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Abstract—Consider a face image data set from clients of a
company and the problem of building a face recognition system
from it. Video cameras can be used to acquire several images per
client in order to maximize the robustness of the system. However,
as the data set grows huge, the accuracy of the system might be
seriously compromised since the number of negative samples for
each user is increasing. We propose here a first solution for this
problem, which (i) limits the number of negative samples in the
training set for preserving responsiveness during user enrollment,
(ii) selects the most informative negative samples with respect
to each user for preserving accuracy, and (iii) builds a user-
specific classification model. We combine a high-dimensional data
representation from deep learning with a method that selects
negative samples from a large mining set and builds, within
interactive times, effective user-specific training set and classifier,
using linear support vector machines. The method can also
be used with other feature extractors. It has shown superior
performance as compared to five baseline methods on three
unconstrained data sets.

I. INTRODUCTION

Over the past two decades, face recognition has been a key
research area. Such an effort may be explained by the wide
range of applications that require face recognition, such as
video surveillance, access control, and on-line transactions.
As a consequence, many systems and approaches have been
proposed for face recognition, and some of them have achieved
state-of-the-art performances in specific applications [1]–[3].

An important component in typical biometric systems, such
as face recognition, is user enrollment, which is responsible
for capturing appropriate biometric readings of a new user
to be enrolled in the system and for storing this data either
in raw format or as feature vectors or user models. This
process is directly related to the approach used to match
biometric samples and ultimately recognize the users. For
example, a common matching approach consists of computing
pairwise distances from a probe sample to gallery samples. The
enrollment process in this case essentially consists of storing
valid gallery samples — or their corresponding feature vectors
— in the system database for later distance computation.
While pairwise-matching approaches have been largely used in
biometrics, their performance might be seriously compromised
as the data set grows large with new users enrolled in the
system.

We may divide the design of a biometric system into two
strategies: User-Independent (UI) and User-Specific (US). UI

suitable 
selection 
(offline)

negative 
mining

proposed enrollment process

large 
mining  

set

potentially  
huge 

negative 
face set

user-specific (US) 
model

user gallery  
images

linear 
SVMs

Fig. 1. User enrollment. From a potentially huge data set of negative face
images, the algorithm relies on a suitable (under the time constraints) selection
of samples to create a large mining set. Then, for a given user, it creates a
small training set by identifying the most informative negative samples and
builds an effective US model.

models do not require access to gallery samples for their
training and therefore can be built offline, even prior to
system deployment. Time and memory requirements to learn
these models are usually not a matter of concern for the
system operation, since the learning task is decoupled from
the operation. Principal Component Analysis (PCA) [4] and
Linear Discriminant Analysis (LDA) [5] applied on face data
sets available at development time are common examples
of UI models. US models incorporate gallery samples into
the learning task and are usually built with discriminative
techniques executed during user enrollment [6] or at matching
[7]. One of such approaches is to learn a discriminative binary
classifier that assumes the enrolling user as the positive class
and a set of face images from unrelated individuals — e.g.,
from other individuals in a previously curated large face data
set — as the negative class. In this case, pairwise matching
is replaced by predicting the class to which a probe sample
belongs according to the discriminative US model.

US models [3], [8], [9] are usually more effective than UI
models and huge annotated data sets, with many individuals
and images per individual, can be created by video cameras
for the design of robust face recognition systems. However,
US models demand critically higher time and memory to
be trained as the number of negative samples for a user
under enrollment increases, making the choice of the negative
training samples very important in number and quality to
preserve the responsiveness and accuracy of the system.

We propose here a first solution for the above problem —



a method that, during user enrollment, (i) selects a limited
number of the most difficult (informative) negative samples
from a large mining set, with respect to the positive samples
of that user, and (ii) builds an effective US model within
interactive time. Most US models combine a same feature
extractor with some US classifier, such as a Support Vector
Machine (SVM) [10]. User-specific feature extraction is also
an alternative [3], but for the sake of efficiency, our method
relies on a same deep learning architecture [8] for feature
extraction to build US training sets and linear SVM classifiers.

Figure 1 illustrates the user enrollment process of the pro-
posed approach. The algorithm has shown to be robust in iter-
atively mining a much smaller and effective subset of negative
training samples, according to a criterion based on distances
to SVM decision boundaries, under different time constraints.
Our solution also exploits the increasing importance of high-
dimensional feature spaces in face recognition [3], [11], [12]
for unconstrained scenarios, where the face images present
a large range of the variation in pose, lighting, expression,
among others.

