda et.al. [2], we applied the same five fold cross-validation pro-
tocol, reporting besides average accuracy, the accuracy and execution
time of each test fold.

C. Implementation Details

We implemented proposed method using Python 3.5 with Keras
2.0.34 and ThensorFlow 1.0.15. All performed tests have been exe-
cuted in a machine with an Intel(R) Xeon(R) CPU E5-2620 2.00GHz
with 96GB of RAM without GPU usage.

D. Visualization of Bottleneck Features

As described in Section III, our method takes advantage of transfer
learning process to generate ResNet-50 bottleneck features, projecting
the 150528 input features (224× 224× 3 RGB values of the pixels
of each image) in a lower-dimensional space of 2048 features. This
process intends to generate a set of features with a better degree of
separability, which could allow the top classifier to achieve a higher
classification accuracy.

To evaluate if the bottleneck features would in fact produce the
desired boost in classification accuracy, we applied the t-Distributed
Stochastic Neighbor Embedding (t-SNE) [25] dimensionality re-
duction technique to visualize our high-dimensional features. We
projected the 150528 input features and the 2048 bottleneck features
in 2D, and plot them as points colored according to their class,
as depicted in Figure 4. Red squares represent PG samples while
blue circles represent CG samples. It is possible to observe that the
operations performed by ResNet-50 layers projected the raw pixels
into a better separable feature space.

E. Classification By Softmax Algorithm

At this round of experiments, we classify our samples using a
deep CNN architecture similar to the original ResNet-50. The only
difference is that we use a 2 fully-connected softmax top layer instead
of using the original 1000 fully-connected softmax layer. Our top
layer has been trained with categorical cross-entropy cost function
and Adam optimizer for a limit of 2000 epochs, using early stopping
with patience of 20 epochs to prevent unnecessary training and
overfitting. The weights have been initialized using glorot uniform
approach [26] and the bias terms were initialized to zero.

Figures 5 and 6 presents, respectively, the loss and accuracy of our
model for each fold. Solid lines represent the performance in training
set while dashed lines represent performance in test set.

Analyzing those figures it is possible to observe that after 200
epochs the loss starts to stabilize while the accuracy presents very
small improvements for both, training and test sets. It is also possible
to observe that the early stopping approach interrupted the training
preventing a possible overfitting.

For a better understanding, the results for each fold is also
presented in Table I. This table shows that 92.28% average accuracy
was achieved with a training time around 184 seconds, and an average
of 417 training epochs.

TABLE I
SOFTMAX ACCURACY BY FOLDS.

Fold Accuracy Epochs Time (s)
0 0.9284 258 129.31
1 0.9180 360 173.00
2 0.9330 527 221.50
3 0.9144 413 180.52
4 0.9201 525 217.62
Average 0.9228 417 184.39

Additionally, in Table II we present confusion matrix, with and
without normalization, showing results for each class.

4https://keras.io
5https://www.tensorflow.org



(a) Raw image pixels

(b) Bottleneck features

Fig. 4. t-SNE visualization of (a) the raw image pixels and (b) ResNet-
50 bottleneck features. Red squares represent PG samples while blue circles
represent CG samples.

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Loss

Train 0
Test 0
Train 1
Test 1
Train 2
Test 2
Train 3
Test 3
Train 4
Test 4

Fig. 5. Softmax 5-fold train/test loss.

F. Classification by SVM Algorithm

Given that the core of proposed method is the transfer learning
process, in theory, we can replace the top layer of ResNet-50 by

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy

Train 0
Test 0
Train 1
Test 1
Train 2
Test 2
Train 3
Test 3
Train 4
Test 4

Fig. 6. Softmax 5-fold train/test accuracy.

TABLE II
SOFTMAX CONFUSION MATRIX (A) WITHOUT AND (B) WITH

NORMALIZATION

CG PG
CG 4472 378
PG 371 4479

CG PG
CG 0.9221 0.0779
PG 0.0765 0.9235

(a) Without Normalization (b) Normalized

any machine learning classifier. In Section IV-E, for example, we
replaced original 1000 fully-connected softmax with a simple 2 fully-
connected softmax since we are dealing with a two classes problem.
At this section, we evaluate the impact of replacing the top layer by
a Support Vector Machine (SVM) classifier [18].

