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Abstract—Nowadays, higher order tensors have been applied
to model multidimensional image data for subsequent tensor de-
composition, dimensionality reduction and classification tasks. In
this paper, we survey recent results with the goal of highlighting
the power of tensor methods as a general technique for data
representation, their advantage if compared with vector coun-
terparts and some research challenges. Hence, we firstly review
the geometric theory behind tensor fields and their algebraic
representation. Afterwards, subspace learning, dimensionality
reduction, discriminant analysis and reconstruction problems are
considered following the traditional viewpoint for tensor fields
in image processing, based on generalized matrices. We show
several experimental results to point out the effectiveness of
multilinear algorithms for dimensionality reduction combined
with discriminant techniques for selecting tensor components
for face image analysis, considering gender classification as well
as reconstruction problems. Then, we return to the geometric
approach for tensors and discuss opened issues in this area related
to manifold learning and tensor fields, incorporation of prior
information and high performance computational requirements.
Finally, we offer conclusions and final remarks.

Keywords-Tensor Fields; Dimensionality Reduction; Tensor
Subspace Learning; Ranking Tensor Components; Reconstruc-
tion; MPCA; Face Image Analysis.

I. INTRODUCTION

Many areas such as pattern recognition, computer vision,
signal processing and medical image analysis, require the
managing of huge data sets with a large number of features
or dimensions. Behind such big data we have medical imag-
ing, scientific data produced by numerical simulations and
acquisition systems as well as complex systems from Nature,
Internet, economy/finance, among other areas in Society [1].
The analysis of such data is ubiquitous, involving multi-
level, multi-scale and statistical viewpoints which raised an
intriguing question: can we envisage a conceptual construction
that plays for data analysis the same role that geometry and
statistical mechanics play for physics?

Firstly of all, we agree that geometry and topology are
the natural tools to handle large, high-dimensional databases
because we can encode in a geometric concept (like a dif-
ferentiable manifold) notions related to similarity, vectors and
tensors while the topology allows to synthesize knowledge
about connectivity to understand how data is organized on
different levels [2], [3]. In this scenario, manifold learning

methods and tensor fields in manifolds offer new ways of min-
ing data spaces for information retrieval. The main assumption
in manifold learning is that the data points, or samples, lye
on a low-dimensional manifold M, embedded in some high-
dimensional space [4]. Therefore, dimensionality reduction
should be used for discarding redundancy and reduce the
computational cost of further operations. Manifold learning
methods look for a compact data representation by recovering
the data geometry and topology [5]. The manifold structure
offers resources to build vector and tensor fields which can
be applied to encode data features. Also, data points must
appear according to some probability density function. In this
way, geometry, topology and statistical learning could be con-
sidered as the building blocks of the conceptual construction
mentioned in the above question [6], [7].

In this paper we focus on geometric and statistical learning
elements related to tensor fields for data analysis. Therefore,
we start with differentiable manifolds as the support for tensor
fields [8]. Then, we cast in this geometric viewpoint the
traditional algebraic framework for tensor methods used in
multidimensional image databases analysis, based on general-
ized matrices. We review advanced aspects in tensor methods
for data representation combined with statistical learning for
extracting meaningful information from high-dimensional im-
age databases.

Tensor methods offer an unified framework because vectors
and matrices are first and second order tensors, respectively.
Besides, colored images can be represented as third order ten-
sors and so on. Then, multilinear methods can be applied for
dimensionality reduction and analysis. Tensor representation
for images was proposed in [9] by using a singular value
decomposition method. There are supervised and unsupervised
techniques in this field. The former is composed by methods
based on scatter ratio maximization (discriminant analysis
with tensor representation (DATER), uncorrelated multilinear
discriminant analysis (UMLDA)), and scatter difference max-
imization (general tensor discriminant analysis (GTDA) and
tensor rank-one discriminant analysis (TR1DA)). The unsuper-
vised class (do not take class labels into account) includes the
least square error minimization (concurrent subspace analysis
(CSA), incremental tensor analysis (ITA), tensor rank-one de-
composition (TROD)) and variance maximization (multilinear
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principal component analysis (MPCA) and its variants) as
well as multilinear independent components analysis (MICA)
[10], [11], [12]. On the other hand, most of the mentioned
techniques depends on iterative methods, which are sensitive
to initialization, and involve NP-hard problems, which have
motivated specific works as the ones reported in [13], [14].

The applications of multilinear data representation include
face image analysis [15], face recognition under multiple
viewpoints and varying lighting conditions, digital number
recognition, video content representation and retrieval, face
transfer that maps video recorded performances of one individ-
ual to facial animations of another one, gait recognition [11],
geoscience and remote sensing data mining, visualization and
computer graphics techniques based on tensor decomposition
(see [16] and references therein).

This paper reviews the main topics involved in the applica-
tion of tensor methods for image analysis: multilinear repre-
sentation for high-dimensional data; dimensionality reduction;
discriminant analysis; classification; reconstruction, that is,
visualize the information captured by the discriminant tensor
components. The presentation follows the references [11],
[17], [15], [14], [18] to survey results that emphasize the power
of tensor techniques for data representation, their advantage
against linear counterparts and research challenges. We discuss
the solution for the problem of subspace learning in tensor
spaces in the context of MPCA. Next, pattern recognition tasks
associated to tensor discriminant analysis and classification
are presented. The problem of ranking tensor components
to identify tensor subspaces for separating sample groups is
focused on the context of statistical learning techniques, based
on the covariance structure of the database, the Fisher crite-
rion and discriminant weights computed through separating
hyperplanes [15].

In the experimental results we focus on tensor compo-
nents for face image analysis considering gender classification
as well as reconstruction problems [17], [15]. We perform
subspace learning through the MPCA. Then, the mentioned
ranking techniques are used to select discriminant MPCA
subspaces. We investigate the efficiency of the selected tensor
components for gender classification and reconstruction prob-
lems using the FEI face image database1. We shall highlight
the fact that the pipeline used to perform the gender experi-
ment is not limited to image analysis. We can say that it is
’general’ in the sense that, given a multidimensional database
that can be represented by higher order tensors, it can be used
to select discriminant subspaces for subsequent analysis.

Moreover, we add a section to discuss challenges and
perspectives in the area. Our presentation is motivated by
aspects related to data modeling and computational require-
ments. So, we return to the geometric viewpoint and show the
link between manifold learning and tensor fields in order to
sketch the application of such framework for data analysis. In
addition, we discuss the problem of explicitly incorporating

1This database can be downloaded from
http://www.fei.edu.br/∼cet/facedatabase.html

prior information in multilinear frameworks to allow an au-
tomatic selective treatment of the variables that compose the
patterns of interest. However, further developments in tensor-
based data mining will led to huge memory requirements and
computational complexity issues which are also discussed in
the perspective section.

This paper is organized as follows. Section II gives the
algebraic and geometric background. Next, the section III
reviews the tensor framework for dimensionality reduction. In
section IV, the MPCA technique is presented. The approaches
for ranking tensor components are described in section V.
The section VI shows the experimental results. In Section
VII, we discuss important points that have emerged from this
work. Section VIII presents our concerns about open issues in
tensor techniques for data analysis. Finally, we end with the
conclusions in section IX. An extended version of the whole
material is presented in [16].

II. TENSOR FIELDS IN DIFFERENTIABLE MANIFOLDS

In this paper, the bold uppercase symbols represent tensor
objects, such as X,Y,T; the normal uppercase symbols
represent matrices, data sets and subspaces (P , U , D, S, etc.);
the bold italic lowercase symbols represent vectors, such as x,
y; and the normal Greek lowercase symbols represent scalar
numbers (λ, α, etc.).