We evaluate the method on three unconstrained data sets,
namely PubFig83 [2], Mobio [13], and Casia-WebFace [14]
and conduct an array of experiments by increasingly mining
thousands of available images. Results show that the proposed
approach can attain significantly superior performance with
respect to five other baselines — which rely on the same
classification scheme — within interactive times without nega-
tively affecting the responsiveness and accuracy of the system.
Moreover, given that it can be split into client and server tiers
— requiring low bandwidth between the tiers — it is also well
suited to systems that operate on budgeted devices.

The remainder of this paper is organized as follows. In
Section II, we present the related work on user enrollment in
face recognition systems and negative mining. The considered
feature extraction method is presented in Section III. We intro-
duce the proposed approach in Section IV. The experimental
setup is then described in Section V, while in Section VI we
present and discuss the results. Concluding remarks are stated
in Section VII.

II. RELATED WORK

The vast majority of face recognition systems operate with
user-independent (UI) models, previously built without regard-
ing particularities in the appearance of the individuals to be
recognized [8], [11], [15]. While such strategy may avoid the
burden of using complicated learning tasks in the operational
scenario — and it is well aligned with the evaluation protocol
of a number of public face recognition benchmarks [16],
[17] — it completely disregards the opportunity of leveraging
gallery samples to build better models and improve the overall
system performance.

In this spirit, several works have proposed robust face
recognition systems based on US models that operate in open-
and closed-set scenarios [2], [3], [6], [9], [12]. However,
works based on US models are usually targeted at recognition
performance and often employ time and memory demanding

procedures to build them. Therefore, they do not assume user
enrollment as a fundamental time constrained process in user
interactive face recognition systems, and may be impractical
for real applications whose databases have the potential to
become huge.

To our knowledge, this is the first work to propose neg-
ative mining for user-specific (US) gallery model building
at enrollment time. Perhaps the most related work to ours
is [6], where the authors propose the use of partial least
squares (PLS) [18] to build US models. Nevertheless, our work
differs from this one in at least two fundamental ways. First,
we mine negative samples instead of negative individuals.
Second, and more importantly, we do not build US models
against gallery samples in a closed-set scenario. Instead, we
rely on a previously curated large face data set to mine
negative samples. This not only avoids the burden of gallery
maintenance, which is the focus of [6], but it is also more
realistic, since it is aligned with face recognition in the open-
set scenario [19].

In turn, negative mining has been extensively used in
Computer Vision, especially for object detection [20]–[23].
The simplest strategy is to sample the data set randomly, which
is a clearly sub-optimal approach. A more satisfactory strategy
consists of applying bootstrapping techniques.

Essentially, a common negative mining approach consists of
two steps. First, a binary classifier is trained using the positive
samples and an initial random subset of negative samples. The
second step is inspired on the bootstrapping procedure [24],
and consists of mining negative samples by giving more
importance to the “hard” ones — i.e., the incorrectly classified
negative examples — thereby improving the training set. A
new classifier is then trained and this procedure may be
repeated a few times.

Felzenszwalb et al. [21] present a general negative mining
method for object detection systems that uses classical SVMs
and latent SVMs. The method iteratively solves a sequence
of training problems using a relatively small number of hard
examples from a large training set. Its novelty is a theoretical
guarantee that it leads to the exact solution of the training
problem defined by the large training set. As critical short-
coming, the intermediary training sets may grow considerably,
requiring a high processing time, since the number of negative
training samples is not limited. This makes it impractical for
the problem addressed in this work.

Our approach has similarities with [21], which also uses
SVMs as basis for mining negative samples, but has also
differences, because we conceived it to operate with a few
positive samples and to not allow the negative set to grow
arbitrarily. Both of these characteristics were incorporated to
make the approach suitable for the enrollment process in face
recognition systems. In fact, in terms of time and memory
concerns, our work is more aligned with [22], but while the
latter is targeted at pedestrian detection, here our target is
robust face recognition.
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Fig. 2. The schematic diagram illustrates how the main operations are
combined within each layer (a) of three feed-forward layers (b) in the HT-L3-
1st model. The tables show (a) the values of all hyper-parameters of each layer
(L1, L2, and L3) and (b) the global-hyper-parameters for the adopted network
architecture. Face images are previously detected, cropped, and aligned by the
position of the eyes.