We use an SVM with RBF kernel where the parameters C and
gamma have been obtained through a gridsearch process with C ∈[
10−2, 10−1, ..., 1010

]
and γ ∈

[
10−9, 10−8, ..., 103

]
. The best C

obtained was 10.0 and the best γ was 0.001.
Results of each fold are presented in Table III. This tables shows an

average accuracy of 94.05% with a training time around 166 seconds.

TABLE III
SVM ACCURACY

Fold Accuracy Time (s)
0 0.9402 167.76
1 0.9345 163.68
2 0.9490 166.15
3 0.9340 167.50
4 0.9448 168.43
Average 0.9405 166.71

Table IV present confusion matrix, with and without normalization,
when using SVM as top layer classifier.

TABLE IV
SVM CONFUSION MATRIX (A) WITHOUT AND (B) WITH NORMALIZATION

CG PG
CG 4518 332
PG 245 4605

CG PG
CG 0.9315 0.0685
PG 0.0505 0.9495

(a) Without Normalization (b) Normalized



G. Comparative Analysis

In previously sections, we reported results obtained with our deep
CNN model using a softmax and an SVM top layer. Our better result
of 94.04% is achieved when using an SVM as top layer. The ROC
curve and the precision-recall are depicted in Figure 7 and Figure 8,
respectively. Also, at this same scenario, we obtained a both with an
area under the curve (AUC) of 0.99.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC

ROC curve (area = 0.99)

Fig. 7. ROC curve of the SVM classifier

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall

Precision-Recall curve: AUC=0.99

Fig. 8. Precision-recall curve of the SVM classifier

It is important to highlight that, as presented in Figure 9, analyzing
the learning curve from the SVM classifier, it is possible observe that
the cross-validation score is not still around the maximum. This fact
make us believe that adding more training samples could still improve
best result.

In Tokuda et.al. [2] work, the authors present an extensive com-
parison between many literature approaches dedicated to solve the
problem of detect CG and PG images. The main characteristic of
each method investigated by the authors is reported in Table V.
Additionally, we included the characteristics of our proposed method

1000 2000 3000 4000 5000 6000 7000 8000
Training examples

0.90

0.92

0.94

0.96

0.98

1.00

Sc
or

e 
m

ea
n

Learning Curve

Training score
Cross-validation score

Fig. 9. SVM Learning Curve

using: a deep CNN model stacked with a 2 fully-connected softmax
layer at the top (DNN1) and a deep CNN model stacked with an
SVM classifier at the top (DNN2).

TABLE V
CONCEPTS USED IN THE RELATED WORKS EVALUATED BY Tokuda et.al. [2]

AND IN THE METHODS PROPOSED HERE. FOR EACH OF THE FIFTEEN
METHODS, IT IS SHOWN THE INDEXES, THE IDENTIFIER USED, THE MAIN

CONCEPT USED BY THE METHOD AND THE RELATED FEATURES.

Method Basis Feature
Li [27] Second order differences Edges/Texture
LSB [28] Camera noise Acquisition
LYU [29] Wavelet transform Edges/Texture
POP [30] Interpolator predictor Acquisition
BOX [31] Boxes counting Auto-similarity
CON [32] Contourlet transform Edges/Texture
CUR [33] Curvelet transform [33] Edges/Texture
GLC [34] Cooccurrence matrix Texture
HOG [35] Histogram of oriented grads Shape
HSC [36] Histogram of shearlet coeff Curves
LBP [37] Local binary patterns Edges/Texture
SHE [38] Shearlet transform Edges/Texture
SOB [39] Sobel operator Edges
DNN1 Deep CNN transfer + Softmax Raw image pixels
DNN2 Deep CNN transfer + SVM Raw image pixels

Since our experimental protocol is exactly the same adopted in
Tokuda et.al. [2], using the same five fold cross-validation protocol
over the same dataset, we use results reported by the authors to
compare our method with many literature methods. Table VI presents
these results. From the table, we see that the accuracies of literature
methods have a large range of values going from 0.930 (highest)
to 0.552 (lowest). Proposed methods DNN2 overcome all literature
methods based on single features and proposed method DNN1 present
an average accuracy just lower than Li method [27]. This fact
shows the expression power of transfer learning approach in features
extraction process.