The concept of tensor can be introduced through an elegant
geometric framework, based in the notion of tensor product of
vector spaces [19]. This approach is simple, straightforward,
and it makes explicit the fact that the generalized matrices
are just local representations of more general objects; named
tensor fields.

A. Tensor Product Spaces

The simplest way to define the tensor product of two
vector spaces V1 and V2, with dimensions dim (V1) = n and
dim (V2) = m, is by creating a new vector space analogously
to multiplication of integers. For instance if {e1

1, e
2
1, e

3
1, ..., e

n
1}

and {e1
2, e

2
2, e

3
2, ..., e

m
2 } are basis in V1 and V2, respectively,

then, the tensor product between these spaces, denoted by
V1⊗V2, is a vector space that has the following properties:

1) Dimension:
dim (V1⊗V2) = n.m, (1)

2) Basis:
V1⊗V2

= span
{

ei1 ⊗ ej2; 1 ≤ i ≤ n, 1 ≤ j ≤ m
}
, (2)

3) Tensor product of vectors (Multilinearity): Given v =∑n
i=1 vie

i
1 and u =

∑m
j=1 uje

j
2 we define:

v ⊗ u =

n∑
i=1

m∑
j=1

viuje
i
1⊗ej2. (3)

Generically, given vector spaces V1, V2, . . . , Vn, such that
dim (Vi) = mi, and {e1

i , e
2
i , ..., e

mi
i } is a basis for Vi , we

can define:
V1⊗V2 ⊗ . . .⊗ Vn



= span
{
ei11 ⊗ ei22 ⊗ . . .⊗ einn ; eikk ∈ Vk

}
, (4)

and the properties above can be generalized in a straightfor-
ward way.

B. Differentiable Manifolds and Tensors

A differentiable manifold of dimension m is a set M and
a family of injections {ϕα}α∈I , ϕα : Uα ⊂ Rm →M where
Uα is an open set of Rm and I an index set, such that [8]:

1) ∪α∈Iϕα (Uα) =M.
2) For every α, β ∈ I, with ϕα (Uα) ∩ ϕβ (Uβ) = W 6= ∅,

the sets ϕ−1
α (W ) and ϕ−1

β (W ) are open sets in Rm and
the chart transition ϕ−1

β ◦ ϕα : ϕ−1
α (W ) → ϕ−1

β (W ) is
differentiable.

3) The family {(Uα, ϕα)} is maximal respect to properties
(1) and (2).

The properties (1) and (2) allow to define a natural topol-
ogy over M: a set A ⊂ M is an open set of M if
ϕ−1
α (A ∩ ϕα (Uα)) is an open set of Rm, ∀α ∈ I.
We shall notice that, if p ∈ ϕα (Uα) then ϕ−1

α (p) =
(x1 (p) , ..., xm (p)) ∈ Rm. So, ϕα (Uα) is called a coordinate
neighborhood and the pair (Uα, ϕα) a system of local coordi-
nates for M in p. If ϕ−1

β ◦ ϕα ∈ Ck, with k ≥ 1, ∀α, β ∈ I ,
then we say thatM is a Ck differentiable manifold, or simply
Ck manifold. If k =∞,M is called a smooth manifold.

Let M be a Ck manifold of dimension m with local
coordinates x : U ⊂ Rm → M, at a point p. A tangent
vector v to M at p can be expressed in the local coordinates
x as:

v =

m∑
i=1

(
vi

∂

∂xi

)
, (5)

where the vectors:

B =

{
∂

∂x1
, ...,

∂

∂xm

}
, (6)

are defined by the local coordinates.
The set of all tangent vectors toM at p is called the tangent

space to M at p, and it is denoted by Tp (M). The vectors
in the set (6) determine an natural basis for Tp (M). A vector
field v over a manifoldM is a function that associates to each
point p ∈M a vector v(p) ∈ Tp (M). Therefore, in the local
coordinates x:

v(p) =

m∑
i=1

(
vi(p)

∂

∂xi
(p)

)
, (7)

where now we explicit the fact that expressions (5) and (6)
are computed in each point p ∈M.

The notion of tensor field is formulated as a general-
ization of the vector field formulation using the concept
of tensor product of section II-A. So, given the subspaces
T ip (M) ⊂ Tp (M), with dim

(
T ip (M)

)
= mi, i =

1, 2, · · ·, n, the tensor product of these spaces, denoted by
T 1
p (M)⊗T 2

p (M)⊗ · · · ⊗Tnp (M), is a vector space defined
by expression (4) with Vi = T ip (M) and individual basis

{
eikk (p), ik = 1, 2, · · ·,mk

}
⊂ T kp (M); that means, a natural

basis for the vector space T 1
p (M)⊗T 2

p (M)⊗ · · · ⊗Tnp (M)
is the set:{

ei11 (p)⊗ei22 (p)⊗ · · · ⊗einn (p), eikk (p) ∈ T kp (M)
}
. (8)

In this context, a tensor X of order n in p ∈M is defined
as an element X (p) ∈ T 1

p (M)⊗T 2
p (M)⊗ · · · ⊗Tnp (M) ;

that is, an abstract algebraic entity that can be expressed as
[19]:

X (p) =
∑

i1,i2,···,in

Xi1,i2,···,in (p) ei11 (p)⊗ei22 (p)⊗···⊗einn (p) .

(9)
Analogously to the vector case, a tensor field of order n

over a manifold M is a function that associates to each point
p ∈M a tensor X (p) ∈ T 1

p (M)⊗T 2
p (M)⊗···⊗Tnp (M). If

the manifold M is an Euclidean space of dimension m, then
Tp (M) can be identified with the Rm, and, consequently,
T kp (M) is identified with Rmk . So, in this case, we can
discard the dependence to p ∈M in expression (9) and write:

X =
∑

i1,i2,···,in

Xi1,i2,···,inei11 ⊗ei22 ⊗ · · · ⊗einn . (10)

Therefore, we can say that the tensor X in expression
(10) is just a generalized matrix X ∈ Rm1×m2×...×mn , in
the sense that it can be represented by the n dimensional
array Xi1,i2,···,ineverywhere in the Euclidean space. This is the
context in which tensors have been used in computer vision,
image processing and visualization techniques.

Each element of the basis given by expression (8), is
called rank-1 tensor in the multilinear subspace learning
literature because it equals to the tensor product of n vectors
ei11 (p)⊗ei22 (p)⊗···⊗einn (p) [13]. Expression (9), or its simpli-
fied version (10), gives the decomposition of the tensor X in
the components of the tensor basis. In the sequel, we survey
topics related to subspace learning and pattern recognition
applied to multidimensional image data represented through
tensors given by expression (10). Afterwards, in section VIII,
we return to the general theory defined by equation (9) and
discuss its perspectives for data analysis.

III. DIMENSIONALITY REDUCTION IN TENSOR SPACES

Now, let us consider the new basis:

B̃ =
{
ẽi11 ⊗ẽi22 ⊗ · · · ⊗ẽinn , ẽikk ∈ Rmk

}
, (11)

as well as basis change matrices Rk ∈ Rmk×mk , defined by:

eikk =

mk∑
jk=1

Rkikjk ẽjkk , (12)

where k = 1, 2, · · ·, n and ik = 1, 2, · · ·,mk.
In the tensor product framework, to get the new represen-

tation of the tensor X in the basis B̃ it is just a matter of
inserting expression (12) in the tensor product representation



given by equation (10).Then, using the multilinearity of the
tensor product (expression (3)) we get:

X =
∑

j1,j2,···,jn

X̃j1,j2,···,jn ẽj11 ⊗ẽj22 · · · ⊗ẽjnn , (13)

with:

X̃j1,j2,···,jn =
∑

i1,i2,···,in

Xi1,i2,···,inR
1
i1j1R

2
i2j2 . . . .R

n
injn .