III. HIGH-DIMENSIONAL FEATURE EXTRACTION

We use a ConvNet, Convolutional Network [25], named HT-
L3-1st [8], for feature extraction. This choice is justified by its
success in face recognition problems [2], [9] where images are
acquired with no control over illumination, facial expression,
pose — the unconstrained scenario. Note, however, that the
proposed negative mining method independs of the feature
extractor.

A ConvNet is composed of non-linear and linear image
processing operations, stacked to extract deep representations,
called multiband images, whose pixel attributes are concate-
nated into high-dimensional feature vectors for pattern recog-
nition. The set of its hyper-parameters is called architecture.
Figure 2 illustrates how the main operations are combined
within each layer (a) of three feed-forward layers (b) in the
HT-L3-1st model. The hyper-parameters size and stride of a
given value b must be understood as b× b. The faces are first
detected, cropped, and aligned by the position of the eyes. For
a given US training set, where the positive and negative face
samples are feature vectors, the system trains a linear SVM
classifier.

This section describes ConvNets from the image pro-
cessing perspective. Let Î = (DI , ~I) be a multiband im-
age, where DI ⊂ Z2 is the image domain and ~I(p) =
{I1(p), I2(p), . . . , Im(p)} is the attribute vector of a pixel

p = (xp, yp) ∈ DI . ConvNets use box adjacency relations
A ⊂ DI × DI of size b × b, i.e., a pixel q ∈ A(p), if
‖q − p‖ ≤ b

2 .

A. Filter Bank Convolution

Let Φi = (A, ~Wi) be a multiband filter with weight vector
~Wi(q) = {wi,1(q), wi,2(q), . . . , wi,m(q)}, where q ∈ A(p) is
adjacent to the origin p of the filter. A multiband filter bank
Φ = {Φ1,Φ2, . . . ,Φn} is a set of filters Φi = (A, ~Wi), with
i = {1, 2, . . . , n}. The weights of a filter Φi are randomly
generated from a uniform distribution, and normalized to zero
mean and unit norm. The convolution between an input image
Î and a filter Φi produces a band i of the filtered image Ĵ =
(DJ , ~J), where DJ ⊂ DI and ~J = (J1, J2, . . . , Jn).

B. Activation

Activation creates an image K̂ = (DJ , ~K) by Ki(p) =
max(Ji(p), 0), where p ∈ DJ and i = {1, 2, . . . , n} are the
image bands. This definition combined with random filters of
zero mean and unit norm has the purpose of creating a sparse
code to improve the effectiveness of feature extraction.

C. Spatial Pooling

Spatial pooling is a very important operation that aims at
bringing small translation invariance by aggregating activa-
tions from the same filter within a given region. Let DM =
DK/s be a regular subsampling of every s ≥ 1 pixels in an
adjacency B. The value s is the stride of the pooling operation,
which results into a spatial resolution reduction when s > 1.
The pooling operation creates the image M̂ = (DM , ~M),
defined by

Mi(p) = α

√ ∑
∀q∈B(p)

Ki(q)α (1)

where p ∈ DM , i = 1, 2, . . . , n are the image bands, and
α controls the pooling sensitivity. The values α = (1, 1, 10),
strength in Figure 2a, indicate additive pooling for L1 and L2,
and max-pooling for L3.

D. Divisive Normalization

The last operation is the divisive normalization, which is
based on gain control mechanisms found in cortical neu-
rons [26]. It is also applied with adjacency size 9 × 9 to
the input image. It creates an output image Ô = (DO,~O),
DO ⊂ DM , where ~O(p) = {O1(p), O2(p), . . . , On(p)} and

Oi(p) =
Mi(p)√∑n

j=1

∑
∀q∈C(p)Mj(q)Mj(q)

(2)

for some adjacency C. It promotes a competition among pooled
filter bands, such that high responses prevail over low ones.
The output feature vector results from the concatenation of
~O(p) for all p ∈ DO when Ô is the output of the last layer.