It is important to highlight that in Tokuda et.al. [2], the authors
report results for features fusion with average accuracy rates from
0.928 to 0.973. However, even using a single kind of feature, our
method performs better than lowest fusion approach. Also, it is



TABLE VI
COMPARISON AMONG APPROACHES FOR DISTINGUISHING CGS AND PGS.
TABLE IS SORTED FROM HIGHEST TO LOWEST AVERAGE ACCURACY. FOR

EACH OF THE FIFTEEN METHODS, IT IS SHOWN THE NUMBER OF
DIMENSIONS OF THE FEATURE SPACE (M), THE ACCURACIES FOR EACH

CLASS, AND ITS AVERAGE ACCURACY.

Method m CG PG Average accuracy
DNN2 150528 0.932 0.950 0.941

Li 144 0.948 0.911 0.930
DNN1 150528 0.922 0.924 0.923
LYU 216 0.942 0.899 0.920
CON 696 0.918 0.887 0.902
LBP 78 0.904 0.838 0.871
CUR 2328 0.806 0.805 0.805
HSC 96 0.818 0.787 0.802
HOG 256 0.754 0.720 0.740
SHE 60 0.748 0.677 0.713
LSB 12 0.672 0.651 0.662
GLC 12 0.640 0.630 0.635
POP 12 0.570 0.575 0.573
BOX 3 0.541 0.568 0.554
SOB 150 0.554 0.552 0.553

important to highlight that this technique still has a lot of potential
to be explored as, for example, fusion of features extracted from
different deep CNNs.

V. CONCLUSIONS AND RESEARCH DIRECTIONS

Along this work we presented a new method for CG images
detection using a deep convolutional neural network model based
on ResNet-50 and transfer learning concepts. After a simple pre-
processing, each image in our dataset is feed into our deep CNN
model and, as result, we obtain a 2048 dimension feature vector,
here called bottleneck features. These feature vectors are used to
train machine learning classifiers to detect if an image is, or not,
produced by computer graphics methods.

Applying t-SNE dimensionality reduction technique to visualize
our high-dimensional features, it is possible to observe that bottleneck
features generated by ResNet-50 transfered layers present a higher
degree of separability than the raw image input features, which makes
the classification task easier.

Also, after different rounds of experiments, is not difficult to
conclude that, when compared with methods that take advantage
of single features (without fusion or combination) to perform CG
images detection, the proposed method performs better than literature
methods, showing that extracted bottleneck features present a higher
expression power than other hand-crafted feature extraction methods.

Despite does not overcoming all fusion techniques, proposed
method present competitive results, overcoming at least one fusion
approach.

Analyzing the learning curve from the SVM classifier, it is possible
observe that the training score is not still around the maximum.
One approach which we intend to investigate in future works is the
addition of more samples in training set. With a larger dataset would
be possible to fine-tune the deep CNN transferred feature layers,
improving the performance of our models.

Finally, as future research directions, we intend to explore the
fusion of bottleneck features extracted from different deep CNNs
models.

ACKNOWLEDGMENTS

The authors would like to thank the financial support of
IFSP-Campinas, FAPESP (grant 2016/21145-5) and CNPq (grants
302923/2014-4, 313152/2015-2 and 423797/2016-6). We also would
like to thank the authors Tokuda et.al. [2] who helped us with dataset
acquirement.

REFERENCES

[1] O. Holmes, M. S. Banks, and H. Farid, “Assessing and improving the
identification of computer-generated portraits,” ACM TAP, vol. 13, no. 2,
p. 12, 2016.

[2] E. Tokuda, H. Pedrini, and A. Rocha, “Computer generated images
vs. digital photographs: A synergetic feature and classifier combination
approach,” Elsevier JVCI, vol. 24, no. 8, pp. 1276 – 1292, 2013.

[3] D. Dang-Nguyen, G. Boato, and F. G. B. D. Natale, “Discrimination be-
tween computer generated and natural human faces based on asymmetry
information,” in IEEE EUSIPCO, 2012, pp. 1234–1238.

[4] D. Dang-Nguyen, G. Boato, and F. G. B. D. Natale, “Identify computer
generated characters by analysing facial expressions variation,” in IEEE
WIFS, 2012, pp. 252–257.

[5] H. Farid and M. J. Bravo, “Perceptual discrimination of computer
generated and photographic faces,” Digital Investigation, vol. 8, pp. 226–
235, 2012.