These expressions give the decomposition, or representa-
tion, of the tensor X in the basis B̃. Now, let us perform
dimensionality reduction by truncating the basis change ma-
trices to get projection matrices Uk ∈ Rmk×m′k , as follows:

Ukikjk = Rkikjk , ik = 1, 2, · · ·,mk; jk = 1, 2, · · ·,m′k,
(14)

with k = 1, 2, · · ·, n, m′k ≤ mk. Then, using again the
multilinearity of the tensor product, we obtain a new tensor:

Y =
∑

j1,j2,···,jn

Yj1,j2,···,jn ẽj11 ⊗ẽj22 · · · ⊗ẽjnn , (15)

where:

Yj1,j2,···,jn =
∑

i1,i2,···,in

Xi1,i2,···,inU
1
i1j1U

2
i2j2 . . . U

n
injn . (16)

The operations in expression (16) can be represented
through the usual mode-k product, applied when considering
a tensor X ∈ Rm1×m2×...×mn as a generalized matrix [20],
as follows.

Definition 1. The mode-k product of tensor X ∈
Rm1×m2×...×mn with the matrix A ∈ Rm′k×mk is given by:

(X×k A)i1,...,ik−1,i,ik+1,...,in

=

mk∑
j=1

Xi1,···,.ik−1,j,ik+1,···inAi,j , i = 1, 2, ...,m′k. (17)

So, we can show by induction that the expression (16) can
be computed as:

Yj1,j2,···,jn =
(
X×1 U

1T

×2 U
2T

...×n Un
T
)
j1,j2,···,jn

,

(18)
or, in a compact form:

Y = X×1 U
1T

×2 U
2T

...×n Un
T

. (19)

Expression (19) has the advantage of been more simple and
compact than the algebraic counterpart given by equations
(15)-(16). That is way it is used everywhere in the tensor
literature for image analysis and visualization applications
[10], [21]. Besides, the generalized array viewpoint simplifies
the definition of other tensor operations also important in the
context of multidimensional data manipulation by exploring
the isomorphism between Rm1×m2×...×mn and Rm1·m2···mn .

For instance, the notions of internal product and norm in
Rm1×m2×...×mn are induced, in a natural manner, from the
Rm1·m2···mn space as follows.

Definition 2. The internal product between two tensors X ∈
Rm1×m2×...×mn and Y ∈ Rm1×m2×...×mn is defined by:

〈X,Y〉 =

m1,...,mn∑
i1=1,...,in=1

Xi1,..,inYi1,..,in (20)

Definition 3. The Frobenius norm of a tensor is given by
the expression ‖ X ‖=

√
〈X,X〉, and the distance between

tensors X and Y is computed by:

D(X,Y) =‖ X−Y ‖ . (21)

Besides, operations that transform a multidimensional array
into a two dimensional one (matrix) are also useful.

Definition 4. The mode-k flattening of an n-th order tensor
X ∈ Rm1×m2×...×mn into a matrix X(k) ∈ Rmk×qi6=kmi ,
denoted by X(k) ⇐=k X, is defined by expression:

X(k)ik,j
= Xi1,...,in , j = 1+

n∑
l=1,l 6=k

(il−1)qn0=l+1,06=km0.

(22)

Finally, we shall notice that the tensor Y in expression (19)
is the lower dimensional representation, or projection, of the
tensor X in the reduced space Rm′1×m′2×...×m′n . Therefore,
we must perform the reconstruction that generates a tensor
XR
i ∈ Rm1×m2×...×mn , calculated by [20]:

XR
i = Xi ×1 U

1U1T

...×n UnUn
T

, (23)

which, in visual databases, allows to verify how good a low
dimensional representation will look like. We must define
optimality criteria to seek for suitable matrices U1, U2,...,Un.
The next section revise this point using statistical learning
methods.

IV. SUBSPACE LEARNING IN TENSOR SPACES

Now, let us consider a database D with N elements that
can be represented through n− th order tensors:

D =
{
Xi ∈ Rm1×m2×...×mn , i = 1, 2, ..., N

}
. (24)

We can fit the problem of dimensionality reduction in the
context of subspace learning approaches by calculating n
projection matrices that maximize the total scatter; that means,
they perform variance maximization by solving the problem
[11]:

(U j |nj=1) = arg max
Uj |nj=1

1

N

N∑
i=1

||Yi −Y||2, (25)



where Yi is given by expression (19) and Y is the mean tensor
computed by:

Y =
1

N

N∑
i=1

Yi. (26)

The algorithm to solve problem (25) is steered by the
following result.

Theorem 1. Let Uk ∈ Rmk×m′k i = 1, 2, . . . , n, be
the solution to (25). Then, given the projection matrices
U1, ..., Uk−1, Uk+1, ..., Un, the matrix Uk consists of the m′k
principal eigenvectors of the matrix:

Φ(k) =

N∑
i=1

(Xi(k)−X(k))UΦ(k) .UTΦ(k) .(Xi(k)−X(k))
T , (27)

where Xi(k) and X(k) are the mode-k flattening of sample
tensor Xi and of the global mean X , respectively, and:

UΦ(k) = Uk+1⊗Uk+2⊗...⊗Un⊗U1⊗U2⊗...⊗Uk−1. (28)

Proof: see [11], [22].
The MPCA is formulated based on the variance maxi-

mization criterion. Hence, starting from the Theorem 1, the
iterative procedure given by the Algorithm 1 can be im-
plemented to solve problem (25). In this procedure, called
MPCA Algorithm in [11], the projection matrices are com-
puted one by one with all the others fixed. Once the matrices
U1
t , ..., U

k−1
t , Uk+1

t , ..., Unt are fixed we can seek for the
optimum Ukt by solving the optimization problem given by
equation (25) respect to the matrix Ukt . Then, the objective
function in expression (25), can not decrease after each inter-
action.

The reduced dimensions m
′

k, k = 1, 2, . . . , n must be
specified in advance or determined by some heuristic. In [11]
it is proposed to compute these values in order to satisfy the
criterion: ∑m′k

ik=1 λik(k)∑mk

ik=1 λik(k)
> Ω (29)

where Ω is a threshold to be specified by the user and λik(k)

is the ikth eigenvalue of Φ(k)∗.
The total scatter Υ (Algorithm 1, lines 5 and 9) is related

to the total scatter tensor defined by [11]:

Ψj1,j2,···,jn =

N∑
i=1

(
Yi;j1,j2,···,jn−Yj1,j2,···,jn

)2
N

, (30)

which offers also a straightforward way to rank tensor com-
ponents as we will see in section VI.