IV. PROPOSED APPROACH

We propose a negative mining approach based on linear
Support Vector Machines (SVMs) [10] with the following
motivations. First, the ability to perform well with small
sample sizes, especially in the case where the samples are
represented by high-dimensional feature spaces, and second,
we can train linear SVMs quite fast under these circumstances.

Algorithm 1. PROPOSED SVM-BASED NEGATIVE MINING

INPUT: Positive set P , large mining set N , maximum pro-
cessing time max time, and number of negatives
to be mined c.

OUTPUT: Best model βout for the positive set P .
AUXILIARY: Sets Nt, Nv , lists Lt, Lv , variables β, swaps,

stop, s, t, ds, dt, pt, proc time.

1. Nt ← random selection of c samples from N
2. Nv ← N \Nt

3. proc time← 0
4. βout ← NIL
5. While proc time < max time
6. pt← point time()
7. β ← linear SVM trained on P ∪Nt

8. proc time← proc time+ (point time()− pt)
9. If proc time > max time
10. Return βout
11. βout ← β
12. pt← point time()
13. Lt ← empty list, Lv ← empty list
14. For each s ∈ Nt not support vector
15. insert (s, β(s)) into Lt

16. For each t ∈ Nv

17. insert (t, β(t)) into Lv

18. Lt ← sort Lt by β(.) in increasing order
19. Lv ← sort Lv by β(.) in decreasing order
20. swaps← 0, stop← 0
21. While Lt 6= empty and Lv 6= empty and stop 6= 1
22. remove (s, ds) from Lt head
23. remove (t, dt) from Lv head
24. If dt < ds
25. Nt ← (Nt \ s) ∪ t
26. Nv ← (Nv \ t) ∪ s
27. swaps← swaps+ 1
28. Else
29. stop← 1
30. If swaps = 0
31. Return βout
32. proc time← proc time+ (point time()− pt)
33. Return βout

A pseudocode of the proposed negative mining is presented
in Alg. 1. The algorithm considers gallery images of the
individual being enrolled as the positive set P and a much
larger negative mining set N from which a small set of c
informative images must be iteratively mined within a given
maximum processing time max time. The mining set is
split into a negative training set Nt (|Nt| = c) and a negative
validation set Nv .

A linear SVM β is trained at each iteration by taking P∪Nt
as input. If the algorithm processing time proc time right
after the SVM training exceeds max time, the algorithm

(3)

(1)(2)

Enrollment images P
Neg. for training Nt
Neg. for validation Nv

Lt
order

Lv
order

(4)

Fig. 3. Mining process in a given iteration. The least informative samples in
Nt that are not support vectors are swapped with the most informative ones in
Nv , as indicated by the swapping sequence (1), (2), and (3). Swapping occurs
no matter each side of the margin the negative samples are, which increases the
ability of the method to operate well even in unbalanced learning scenarios.
In (4), no swap occurs because such validation sample is less informative than
any other available for swapping in Nt.

terminates and returns the model βout, which is either nil —
no linear SVM could be trained within max time — or points
to the model trained at the previous iteration. Otherwise, the
algorithm saves the newly trained model in βout and continues
its execution. For the sake of clarity, the function point time()
points the current running time during the execution of the
algorithm.

The signed distances to the SVM hyper-plane of all samples
in the negative training set — except support vector — and in
the validation set are computed and inserted into the lists Lt
and Lv . These lists are then sorted, according to the signed
distance β(.), for subsequent sample swapping.

Images are swapped between Nt and Nv according to
a criterion based on an “informativeness” degree, which is
exactly the signed distance β(.) to the SVM hyper-plane of
the given iteration.

Given a sample s ∈ Nt ∪ Nv , the assumption is that the
greater β(s) is, the more informative for the gallery model
s will be. Therefore, the least informative samples in Nt that
are not support vectors are swapped with the most informative
ones in Nv . If no improvement in the overall informativeness
of Nt is observed in a given iteration — i.e., no swaps occurred
— or if the maximum processing time max time is reached,
the algorithm terminates and returns the current valid model
for the individual being enrolled.

An important property of the approach as compared to [21]
is that correctly classified negative samples may also be
swapped, which enables it to mine negative samples even in
extremely unbalanced learning scenarios. Moreover, we can
see from Alg. 1 that its running time is dominated by the SVM
training in Line 7, which can ranges from quadratic to cubic
on the size of the input training set, depending on the regu-
larization constant C [27]. Given that the number of negative
samples predominates over the number of positive samples,
our expectation is that learning gallery models by iterating a
few times the mining process with c << |N | will probably



speedup the enrollment process while not compromising the
recognition performance.

