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Abstract—Biometrics, previously used only in human identifi-
cation, can help experts in the analysis of biological images. Flies
of the genus Drosophila have become model organisms by almost
global presence and short life cycle. Facial recognition techniques
and geometric morphometry can be used in image processing for
classification. The latter requires human interaction. This work
details a methodology based on stationary wavelet transform,
Canny filter and fractal dimension aimed to infer the gender
of Drosophila melanogaster based on images of their wings.
The combination of variation in the training and test samples
and classification methods showed the proposed algorithm’s
accuracy rate, 90%, outperformed other methods. The proposed
methodology proved efficient by using a reduced number of
attributes and did not require human interaction for feature
extraction (landmarks).
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I. INTRODUCTION

Biometrics is the identification of human beings from phys-
ical and/or behavioral traits [1], [2]. The use of biometric tools
can extract phenotypic information from biological images
[3]. Digitally extracted image features can discriminate data
into groups, such as gender or genotype [3]. In addition to
humans, this technique can be used to identify individuals from
other animal species, such as flies of the species Drosophila
melanogaster (fruit fly) [1]–[3]. These flies have a short life
cycle and a global presence, which made this species, for over
100 years, a model genetic organism [1]. Studies on flies can
help biologists and entomologists analyze the development of
different insects and how they may impact nature [2]. The
similarity between male and female wings makes it difficult for
experts to classify [1]. Proteins and genes similar to the wings
of Drosophila are found in humans [2] and the application of
facial recognition methods in the Drosophila wing obtained
satisfactory results [1]–[3]. Another technique is geometric
morphometric analysis, which requires a prior knowledge of
the biological system and landmarks in the image [3].

This paper proposes an automatic gender classification
method based on the fractal dimension computed from the
segmentation of Wavelet components. In Section II, the litera-
ture is reviewed. Section III details the proposed methodology:
image database, features extracted and classifiers. Section IV
presents the results, their discussion and compared against

other methods. Section V shows the conclusions and future
works.

II. RELATED WORKS

This section presents works from the literature for image
processing of fly wings, wavelet transform, Canny filter and
fractal dimension. Studies on computer-aided classification
of fly wings images are recent. Payne et al [1] applied
the Genetic and Evolutionary Feature Extraction – Machine
Learning (GEFEML) [4], created for facial recognition and
based on a Local Binary Pattern (LBP), and obtained a 73.16%
accuracy. Ahmad et al. [2] compared LBP and Modified Local
Binary Pattern (MLBP) reaching 90% and 89.5% accuracy,
respectively.

Sonnenschein et al. [3] tested the Bioimage Classification
and Annotation Tool (BioCAT) [5] and WINGMACHINE [6]
softwares. BioCAT achieved a success rate above 80% for
gender but low rates (maximum 52%) for genotype, while
WINGMACHINE achieved over 90% for gender and over 80%
for genotype, due to landmarks and semi-landmarks (which
requires human interaction). Other software for fly wing
analysis are FijiWings [7] and MorphoJ [8], both developed
in Java and open source.

Wavelets are used for signal analysis and can be used in
many areas. Figueiredo et al. [9] and Khalid et al. [10] iden-
tified lesions on retinal fundus and skin images, respectively.
Bankhead et al. [11] segmented retinal vessels and Demirhan
and Güller [12] segmented brain magnetic resonance imaging.
Nguyen, Kam and Cheng [13] identified cracks in concrete.
Examples of wavelet families are the cubic B-spline [9], [11],
[13], Daubechie [12] and Morlet [14].

Another feature used in pattern recognition is fractal dimen-
sion. Bruno et al. [15] have recognized Brazilian vegetation
with box-counting and Minkowski multiscale methods. Poly-
chronaki et al. [16] analyzed the onset of epileptic seizures on
electroencephalogram signals with three signal fractal dimen-
sion estimation techniques.

These two concepts can also be combined. Acharya et al.
[14] compared the fractal dimension and scales of wavelets of
electrocardiograms signals to analyze heart diseases. Bayrak-
tar, Poor and Sircar [17] calculated the fractal dimension from



the data wavelet of the financial market. Murty, Reddy and
Babu [18] combined Canny filter and Hough transform to
select the area of the iris before the wavelet decomposition and
reached 100% accuracy. For classification, common methods
are Random Forest (RF), Support-Vector Machine (SVM)
[2], K-Nearest Neighbors (KNN) [18], Linear Discriminant
Analysis (LDA) [15] and neural networks [3].