V. RANKING TENSOR COMPONENTS

The problem of ranking components is very known in the
context of PCA. In this case, it was observed that, since
PCA explains the covariance structure of all the data its most
expressive components, that is, the first principal components

Algorithm 1: MPCA Algorithm.
Input: Samples {Xi ∈ Rm1×m2×...×mn , i = 1, ..., N};

dimensions m
′

k; k = 1, · · ·, n.
1 Preprocessing: Center the input samples as
{X̃i = Xi −X, i = 1, ..., N} , where X = 1

N

∑N
i=1 Xi

is the sample mean.
2 Initialization: Calculate the eigen-decomposition of

Φ(k)∗ =
∑N
i=1 X̃i(k) · X̃T

i(k), and set Uk0 to consist of the
eigenvectors corresponding to the most significant m

′

k

eigenvalues, for k = 1, ..., n.
3 Local optimization:
4 Calculate Ỹi = X̃i ×1 U

1T

0 ...×n Un
T

0 , i = 1, ..., N ;
5 Calculate Υ0 =

∑N
i=1 ||Ỹi||2F ;

6 for t = 1, ... to Tmax do
7 for k = 1, ... to n do
8 Set the matrix Ukt to consist of the m

′

k leading
eigenvectors of Φ(k), defined in expression (27);

9 Calculate Ỹi, i = 1, ..., N and Υt;
10 if |Υt −Υt−1| < η then
11 break;

Output: Projection matrices Uk = Ukt , k = 1, ..., n.

with the largest eigenvalues, do not necessarily represent
important discriminant directions to separate sample groups
[23]. The Figure 1 is a simple example that pictures this
fact. Both Figures 1.(a) and 1.(b) represent the same data set.
Figure 1.(a) just shows the PCA directions (x and y) and the
distribution of the samples over the space. However, in Figure
1.(b) we distinguish two patterns: plus (+) and minus (−). We
observe that the principal PCA direction x can not discriminate
samples of the considered groups.

Fig. 1. (a) Data distribution and PCA directions. (b) The same population
but distinguishing patterns plus (+) and minus (−).

This observation motivates the application and development
of other techniques, like linear discriminant analysis (LDA),
or its regularized version named MLDA, and discriminant
principal components analysis (DPCA), to identify the most
important linear directions for separating sample groups rather
than PCA [24], [25]. Behind the LDA is the Fisher criterion
which have inspired ranking methods for tensor components



[11]. The DPCA has been extended for tensor databases
generating the TDPCA [17], [15]. The extension of the maxi-
mum variance criterion for ranking MPCA tensor components
is ambiguous because there is no a closed-form solution
for the corresponding subspace learning problems unless in
particular cases [17]. Therefore, we shall consider some sound
methodology to estimate the covariance structure of tensor
subspaces [17]. In the following subsections we revise these
approaches.

A. Spectral Structure of MPCA Subspaces

The first point is how to estimate the variance explained
by each tensor component? In the MPCA algorithm each
subspace:{

ẽjkk , jk = 1, 2, · · ·,m′k
}
, k = 1, 2, · · ·, n,

is obtained by taking the first m′k leading eigenvectors of a
covariance-like matrix Φ(k). So, let:{

λkjk , jk = 1, 2, · · ·,m′k
}
, k = 1, 2, · · ·, n,

the associated eigenvalues. The data distribution in each sub-
space can be represented by the vector:

vk =
1

β

m′k∑
jk=1

λkjk ẽjkk , k = 1, 2, · · ·, n,

where β is a normalization factor that takes into account the
tensor space dimension and the number N of samples: β =
N ·Πn

k=1mk. Therefore, following [17], the variance explained
by each element of basis B̃ in expression (11) can be estimated
by calculating:

v1 ⊗ v2 ⊗ · · · ⊗ vn

= (
1

β
)n

∑
j1,j2,···,jn

λ1
j1λ

2
j2 · · · λ

n
jn ẽj11 ⊗ ẽj22 ⊗ · · · ⊗ ẽjnn . (31)

and, consequently, we can rank the MPCA tensor components
by sorting (in decreasing order) the set:

E =

{
λj1,j2,···,jn = (

1

β
)nλ1

j1λ
2
j2 · · · λ

n
jn , jk = 1, 2, · · ·,m′k

}
,

(32)
to obtain the principal MPCA tensor components, likewise
in the PCA methodology. The sorted sequence {λj1,j2,···,jn}
can be re-indexed using just one index {λi; i =
1, 2, ...,

∏n
k=1m′k} that tells the number of the principal

MPCA component in the sorted sequence.

B. Tensor Discriminant Principal Components

The problem of using a linear classifier to rank tensor
components, named tensor discriminant principal components
analysis (TDPCA) in [17], consists of the following steps.
Firstly, we perform dimensionality reduction using the MPCA
subspaces, by computing the low dimensional representation
Yi of each tensor Xi through expression (19). The goal
of this step is to discard redundancies of the original rep-
resentation. Then, supposing a two-class problem, a linear
classifier is estimated using the projected training samples

Yi ∈ Rm′1×m′2×...×m′n and the corresponding labels. The
separating hyperplane is defined through a discriminant tensor
W ∈ Rm′1×m′2×...×m′n while the discriminant features given
by:

ỹi = 〈Yi,W〉, (33)

for i = 1, 2, · · ·, N , are used for classification.
We can investigate the components Wi1,..,in of the dis-

criminant tensor W to determine the discriminant contribution
for each feature. So, following the same idea proposed in
[23] for PCA subspaces, these components are weights in
expression (33) that determine the discriminant contribution of
each feature Yi;i1,..,in ; that means, weights that are estimated
to be approximately 0 have negligible contribution on the
discriminant scores ỹi described in equation (33), indicating
that the corresponding features are not significant to separate
the sample groups. In contrast, largest weights (in absolute
values) indicate that the corresponding features contribute
more to the discriminant score and consequently are important
to characterize the differences between the groups.

Therefore, differently from the criterion of section V-A, we
are selecting among the MPCA components the ”directions”
that are efficient for discriminating the sample groups rather
than representing all the samples. Such a set of components
ordered in decreasing order of the discriminant weights is
called the tensor discriminant principal components [17], [15].
The TDPCA with discriminant tensor given by the SVM
(MLDA) linear classifier is named TDPCA-SVM (TDPCA-
MLDA) in the following sections [15].

C. Fisher Criterion for Tensor Component Analysis

The key idea of Fisher criterion is to separate samples of
distinct groups by maximizing their between-class separability
while minimizing their within-class variability [24]. It is
implemented in [26] through the discriminant tensor criterion
given by:

(U1, U2, . . . , Un)

= arg max
Uj |nj=1

∑C
c=1Nc · ||

(
Xc −X

)
×1 U

1...×n Un||2∑N
i=1 ||

(
Xi −Xci

)
×1 U1...×n Un||2

,

(34)
where C is the number of classes, Nc is the number of
elements of class c, Xc is the average tensor of the samples
belonging to class c, X is the average tensor of all the samples
and Xci is the average of the class corresponding to the ith
tensor.

Following the expressions (15)-(16), and by considering
Frobenius norm (Definition 3) we can interchange the sum-
mations to get:

(U1, U2, . . . , Un)

= arg max
Uj |nj=1

∑
J

(∑C
c=1Nc ·

(
Yc;J −YJ

)2)
∑
J

(∑N
i=1

(
Yi;J −Yci;J

)2) , (35)

where J = (j1, j2, · · ·, jn). Expression (35) motivates the
discriminability criterion presented in [11] without a formal



(a) (b)

Fig. 2. The frontal neutral profile of an individual in the FEI database. (b)
Frontal profile of the mean tensor for the FEI database (gray scale).

justification. Specifically, from expression (35) we can postu-
late that the larger is the value of Γj1,j2,···,jn computed by:

Γj1,j2,···,jn

=

∑C
c=1Nc ·

(
Yc;j1,j2,···,jn−Yj1,j2,···,jn

)2∑N
i=1

(
Yi;j1,j2,···,jn−Yci;j1,j2,···,jn

)2 , (36)

then more discriminant is the tensor component ẽj11 ⊗ ẽj22 · · ·
⊗ẽjnn for samples classification.