V. EXPERIMENTAL SETUP

A. Data Sets

The experiments used three unconstrained data sets, namely
PubFig83 [2], Mobio [13], and Casia-WebFace [14]. Fig. 4
presents some images of each data set.

PubFig83 is a collection of real-world face images of
83 celebrities collected from the Internet with at least 100
considerably different, “in the wild” images available per
individual. Each image has originally 100x100 pixels in size.
In addition to representing a modern and challenging problem,
such a remarkable number of diverse images per individual
allows for effective evaluations of user-specific (US) models
in unconstrained facial recognition.

The Mobio data set used in this work is precisely the same
used in the competition on unconstrained face recognition
in mobile platforms, organized as part of the Intl. Conf.
on Biometrics, ICB’13 [9]. This data set has 150 people
with a female-male ratio of nearly 1:2 and contains images
recorded across 12 sessions with mobile phones and without
any control over illumination, and facial expression and pose.
We believe that using Mobio is appropriate because it repre-
sents a challenging and emergent problem, whose operational
requirements can be well addressed by the proposed approach.

Finally, the Casia-WebFace is a large scale data set con-
taining 10, 575 subjects and 494, 414 images collected from
the Internet through the website IMDb 1 — a well structured
website containing rich information of celebrities, such as
name, gender, and photos. Each celebrity has an independent
page on this website with a specific “id” which in turn is used
to label the subjects from the data set. The number of images
per subject varies from 2 to 804 images. As far we know,
Casia-WebFace is the largest data set publicly available in the
literature.

From all data sets, we extract visual representations using
the HT-L3-1st descriptor (see Section III) of [8], obtained
by deep learning — a technique that has been successfully
applied in several computer vision problems, including face
recognition on PubFig83 [2] and Mobio [9]. All faces were
previously detected, cropped, and aligned by the position of
the eyes. In common with other current top-performing visual
representations for face recognition [3], [11], HT-L3-1st has
the property of outputting high-dimensional feature vectors,
with ∼25K elements.

B. Evaluation Protocol

Since the size of the PubFig83 and Mobio data sets is small,
we consider that the mining set of Fig. 1 is already built for
both data sets. Evaluations are then carried out in a realistic
open-set scenario [19], in that no information of other gallery
individuals is used for building US models of new individuals
at enrollment time.

1http://www.imdb.com/

The Mobio protocol [9] naturally addresses this scenario,
and hence we report results using the union of its original
training and development set as the mining set of Fig. 1 (a
total of 14, 010 images) and its evaluation set as containing
images of individuals under enrollment (gallery), i.e., the users
of the system for whom the False Acceptance Rates (FAR) and
Correct Acceptance Rates (CAR) are calculated.

PubFig83 original evaluation protocol, however, is designed
for closed-set face recognition. Therefore, we extended the
protocol by further splitting the data set into two subsets:
one that simulates the mining set, containing images of 58
individuals chosen at random (a total of 5, 800 images), and
the other equivalent to the evaluation set (gallery), containing
images of the remaining 25 individuals to report FAR and
CAR values. Each individual from the evaluation set has 90
training images and 10 probe images. Thus, we can simulate
a scenario wherein each user is enrolled with a considerable
number of images (e.g., social networks).

For the Casia-WebFace data set, there is no such a estab-
lished protocol. The data set was originally proposed to train
deep convolutional networks for later assessment in other well
established benchmarks such as the Labeled Faces in the Wild
(LFW) [16]. Therefore, here we propose a protocol for the
Casia-WebFace suited for user-specific model training in the
open-set scenario.

Firstly, 50 individuals from the ones that contain at least 50
images (2, 550 individuals) are chosen randomly, becoming
the gallery users. We then choose 50 images randomly of
each one in order to build a balanced set, simulating a system
that operates with a doable number of images per user. All
images of the other individuals from the data set form the
huge negative set (Fig. 1). Since that the number of images per
individual from the Casia-WebFace is not balanced, the size of
the huge negative set may vary between 468, 025 and 491, 914
images depending on the chosen individuals. The mining set of
Fig. 1 is then simulated by randomly selecting 25, 000 samples
from the huge negative set due to our processing constraints.
Random selection allows unbiased evaluation of the methods
that take the mining set as input.