III. MATERIALS AND METHODS

This section describes the proposed approach. First, the
image database is presented. Then, a brief overview of the
concepts of wavelet transform, Canny filter segmentation and
fractal dimension is shown. The next topics are the classifica-
tion methods and the proposed methodology.

A. Image database

The image database of [3], available in [19], was used
in this paper’s approach. The images are the right and left
wings of male and female Drosophila melanogaster from the
Samarkand region (SAM) [3]. In addition to the wild speci-
mens, there are samples with genotypic variations: Epidermal
growth factor receptor (Egfr), mastermind (mam), Star and
thickveins (tkv). Egfr, mam and Star are lethal homozygotes
while tkv has a qualitative defect [3]. Samples of these
genotypes are shown in Figure 1. The images are divided into
4 groups, taken with Olympus and Leica microscopes and both
with 20X and 40X zoom. For the proposed methodology, we
selected the images of the group Olympus 40X with a total of
2269 images of 1360 by 1024 pixels. At the bottom right of the
images there is a 1mm size marking (see Figure 1) which is
removed before the feature extraction (see Subsection III-F).
The images used in [2] and [1] are similar to those in the
selected group. The physical similarity of genotype variation
is shown in the Figure 2.

B. Wavelets

The traditional Wavelet transform uses subsampling, de-
creasing the signal to 1/2n of the original size, where n
is the wavelet level [12]. The stationary wavelet transform
(SWT) uses filter upsampling at each iteration before signal
convolution [12], [20]. The filter upsampling by a factor of 2,
denoted by []↑2, is calculated using:

hi+1(k) = [h]↑2i ∗ hi(k)
gi+1(k) = [g]↑2i ∗ gi(k),

(1)

and the convolution:

si+1(k) = hi+1(k) ∗ si(k)
di+1(k) = gi+1(k) ∗ si(k),

(2)

where i = 0, 1, ..., I [12], [20].This feature maintains the orig-
inal signal size and makes the transform invariant to translation
[12], [20]. The components of the transform contain middle
frequency information, which is important for segmentation
[12]. It is also known as undecimated wavelet transform
(UWT) [21] and a widely used variant is the isotropic undeci-
mated wavelet transform (IUWT) [9], [11], [13]. In this paper’s

proposed methodology, we selected the SWT of the Haar type
because it is conceptually simple and fast [18]. The number
of decomposition levels varies with filter and image size used.
Two levels were used with approximation, horizontal, vertical
and diagonal components, totaling 8 images. An example of
this transform is shown in Figure 3.

C. Canny filter

Canny filter [22] uses a Gaussian operator with standard
deviation of σ for edge detection and it is applied to wavelet
components, as shown in Figure 4. The segmentation algo-
rithm follows the steps [22], [23]:

1) Application of Gaussian filter with σ width;
2) Calculation of image gradients, e. g. with Sobel opera-

tors [24], [25];
3) Reduction of non edge candidate pixel segments to 0;
4) Hysteresis thresholding: Points above the upper thresh-

old are considered contour and points inside the thresh-
old and connected to contour points are also labeled.

The level of detail of the segmentation increases as the wavelet
transform level increases. As the noise level of the images
varies, the σ for each component varies, but it was fixed for
both levels of the wavelet transform (see Figures 4 and 5).

D. Fractal Dimension

The fractal dimension measures the level of complexity in
a shape or texture [15]. Unlike shapes in traditional geometry
with integer dimensions, the fractal dimension is fractional,
occupying spaces between two Euclidean dimensions [14],
[15]. A common way of calculating this value is with the
Haussdorf dimension, defined as [15]:

df = lim
ε→0

logN(ε)

log(1/ε)
, (3)

where N(ε) is the number of cubes of sides ε. An algorithm
to find this dimension is box-counting, which is based on the
number of boxes N(ε) of size ε needed to fill the image and
is given by [15], [26]:

d ∼ − logN(ε)

log ε
. (4)

E. Classifiers

The following classifiers were used on this paper’s approach
[27]:
• RF: a set of unpruned classification trees, uses boostrap-

ping of training data and random selection of features
[2];

• SVM: the separation of the data by hyperplanes in a
multidimensional space using a kernel function [2];

• MultiLayer Perceptron (MLP): a type of neural network
capable of solving non-linear problems [28], [29];

• LDA: projection of the data in a subspace, reducing
the dimensionality and maximizing the distance between
classes [28], [30];



Fig. 1. Samples of Drosophila melanogaster wings of both genders and mutant genotypes found in Samarkand, where F and M represent female and male
[19].