VI. APPLICATION: FEI DATABASE ANALYSIS

In this section we perform gender experiments using the
face image database maintained by the Department of Electri-
cal Engineering of FEI, São Bernardo do Campo (SP), Brazil
2. There are 14 images for each of 200 individuals, a total
of 2800 images. All images are colorful and taken against a
white homogenous background in an upright frontal position
with 11 neutral profile rotation of up to about 180 degrees,
one facial expression (smile) and two poses with variations
in illumination. Scale might vary about 10% and the original
size of each image is 640 × 480 pixels. All faces are mainly
represented by students and staff at FEI, between 19 and 40
years old with distinct appearance, hairstyle, and adorns. The
number of male and female subjects are exactly the same and
equal to 100 [23]. Figure 2.(a) shows the frontal profile of a
sample that has been used in the experiments (more examples
in [16]).

For memory requirements, we convert each pose to gray
scale before computations. Therefore, each sample is repre-
sented by a tensor X ∈ R640⊗R480⊗R11 and the frontal pose
of the mean tensor is pictured in Figure 2.(b). The images are
well scaled and aligned. These features make the FEI database
very attractive for testing dimensionality reduction in tensor
spaces.

Details about the implementation of the mentioned tensor
methods are given in the section VI-A. We have carried out
experiments to understand the main differences between the
tensor principal components selected by the target methods
(section VI-B). Then, in sections VI-C and VI-D, we have
investigated the effectiveness of the ranking approaches for
recognition and reconstruction tasks, respectively. In this pa-
per, we focus on MPCA subspaces. Comparisons with CSA
results can be found in [15].

2This database can be downloaded from
http://www.fei.edu.br/∼cet/facedatabase.html

A. Implementation Details

We consider the following tensor subspaces generated by the
MPCA procedure described in the Algorithm 1: (a) Subspace
Smpca1 , obtained with m′1 = 479 for m′2 = 639 and
m′3 = 11; (b) Tensor subspace Smpca2 obtained by setting the
dimensionality m′1 = 33, m′2 = 42 and m′3 = 9, computed
by expression (29) with Ω = 0, 97, according to [11].

These components are sorted following the rules of section
V. We have observed that the spectral variances computed
in expression (32) are not null. Therefore, we retain all
the tensor components performing tensor subspaces with di-
mension 3366891 ≈ 3, 36 · 106 for Smpca1 and dimension
33·42·9 = 12474 for the subspace Smpca2 . Following equation
(12), each obtained set of projection matrices generates a new
basis B̃ like the one in expression (11) and a tensor X can be
represented in B̃ by a tensor Y computed by expression (15).
Besides, each ranking technique induces a natural order in the
set I = {(j1, j2, · · ·, jn) , jk = 1, 2, · · ·,m′k}, that means,
(j1, j2, · · ·, jn) preceed

(
ĵ1, ĵ2, · · ·, ĵn

)
if ẽj11 ⊗ẽj22 ⊗···⊗ẽjnn

is ranked higher than ẽĵ11 ⊗ ẽĵ22 ⊗ · · · ⊗ ẽĵnn according to the
considered ranking method.

Let, Î ⊂ I and the subspace B̂ ={
ẽj11 ⊗ ẽj22 ⊗ · · · ⊗ ẽjnn , (j1, j2, . . . , jn) ∈ Î

}
⊂ B̃ .

The projection of a tensor X in B̂ is a tensor Ŷ that can be
simply computed by:

Ŷ =
∑

j1,j2,...,jn

Tj1,j2,···,jn ×Yj1,j2,···,jn ẽj11 ⊗ ẽj22 · · · ⊗ẽjnn ,

(37)
where, the characteristic tensor T is defined by:

Tj1,j2,···,jn =

{
1, if ẽj11 ⊗ ẽj22 ⊗ · · · ⊗ ẽjnn ∈ B̂,
0, otherwise.

(38)

If we denote Ŷj1,j2,···,jn= Tj1,j2,···,jn×Yj1,j2,···,jn then the
corresponding reconstruction is obtained by computing:

XR = Ŷ ×1 U1 ×2 U2 ×3 . . .×n Un. (39)

Another important element for the discussions of the subse-
quent sections is the application of the scatter tensor defined
by expression (30) to rank tensor components of B̃ by sorting
(in decreasing order) the set:

V = {Ψj1,j2,···,jn , jk = 1, 2, · · ·,m′k} . (40)

Therefore, ẽj11 ⊗ ẽj22 ⊗ · · · ⊗ ẽjnn is ranked higher than
ẽĵ11 ⊗ ẽĵ22 ⊗ · · · ⊗ ẽĵnn if Ψj1,j2,···,jn > Ψĵ1 ,̂j2,···,̂jn . We shall
observe that Ψj1,j2,···,jn is the statistical variance associated
to the component ẽj11 ⊗ ẽj22 ⊗· · ·⊗ ẽjnn . Therefore, when using
this criterion we say that we are ranking tensor components
by their statistical variances.

In this work, the tensor operations are implemented using
the functions of the tensor toolbox available at [27] for
MatLab. Examples of tensor operations as well as other library
functions can be also found in [27].



(a) (b)

Fig. 3. Subspace Smpca
1 : (a) Top 100 statistical variance tensor princi-

pal components (horizontal axis), ranked by SVM hyperplane and spectral
variance, using the FEI database. (b) The same information of figure (a) but
including the ranking by Fisher criterion.

B. Ranking and Understanding Tensor Components

Now, we determine the discriminant contribution of each
tensor component in the Smpca1 by investigating its ranking
respect to each approach presented on section V. Due to
memory restrictions we could not include the TDPCA-MLDA
criterion in this case. In the horizontal axis of Figures 3.(a)-(b),
we read the sorting by statistical variance, as described above
(expression (40)). Then, we consider each criterion of section
V and compute the new rank of each component. For instance,
the 25th tensor component respect to the statistical variance
was ranked as the 16th for the spectral, the 1782898th and
3873th when using the Fisher and TDPCA-SVM criteria,
respectively. This figure shows that the ranking obtained by
the spectral variance is the closer one to the statistical variance
method. A similar behaviour was observed for the Smpca2

subspace. This observation experimentally confirms that ex-
pression (31) can be used to estimate the variance explained
by each tensor component. Therefore, we only consider the
spectral variance from here to the end of this section.

We observe also from Figure 3.(b) that the Fisher criterion
is the one that most disagree with the statistical variance. This
is also observed for the TDPCA-SVM ranking, although less
intensely. For instance, the 15th principal statistical variance
component were ranked as 13th and 10294th by the SVM
and Fisher criteria and the 21th principal statistical variance
component was ranked as the 15th, 164114th by the SVM
and Fisher criteria, respectively. As pointed out in [23], this
behaviour is related with the fact that, the first principal
components with the largest variances are not necessarily the
most discriminant ones. On the other hand the 59th respect
to the statistical variance was ranked as the first one respect
to the Fisher and 4th respect to the TDPCA-SVM. Since
principal components with lower variances describe particular
information related to few samples, these results indicate the
ability of TDPCA and Fisher for zooming into the details of
group differences.