Each experiment is repeated ten times and results are
reported in terms of mean values of CAR and FAR with
their respective standard errors. Prior to the execution of the
experiments, individuals from the mining set and evaluation
set of each data set are previously chosen and fixed, following
the strategy adopted by the Mobio protocol in [9].

Execution times of all experiments were obtained in a same
Intel I7-3770k PC with 32GB of RAM, and no memory
swapping. We used LIBSVM [28] via Scikit-learn [29] to train
the SVMs (Alg. 1, Line 7) with the regularization constant C
fixed at 105 as in [2], [3], [9].

C. Compared Methods

We compared our approach with five others. The first two
are User-Independent (UI) models built with PCA [4] and
LDA [5], both methods applied in the entire mining set. These
techniques are widely used to build offline face recognition



Fig. 4. Images of four individuals of PubFig83, Mobio, and Casia-WebFace. Due to their unconstrained nature, we can observe that all data sets present
factors of variation in face appearance: pose, expression, illumination, occlusion, hairstyle, aging, among others.

models, during the conception of the recognition system.
This comparison aims to show the superiority of US over
UI models. Both PCA and LDA implementations are from
Scikit-learn [29], the number of retained projection vectors
was according to the rank of the input covariance matrices,
and the matching between face samples were done via cosine
similarity.

The other compared methods were based on user-specific
(US) models. We started by comparing US models built with
linear SVMs also using the entire mining set, as in PCA
and LDA. Given that this approach is also based on linear
SVMs, but uses all negative samples at disposal for learning
(no negative mining), we may say that it represents a statistical
upper bound for the proposed approach, the last being based
on a considerably smaller training set. Therefore, for clarity,
we call it expected upper bound.

We then evaluate two negative mining approaches, one
consisting of a random selection of the negative samples —
and serving as baseline and sanity check for the proposed
approach — and the other implementing the well known SVM-
based negative mining criterion of [21].

The processing time of each negative mining method corre-
sponds to the sum of the time spent during the user enrollment
to mine the mining set and train the final linear SVM classifier
which will be used to assess the final recognition performance.

VI. RESULTS

Initially, we compared the performance between UI and US
models with no negative mining. That is, all methods — PCA,
LDA, and linear SVM (our expected upper bound) — were
trained using the entire mining set as input. The results are
shown in Table I.

TABLE I
CAR AND TIME IN SECS (BETWEEN PARENTHESES) AS OBTAINED
WITH UI (PCA AND LDA) AND US MODELS (EXPECTED UPPER

BOUND) IN ALL DATA SETS FOR A FIXED FAR AT 0.01%

PubFig83 Casia
WebFace

Mobio
Male

Mobio
Female

PCA 8.80
(0.00)

11.92± 0.12
(0.00)

32.58
(0.00)

13.33
(0.00)

LDA 5.20
(0.00)

1.52± 0.22
(0.00)

23.98
(0.00)

6.05
(0.00)

exp.
up. bound

70.40
(12.32)

46.56± 0.55
(161.38)

42.71
(52.25)

27.14
(49.15)

The enormous difference in CAR — for a FAR fixed at
0.01% — confirms the superiority of US over UI models and
the effectiveness of linear SVMs to deal with high-dimensional
feature spaces in unconstrained face recognition scenario. PCA
and LDA dismiss learning during user enrollment, which
explains the zeros in their learning times and might also
explain their poor performance.

The linear SVM with no mining, on the other hand, can
negatively affect the responsiveness of the system, since it
requires 161.38 seconds for Casia-WebFace, for instance. The
larger the base is, the higher the processing time will be. Thus,
negative mining methods are crucial to attain the “ceiling”
CAR of the expected upper bound within an interactive time,
without affecting the responsiveness.

Table II presents the experimental results (also in terms
of CAR) of the evaluated mining approaches, all them set
to operate with a FAR of 0.01%. The considered maximum
processing times were chosen based on the time demanded to
train the expected upper bound (Table I), so that mining meth-
ods are evaluated covering different levels of responsiveness
and so that maximum allowed times in fact represent time
constraints.