Fig. 2. Procustres distances (PD) magnitudes and mean vector of wild SAM (black) and genotype variations (red), magnified three-fold for better visualization
[3]. Source: Sonnenschein et al. [3].

• Quadratic Discriminant Analysis (QDA): similar to LDA
but divides data with quadratic surface and does not use
the covariance matrix [28], [30];

• KNN: assignment of a class to unknown data from the

most frequent class of samples with lower k distances
[28].



Fig. 3. Application of stationary wavelet transform in a preprocessed image of the database [19] where A represents the approximation component, H ,
horizontal, V , Vertical and D, diagonal and Wi is the level i of the transform. The components maintains the size of the original image.

F. Proposed methodology

The following steps are used for this paper’s proposed
methodology:

1) Opening the image file in gray level;
2) Applying of median filter with a structuring element of

a disk with a radius 7 for noise removal. Then the image
is cut 900 pixels high, with the center of the axes in the
upper left corner to remove the 1mm marking;

3) Decompositing the filtered image with a stationary
Wavelet transform of Haar of 2 levels, generating 8
outputs (horizontal, vertical and diagonal components
of each level);

4) Segmentating each image from the previous step from
the Canny filter with σ = 21 to approximation and
horizontal components, σ = 4 for vertical and σ = 3
for diagonal. These values were found by exhaustive
manual search;

5) Calculating the fractal dimension from the edges de-
tected in the previous step;

6) Splitting the data by gender or genotype, shuffling and
selecting the samples according to the Table I;

7) Analyzing of the accuracy by cross-validation. Each
classifier (see III-E) is run 10 times, varying the training
and test data.

Figure 5 shows an example of application of the proposed
methodology.

IV. RESULTS AND DISCUSSION

The proposed methodology reached high success rates for
classification by gender, above 90%, even with a reduced
number of attributes, as shown in Table I. Eight features are
used compared to 50 in [3] or over 700 in [2]. In Table III,
we compare the results obtained with works that classified fly
wings. This paper’s approach requires reduced computational

cost and reached high accuracy compared to others studies. By
increasing the number of samples per class, the success rate
remained consistent. Sonnenschein et al. [3] achieved high hit
rates when using landmark, which requires user interaction, in
opposition to the objective of the proposed approach.

The LDA method was better than other classifiers with SAM
samples while QDA was better with all genotypes. The SVM
technique obtained better results than RF in both approaches.
The KNN method achieved the lowest success rates, followed
by MLP. During the tests, the linear kernel classification
in SVM was less efficient than the polynomial kernel. The
parameters of the classifiers and related to randomness of
the data shuffle were kept constant during the tests due to
reproducibility.

The used images vary in wing size, orientation and location
relative to the background. The approximation and horizontal
components of the second level obtained better segmentation,
whereas the vertical and diagonal components had a higher
noise presence (see Figures 4 and 5). In the first level, the
extraction of the contour of the components, more visibly
in the horizontal and diagonal, was less efficient. Canny
filter σ decrease can improve that result. The Haar wavelet
used in the proposed methodology is considered simple [18].
The use of more complex families such as Daubechie or
cubic B-Spline can improve the result of the segmentation
and classification. The fractal dimension extraction algorithm
was written in Cython [31] and the extraction parallelized to
optimize performance.

V. CONCLUSIONS AND FUTURE WORKS

The proposed methodology for gender classification was
efficient in comparison with studies from the literature. Suc-
cess rates above 90% with reduced number of attributes
and automatic classification are possible. A simple contour
detection filter, such as Canny, combined with decomposition



Fig. 4. Segmented level 2 wavelet components (approximation - A, horizontal - H, vertical - V and diagonal - D) of an image from [19] with Canny filter.
Highlighted values are used in the proposed methodology.

of a simple wavelet family, such as Haar, achieved satisfactory
accuracy. Linear classifiers obtained better results in gender
identification.