The total variance explained by the 600 most expressive
tensor components for the gender experiment is illustrated in
Figure 4 when using the considered subspaces. This figure
shows that as the dimension of the spectral most expressive
subspace increases, there is an exponential decrease in the

(a) (b)

Fig. 4. (a) Amount of total variance explained by the 600 Smpca
1 most

expressive tensor components selected by spectral variance, TDPCA-SVM,
and Fisher criteria. (b) Amount of total variance using the 600 most expressive
tensor components of Smpca

2 , including also the TDPCA-MLDA components.

amount of total variance explained by the first spectral tensor
principal components, as already observed in [17]. However,
the corresponding variances explained by the tensor principal
components selected by the other criteria do not follow the
same behavior. Specifically, we observe in Figure 4.(a) some
oscillations along the TDPCA-SVM and Fisher spectrum. For
instance, the amount of the total variance explained by the
181 − 210 TDPCA-SVM components is a local maximum
for the corresponding distribution. The Fisher spectrum also
presents some oscillations in the amount of the total variance
explained between the 91th and 240th principal components
and shows a local maximum for 481−510 tensor components.
Oscillations also appear in the TDPCA-MLDA plot in Figure
4.(b).

In order to quantify the discriminant power of the principal
components, we present in Figure 5 the amount of total
discriminant information, in descending order, explained by
each one of the first 400 tensor principal components selected
by the TDPCA and Fisher approaches. The proportion of
total discriminant information t described by the kth tensor
principal component can be calculated as follows:

tk =
|σk|∑m
j=1 |σj |

, k = 1, 2, · · ·,m, (41)

where m is the subspace dimension, and [σ1, σ2, ..., σm] are
the weights computed by the MLDA/SVM separating hyper-
plane (section V-B) as well as the Fisher criterion (expres-
sion(36)).

Figure 5 shows that as the dimension of the TDPCA-SVM,
TDPCA-MLDA and Fisher subspace increases there is an
exponential decrease in the amount of total discriminant infor-
mation described by the corresponding principal components.

C. Recognition Rates in Gender Experiments

In this section, we have compared the effectiveness of the
tensor principal components ranked according to the spectral
variance, Fisher criterion and TDPCA techniques (section V)
on recognition tasks. The 10-fold cross validation method is
used to evaluate the classification performance of the tensor
subspaces. In these experiments we have assumed equal prior
probabilities and misclassification costs for both groups. We



(a) (b)

Fig. 5. (a) Amount of total discriminant information calculated in equation
(41) and explained by TDPCA-SVM and Fisher tensor principal components
for gender experiment for Smpca

1 subspace. (b) Analogous, but now using
Smpca
2 subspace and including the TDPCA-MLDA.

consider the tensor subspaces Smpca1 and Smpca2 , as defined
in section VI-A, and the ranking techniques to sort the cor-
responding basis. Generically, let B̃mpca the obtained sorted
basis. Then, we take the sequence of subspaces B̂j ⊂ B̃mpca,
where B̂1 contains only the first tensor component of B̃mpca;
B̂2 contains the first and second tensor principal components
of B̃mpca and so on. Given a test observation Xt ∈ D, it
is projected in the subspace B̃mpca through expression (15),
generating a tensor Yt . We perform the same operation
for each class mean Xi generating the tensor Yi. Next, we
compute the Mahalanobis distance from Yt to Yi to assign
that observation to either the male or female groups. That is,
we have assigned Yt to class i that minimizes:

dki (Yt) =

k∑
j=1

1

λj
(Yt;j −Yi;j)

2 (42)

where λj is the corresponding spectral variance, k is the
number of tensor principal components retained and Yt;j is the
projection of tensor Yt in the jth tensor component (the same
for Yi;j). In the recognition experiments, we have considered
different number of tensor principal components (k =
1, 5, 50, 100, 200, 400, 800, 1000, 1200, 1400, 1800, 2000) to
calculate the recognition rates of the corresponding methods
of selecting principal components.

Figure 6 shows the average recognition rates of the 10-
fold cross validation of the gender experiments using the
FEI database with the considered subspaces (be careful about
the non-uniform scale of the horizontal axis). Figure 6.(a)
shows that for the smallest numbers of components considered
(1 ≤ k ≤ 5) the Fisher criterion achieves higher recognition
rates than the other ones for Smpca1 . However, when taking
30 < k < 100 the TDPCA-SVM approach performs better
than Fisher and spectral methods. For k ∈ [100, 400] the Fisher
criterion and TDPCA-SVM perform close to each other and
they outperform all the others selected tensor subspaces. The
recognition rates in all the experiments reported in Figure 6.(a)
fall into the range [0.7, 0.99] with the maximum achieved by
the Fisher method for k ≥ 800. In the case of Smpca2 subspace,
we can observe in Figure 6.(b) that the Fisher outperforms
the other ones for 1 ≤ k < 50. Then, the TDPCA-SVM
recognition rates equal the Fisher accuracy for 50 < k < 100,

while for 100 < k < 400 the TDPCA-SVM is the best one.
In the range 400 < k < 800 both TDPCA-SVM and TDPCA-
MLDA achieve the same accuracy and they outperform the
counterparts in this interval. Finally, for 800 < k ≤ 2000 the
Fisher criterion becomes the best among all the other methods
again.

(a) (b)

Fig. 6. (a)-(b) Average recognition rates for Smpca
1 (Smpca

2 , for (b)) com-
ponents selected by the largest spectral variances, TDPCA-SVM, TDPCA-
MLDA, and Fisher criteria.

When comparing the plots of Figure 6.(a)-(b) we observe
that the Fisher criterion gets better recognition rates for the
smallest subspace dimensions (k ≤ 5). Then, it is clearly out-
performed for the TDPCA in some closed interval [k1, k2] and,
finally, the Fisher criterion achieves the highest recognition
rates, or is equivalent to TDPCA, for k2 ≤ k ≤ 2000. The
values for k1 and k2 are given on Table I.

Figure k1 k2
6.(a) 32 100
6.(b) 100 800

TABLE I
TABLE FOR THE INTERSECTION POINTS k1 AND k2 .

The Figures 6.(a)-(b) show that the spectral is, in general,
outperformed by the other methods for low values of k. Then,
its recognition rates increases and it achieves the highest
performance with k = 2000 as we can observe in Figures
6.(a)-(b). We must be careful about the fact that the spectral
is the only unsupervised method considered in this paper.
This fact impacts the recognition rates because there is not
incorporation of prior information in the spectral process for
ranking tensor components. Besides, since the spectral method
works with the covariance structure of all the data its most
expressive components, that is, the first principal components
with the largest (estimated) variances, are not necessarily the
most discriminant ones. This fact can be visualized in Figure
7 which shows the tensor samples from the FEI database
projected on the first two principal components selected by
spectral for Smpca2 and selected by the TDPCA-SVM for the
same subspace. A visual inspection of this figure shows that
spectral (Figures 7.(a)) clearly fails to recover the important
features for separating male from female samples if compared
with the TDPCA-SVM result pictured on Figure 7.(b). This
observation agrees with the recognition rates reported for
TDPCA-SVM if compared with the recognition rates for
spectral observed on Figure 6.(b), for k < 5.



(a) (b)

Fig. 7. (a) Two-dimensional most expressive subspace identified by spectral
for the gender experiment (male “+” and female “o”) for Smpca

2 . (b) Two-
dimensional most expressive subspace selected by TDPCA-SVM and the
projected samples, for Smpca

2 .