We consider a negative training set with 5% of the mining
set (parameter c in Algorithm 1) for PubFig83 and 1%
for Mobio and Casia-WebFace. These values were chosen
based on the data set sizes and our memory and processing
limitations. Thus, for each gallery individual being enrolled in
the system, all negative mining methods use the same initial
negative training set built randomly.

Given that the spent time by random selection for outputting
the final classifier is less than the smallest time constraint,
its CAR value is repeated for all constraints. Indeed, random
selection is the most efficient approach, but its ability to select
informative negative samples for the training set is poor.

The method of [21] presents CAR values similar to random
selection for the smallest processing time constraint in Pub-
Fig83 and Mobio and for all cases in Casia-WebFace. This is
a consequence of its mining criterion, which may allow the
number of negatives in the training set to grow arbitrarily,
resulting in the execution of only a few iterations.

Table II clearly shows that our negative mining approach
is able to attain superior recognition performance within a
fraction of the time required by the expected upper bound,
especially in the Mobio and Casia-WebFace data sets. As



TABLE II
CAR AS OBTAINED WITH THE NEGATIVE MINING APPROACHES FOR A FAR FIXED AT 0.01%.

PubFig83
max. time

(secs)
Random
selection

Felzensz-
walb et al.

proposed in
this paper

2.00

41.36± 2.02

41.36± 2.02 68.12± 0.87
4.00 41.36± 2.02 70.75± 0.16
6.00 62.76± 1.32 70.16± 0.19
8.00 66.44± 1.46 70.21± 0.24

(a) PubFig83

Casia-WebFace
max. time

(secs)
Random
selection

Felzensz-
walb et al.

proposed in
this paper

4.00

19.38± 0.68

19.38± 0.68 19.38± 0.68
8.00 19.38± 0.68 40.74± 0.52
12.00 19.38± 0.68 47.52± 0.36
16.00 19.38± 0.68 46.75± 0.34

(b) Casia-WebFace

Mobio Male
max. time

(secs)
Random
selection

Felzensz-
walb et al.

proposed in
this paper

4.00

34.66± 1.38

34.66± 1.38 45.00± 0.27
8.00 37.47± 1.11 43.72± 0.12
12.00 42.25± 0.22 43.81± 0.05
16.00 42.19± 0.32 43.83± 0.09

(c) Mobio Male

Mobio Female
max. time

(secs)
Random
selection

Felzensz-
walb et al.

proposed in
this paper

4.00

21.91± 0.52

21.75± 0.52 27.73± 0.42
8.00 27.65± 0.32 27.93± 0.12
12.00 27.28± 0.13 27.65± 0.05
16.00 26.75± 0.41 27.69± 0.06

(d) Mobio Female
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Fig. 5. System performances of the negative mining approaches in Casia-WebFace for the considered maximum processing times and for different points of
FAR. Intervals correspond to standard errors.

compared to the Felzenszwalb et al.’s method, our negative
mining is also preferred in both aspects, recognition and time
performance. We believe that our mining criterion is more
robust to critical negative samples, since we may also mine
important correctly classified negative samples outside the
SVM margin (see Fig. 3), while these samples are ignored
in the mining process of [21]. Moreover, the processing time
of each iteration from our method tends to be approximately

constant, since the negative training set size is fixed. The
numbers in bold in Table II show that, for both data sets,
our method can achieve the expected upper bound recognition
performance (Table I) without affecting the responsiveness of
the system.

In Figure 5, we present a Receiver Operating Characteristic
(ROC) curve (mean error values with standard errors) of
the Casia-WebFace for each considered maximum processing



time. These curves illustrate the behavior of random selec-
tion, Felzenszwalb et al.’s method, and our negative mining
approach at different operating points (as in Table II).

VII. CONCLUSION

We have presented a first solution for the design of user-
specific (US) classification models during user enrollment in
a face recognition system that does not affect its speed and
accuracy. The method can mine informative negative samples
from a large data set, obtain US training sets and use them
to build effective US classifiers within a few seconds. It
is robust to the random choice of different inputs and has
shown significantly superior performance with respect to five
baselines.

Given that the algorithm is application-independent, we may
conclude that it is a relevant contribution for biometric systems
that aim to maintain robustness as the number of users in-
creases. Our future work concentrates on new applications and
suitable techniques to reduce huge data sets into representative
large mining sets.
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