For future work, we will review other Wavelet families and
parameters of the segmentation and classification techniques
for a performance improvement. We will also perform the
analysis with other images databases for the validation of the
proposed methodology.
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[12] A. Demirhan and İnan Güler, “Combining stationary wavelet transform
and self-organizing maps for brain {MR} image segmentation,”
Engineering Applications of Artificial Intelligence, vol. 24, no. 2, pp.
358 – 367, 2011. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0952197610001740

[13] H. N. Nguyen, T. Y. Kam, and P. Y. Cheng, “A novel automatic concrete
surface crack identification using isotropic undecimated wavelet trans-
form,” in Intelligent Signal Processing and Communications Systems
(ISPACS), 2012 International Symposium on, Nov 2012, pp. 766–771.

[14] R. A. U., P. S. Bhat, N. Kannathal, A. Rao, and C. M. Lim, “Analysis

of cardiac health using fractal dimension and wavelet transformation,”
ITBM-RBM, vol. 26, no. 2, pp. 133 – 139, 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1297956205000227

[15] O. M. Bruno, R. de Oliveira Plotze, M. Falvo, and M. de Castro,
“Fractal dimension applied to plant identification,” Information
Sciences, vol. 178, no. 12, pp. 2722 – 2733, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020025508000364

[16] G. E. Polychronaki, P. Y. Ktonas, S. Gatzonis, A. Siatouni, P. A.
Asvestas, H. Tsekou, D. Sakas, and K. S. Nikita, “Comparison of fractal
dimension estimation algorithms for epileptic seizure onset detection,”
Journal of Neural Engineering, vol. 7, no. 4, p. 046007, 2010. [Online].
Available: http://stacks.iop.org/1741-2552/7/i=4/a=046007

[17] E. Bayraktar, H. V. Poor, and K. R. Sircar, “Estimating the fractal
dimension of the s&p 500 index using wavelet analysis,” International
Journal of Theoretical and Applied Finance, vol. 07, no. 05, pp.
615–643, 2004. [Online]. Available: http://www.worldscientific.com/
doi/abs/10.1142/S021902490400258X

[18] P. S. C. Murty, E. S. Reddy, and I. R. Babu, “Iris recognition system
using fractal dimensions of haar patterns,” International Journal of
Signal Processing, Image Processing and Pattern Recognition, vol. 2,
no. 3, pp. 75–84, 2009.



TABLE III
COMPARISON OF THE RESULTS OBTAINED WITH WORKS IN LITERATURE WITH ALL GENOTYPES (†) AND ONLY SAM SAMPLES (∗).

Methodology Features Classifier Accuracy (%)

[1] GEFEML Manhattan distance 73.16

[2]
MLBP RF 90.00
LBP SVM (linear) 89.50

[3] Hessians
RF (10 trees) 85.00
SVM (linear) 81.70

Proposed Fractal dimension

RF (15 trees) 87.86†

SVM (polynomial) 88.15†

RF (15 trees) 93.45∗

SVM (polynomial) 95.55∗

[19] A. Sonnenschein, D. VanderZee, W. R. Pitchers, S. Chari, and
I. Dworkin, “Supporting material and data for ”an image database of
drosophila melanogaster wings for phenomic and biometric analysis”,”
2015. [Online]. Available: https://doi.org/10.5524/100141

[20] M. Unser, “Texture classification and segmentation using wavelet
frames,” IEEE Transactions on Image Processing, vol. 4, no. 11, pp.
1549–1560, Nov 1995.

[21] L. Ebadi and H. Z. M. Shafri, “A stable and accurate wavelet-based
method for noise reduction from hyperspectral vegetation spectrum,”
Earth Science Informatics, vol. 8, no. 2, pp. 411–425, 2015. [Online].
Available: http://dx.doi.org/10.1007/s12145-014-0168-0

[22] J. Canny, “A computational approach to edge detection,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6,
pp. 679–698, Nov 1986.
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