Also, when k > 1000 the Fisher technique achieves recog-
nition rates close to 100% for all reported experiments. For
k < 800 the Fisher, LDA and SVM criteria performs better or
equivalent than the spectral ones for both MPCA subspaces,
being close to each other for 100 ≤ k ≤ 400 in Figure 6.(a)
and for 100 ≤ k ≤ 800 in Figure 6.(b). This observation agrees
with the fact that the total discriminant information pictured
by Figure 5 does not indicate significant differences for these
techniques in the range 50 ≤ k ≤ 400.

The Figures 6.(a)-(b) show that for both the MPCA sub-
spaces the Fisher criterion outperforms the other ones for
1 ≤ k ≤ 5, for classification tasks. If considered the
spectral criterion, such result agrees with the fact that the
first principal components with the largest variances, do not
necessarily represent important discriminant “directions” to
separate sample groups.

D. Tensor Components and Reconstruction

Firstly, we shall study the reconstruction error, which is
quantified through the root mean squared error (RMSE),
computed as follows:

RMSE
(
B̂
)

=

√∑N
i=1 ||XR

i −Xi||2
N

, (43)

where B̂ is the subspace for projection.
The Figure 8 shows the RMSE of the reconstruction process

for the subspace Smpca2 with tensor components sorted accord-
ing to the ranking techniques of section V, generating the basis
B̃mpca2 . To build the plots in Figure 8 we follow the same
procedure explained in the beginning of section VI-C and take
a sequence of principal subspaces B̂j ⊂ B̃mpca2 . Next, each
tensor Xi ∈ D is projected in the subspace B̃mpca2 through
expression (15), generating a tensor Yi which is projected on
each basis B̂j following equation (37). Each obtained tensor
Ŷi is reconstructed, generating the tensor named XR

i above,
following equation (39). Finally, we compute the sequence
RMSE

(
B̂j

)
and plot the points

(
j, RMSE

(
B̂j

))
, j =

1, 5, . . . to obtain each line in Figure 8. We use a non-uniform
scale in the horizontal axis in order to clarify the visualization.

We observe from Figure 8 that the RMSE for spectral is
lower than the RMSE for the other methods. So, while in the

classification tasks the spectral is, in general, outperformed by
the other methods, in the reconstruction the spectral becomes
the most efficient technique. On the other hand, we observe
from Figure 8 that the RMSE for Fisher is higher or equivalent
than the RMSE for the other ranking techniques. Therefore,
the superiority of the Fisher criterion for classification is not
observed for reconstruction tasks.

Fig. 8. RMSE for subspaces B̂j ⊂ Smpca
2 selected by TDPCA-SVM (red

line), TDPCA-MLDA (black line), Spectral (blue line) and Fisher (green line).

In order to visualize these facts we picture in Figure 9
the frontal pose of the reconstruction of a sample of the
FEI database using the first 100 tensor principal components
selected by each one of the considered ranking techniques.
The original image is shown on Figure 2.(a) and the Figures
9.(a)-(d) show the obtained reconstruction when using B̂100 ⊂
Smpca2 . However, we must be careful when comparing the
reconstruction results. In fact, we can visually check the fact
that Figures 9.(a),(b),(d) are more related with the mean image
(Figure 2.(b)) then with the test sample shown in Figure 2.(a)
while Figure 9.(c) is less deviated to the mean. Taking this fact
into account, a visual inspection shows that the reconstruction
based on spectral tensor principal components gives a better
reconstruction, as indicated by Figure 8.

(a) (b) (c) (d)

Fig. 9. Reconstruction using the first 100 tensor principal components of
Smpca
2 selected by: (a) Fisher. (b) TDPCA-MLDA. (c) Spectral. (d) TDPCA-

SVM.

VII. DISCUSSION

The Figures 6.(a)-(b) show that for both the MPCA sub-
spaces the Fisher criterion outperforms the other ones in the
range 1 ≤ k ≤ 5, for classification tasks. If considered the
spectral criterion, such result agrees with the fact that the
first principal components with the largest variances, do not
necessarily represent important discriminant “directions” to
separate sample groups.

In [28] it is emphasised that high-dimensional spaces but
small sample size data leads to side-effects, like overfitting,
which can significantly impact in the generalisation perfor-
mance of SVM. Such observation could explain the decreasing
in the recognition rates observed for the TDPCA-SVM when



increasing the subspace dimension, observed in Figures 6.(a)-
(b).

The spectral technique could be used to estimate the vari-
ance or discriminability of each tensor component for any
dimensionality reduction method that computes the covari-
ance structure for each component space Rmk . For instance,
the three variants of MPCA named RMPCA, NMPCA and
UMPCA as well as the ITA, which is an incremental version
of CSA, could be augmented with the covariance structure
computed by the spectral method.

In this paper we focus on the SVM and MLDA methods
to demonstrate the TDPCA technique. Obviously, any other
separating hyperplane could be used to compute the weights
for ranking tensor components. Besides, the Fisher criterion
could be applied to discriminate important features in any
tensor subspace for supervised classification tasks.

It is important to observe that Fisher and TDPCA techniques
need a training set once they are supervised methods. However,
there are applications for which the patterns that characterizes
different groups are not very clear even for an expertise
(medical imaging analysis, for instance). In these cases, the
spectral technique could be applied to compute the covariance
structure for mining the data set in order to look for the
patterns that most vary in the samples.

The comparison between the recognition rates of TDPCA-
MLDA and TDPCA-SVM shows that the former is equivalent
or outperforms the latter for 1 ≤ k ≤ 5, but TDPCA-SVM
outperforms the TDPCA-MLDA in the range 5 < k < 400,
as observed in Figures 6.(b). For larger values of k the
performance plots of both techniques oscillate and it is not
possible to decide the better one for gender tasks. Both MLDA
and linear SVM seek to find a decision boundary that separates
data into different classes as well as possible. The MLDA
depends on all of the data, even points far away from the
separating hyperplane and consequently is expected to be less
robust to gross outliers [24]. The description of the SVM
solution, on the other hand, does not make any assumption
on the distribution of the data, focusing on the observations
that lie close to the opposite class, that is, on the observations
that most count for classification. As a consequence, SVM is
more robust to outliers, zooming into the subtleties of group
differences [24]. We expect that these differences between
MLDA and SVM will influence the recognition rates of
TDPCA-MLDA and TDPCA-SVM when there is some class
overlap in the original high-dimensional space due to subtle
differences between the sample groups; for example, in facial
expression experiments.

It is worthwhile to highlight the advantages of multilinear
methods against linear (non-tensor) ones for pattern recog-
nition applications. In fact, the non-tensor counterpart of
the MPCA is the PCA technique [24]. To apply the PCA
algorithm we need to vectorize the samples to get vectors
v ∈ Rm1·m2...mn . The large number of features involved is
cumbersome for linear techniques due to the computational
cost and memory requirements. In fact, for PCA we must diag-
onalize a covariance matrix C ∈ Rm1·m2...mn × Rm1·m2...mn

while for MPCA we get covariance matrices Ck ∈ Rmk ×
Rmk . On the other hand, the recognition tasks that we consider
in section VI-C have small training sets if compared to the
number of features involved (‘small sample size problem’:
N � m1 ·m2 . . .mn ). As a consequence, the computational
complexity for linear methods can be reduced due to the fact
that, in this case, the number of independent components gen-
erated by the PCA is (N−1) or less [24]. However, the number
of available projection directions in multilinear methods can
be much larger than the sample number, as we can notice
from expression (14) because m′1 ·m′2 · . . . ·m′n � N , in
general (due to the flattening operation each matrix Φ(k) in
the line 8 of the Algorithm 1 is computed using a number
of N · qi 6=kmi samples which implies that the rank of Φ(k)

is not so far from mk in the applications). This property
reduces the susceptibility of tensor methods to the small
sample size problem which directly increases the performance
of multilinear techniques above PCA based algorithms, as
already reported in [29].