[6] V. Conotter, E. Bodnari, G. Boato, and H. Farid, “Physiologically-based
detection of computer generated faces in video,” in IEEE ICIP, 2014,
pp. 248–252.

[7] Y. Bengio et al., “Learning deep architectures for ai,” Foundations and
trends R© in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[8] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[10] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual
recognition challenge,” Springer IJCV, vol. 115, no. 3, pp. 211–252,
2015.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Adv Neural Inf Process
Syst, 2012, pp. 1097–1105.

[12] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in IEEE CVPR, 2015, pp. 1–9.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE CVPR, 2016, pp. 770–778.

[15] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in Adv Neural Inf Process Syst, 2014,
pp. 3320–3328.

[16] H. Farid, “Creating and detecting doctored and virtual images: Implica-
tions to the child pornography prevention act,” Tech. Rep. TR2004-518,
2004.

[17] D. Q. Tan, X. J. Shen, and H. P. Qin, J.and Chen, “Detecting computer
generated images based on local ternary count,” Springer PRIA, vol. 26,
no. 4, pp. 720–725, 2016.

[18] C. M. Bishop, Pattern Recognition and Machine Learning. Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 2006.

[19] C. V. L. C. University, http://www.cs.columbia.edu/CAVE/, accessed on
May 19th, 2017.

[20] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell, “Decaf: A deep convolutional activation feature for generic
visual recognition.” in ”ICML”, vol. 32, 2014, pp. 647–655.

[21] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in ”ECCV”. Springer, 2014, pp. 818–833.

[22] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-
Cun, “Overfeat: Integrated recognition, localization and detection using
convolutional networks,” arXiv preprint arXiv:1312.6229, 2013.

[23] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th international conference on
machine learning (ICML-10), 2010, pp. 807–814.

[24] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.



[25] L. v. d. Maaten and G. Hinton, “”visualizing data using t-sne”,” JMLR,
vol. 9, no. Nov, pp. 2579–2605, 2008.

[26] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks.” in Aistats, vol. 9, 2010, pp. 249–256.

[27] W. Li, T. Zhang, E. Zheng, and X. Ping, “Identifying photorealistic
computer graphics using second-order difference statistics,” in IEEE
FSKD, vol. 5, 2010, pp. 2316–2319.

[28] T.-T. Ng and S.-F. Chang, “Identifying and prefiltering images dis-
tinguishing between natural photography and photorealistic computer
graphics,” IEEE SPM, vol. 26, no. 2, pp. 49–58, 2009.

[29] S. Lyu and H. Farid, “How realistic is photorealistic?” IEEE TSP, vol. 53,
no. 2, pp. 845–850, 2005.

[30] H. F. A.C. Popescu, “Exposing digital forgeries in color filter array
interpolated images?” IEEE TSP, vol. 53, no. 10, pp. 3948–3959, 2005.

[31] L. Liebovitch and T. Toth, “A fast algorithm to determine fractal
dimensions by box counting,” Physics Letters A, vol. 141, pp. 386–390,
1989.

[32] M. Do and M. Vetterli, “Contourlets: a directional multiresolution image
representation,” in IEEE ICIP, 2002, pp. 357–360.

[33] E. Candes and D. Donoho, Curvelets A Surprisingly Effective Non-
adaptive Representation for Objects with Edges. Vanderbilt University
Press, 2000.

[34] R. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for
image classification,” IEEE SMC, vol. 3, no. 6, pp. 610–621, 1973.

[35] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in IEEE CVPR, 2005, pp. 886–893.

[36] W. Schwartz, R. da Silva, L. Davis, and H. Pedrini, “A novel feature
descriptor based on the shearlet transform,” in IEEE ICIP, 2011, pp.
1053–1056.

[37] T. Ojala, M. Pietikainen, and T. Maenpaa, “A generalized local binary
pattern operator for multiresolution gray scale and rotation invariant
texture classification,” in IEEE ICAPR, 2001, pp. 399–408.

[38] G. Kutyniok and W.-Q. Lim, “Compactly supported shearlets are opti-
mally sparse,” Elsevier JAT, pp. 1564–1589, 2011.

[39] R. Gonzalez and R. Woods, Digital Image Processing. Prentice-Hall,
2007.