VIII. PERSPECTIVES

In the sections III-VII we have not mentioned the support
manifold for the considered tensors. However, if we return to
tensor field definition in expression (9), the first point to tackle
is the computation of the differential structure behind the
manifoldM. Such task can be performed by manifold learning
techniques based on local methods, that attempt to preserve the
structure of the data by seeking to map nearby data points into
nearby points in the low-dimensional representation. Then,
the global manifold information is recovered by minimizing
the overall reconstruction error. Traditional manifold learning
techniques like Locally Linear Embedding (LLE) and Local
Tangent Space Alignment (LTSA) and Hessian Eigenmaps, as
well as the more recent Local Riemannian Manifold Learning
(LRML), belong to this category of nonlinear dimensionality
reduction methods (see [30] and references therein). The
obtained manifold structure can offer the environment to define
tensor fields through expression (9), and the application of
such machinery for data analysis composes the first topic in
this section.

Next, the development of a weighted procedure for multilin-
ear subspace analysis is discussed in order to incorporate high
level semantics in the form of labeled data or spatial maps
computed in cognitive experiments. However, application of
tensor techniques for data analysis is computational involved
which opens new perspectives in parallel and distributed
memory computing.

A. Manifold Learning and Tensor Fields

In order to implement manifold learning solution, we shall
take the samples of a database D = {p1, . . . , pN} ⊂ RD and
performs the following steps: (a) Recover the data topology
using some similarity measure; (b) Determination of the
manifold dimension m; (c) Construction of a neighborhood
system {Uα}α∈I , where I is an index set and Uα ⊂ Rm; (d)
Manifold learning by computing the local coordinate for each



neighborhood. The output of these steps is a family of local
coordinate systems {(Uα, ϕα)}α∈I , for M, according to the
definition of differentiable manifold given in section II-B.

The local coordinate systems allow to compute also D̃ =
{z1, z2, · · ·, zN} ⊂ Rm, the lower dimensional representation
of the data samples, as well as tangent vectors:

v(pj) =

n∑
i=1

(
vi(pj)

∂ϕα
∂xi

(zj)

)
, (44)

where zj = ϕ−1
α (pj). Moreover, we can define the tangent

space Tp (M) and, consequently, a tensor field computed by
expression (9), with eikk (p) ∈ T kp (M).

To simplify notation, we can return to the generalized matrix
notion and represent a tensor X (p) ∈ T 1

p (M)⊗T 2
p (M)⊗ ·

· · ⊗Tnp (M) as:

[X (p)]i1,i2,···,in = Xi1,i2,···,in (p) . (45)

where we have omitted the reference to the basis B for
simplicity. In the above expression, we use the symbol [·] to
indicate that we are considering the matrix representation of
the tensor field. Therefore, we shall read the above expression
as the element i1, i2, · · ·, in of the matrix representation of the
tensor field X computed at the point p ∈M.

In this scenario, the mode-k product, given in Definition
1, is a local version of the tensor product between tensors
X (p) ∈ T 1

p (M)⊗T 2
p (M)⊗ · · · ⊗Tnp (M) and A (p) ∈

T ′kp (M)⊗T kp (M), defined by:

[(X⊗A) (p)]i1,...,ik−1,ik,i,j1,ik+1,...,in

= Xi1,i2,···,in (p) ·Ai,j1 (p) ,

followed by a contraction in the ik and j1 indices, that means:

[(X×k A) (p)] i1,...,ik−1,i,ik+1,...,in

=

mk∑
j=1

Xi1,···,.ik−1,j,ik+1,···in (p) Ai,j (p) ,

where is = 1, 2, . . . ,ms, and i = 1, 2, ...,m′k. Besides, the
projection matrices Uk ∈ Rmk×m′k are replaced to projection
tensors Uk (p) ∈ T kp (M)⊗T ′kp (M) and the tensor Y in
expression (19) is given by:

Y (p) =
(
X×1 U1T

×2 U2T

...×n UnT
)

(p) , (46)

where:
[Y (p)]j1,j2,···,jn

=
[(

X×1 U1T

×2 U2T

...×n UnT
)

(p)
]
j1,j2,···,jn

, (47)

with Y (p) ∈ T ′1p (M)⊗T ′2p (M)⊗ · · · ⊗T ′np (M), and
dim(T ′kp (M)) = m′k, k = 1, 2, · · ·, n.

The application of the above concepts for data analysis
depends on the following issues: (a) Manifold learning to
build the local coordinate systems {(Uα, ϕα)}α∈I , for M;
(b) Discrete tensor field computation X (pi), i = 1, 2, · · ·, N ;

(c) Local subspace learning technique to perform dimension-
ality reduction to compute the discrete tensor field Y (pi),
i = 1, 2, · · ·, N , given by expressions (46)-(47).

We believe that the tensor field concept together with
the manifold structure offer a powerful framework for data
modeling and analysis. However, fundamental issues are
involved in the steps (a)-(c) above, related to data space
topology/geometry as well as computational complexity of
the necessary algorithms [31].

B. Application of Spatial Weighting Maps for Tensor Spaces

Despite of the well-known attractive properties of MPCA,
its approach does not incorporate prior information in order
to steer subspace computation. Important features may be
discarded if dimensionality reduction is performed without
prior information, which reduces the accuracy of subsequent
data analysis [32]. Such problem has been addressed in the
context of PCA which can be extended to a weighted version
by introducing a spatial weighting value for each pixel i,
1 ≤ i ≤ n, in the image. The spatial weighting vector:

w = [w1, w2, . . . , wn]T (48)

is such that wj ≥ 0 and
∑n
j=1 wj = 1. So, when N samples

are observed, the weighted sample correlation matrix R∗ can
be described by

R∗ =
{
r∗jk
}

=


∑N
i=1

√
wj(xij − x̄j)

√
wk(xik − x̄k)√∑N

i=1(xij − x̄j)2

√∑N
i=1(xik − x̄k)2

 .

(49)
for j = 1, 2, . . . , n and k = 1, 2, . . . , n. The sample correlation
r∗jk between the jth and kth variables is equal to wj when
j = k, r∗jk = r∗kj for all j and k, and the weighted correlation
matrix R∗ is a nxn symmetric matrix.

Let the weighted correlation matrix R∗ have respectively
P ∗ and Λ∗ eigenvector and eigenvalue matrices, that is,

P ∗TR∗P ∗ = Λ∗. (50)

The set of m (m ≤ n) eigenvectors of R∗, that is, P ∗ =
[p∗1,p

∗
2, . . . ,p

∗
m], which corresponds to the m largest eigen-

values, defines a new orthonormal coordinate system for the
training set matrix X and is called here as the spatially
weighted principal components.

The remaining question now is: how to define spatial
weights wj that incorporate the prior knowledge extracted
from the labeled data and can be systematically computed
through the supervised information available? In [32] we
address this task through spatial weights obtained as the output
of a linear learning process, like SVM or LDA, for separating
tasks in binary classification problems. Such approach can be
extended to the tensor case by using the discriminant tensor
W, like performed in section V-B. Then, we consider the abso-
lute values |Wi1,..,in | to compute positive factors W̃j1,j2,···,jn
to weight tensor features. Other statistical techniques based



on image descriptors or even cognitive experiments shall
be considered to define spatial weighting maps for tensor
subspaces computation. Further research must be undertaken
to explore these possibilities for feature extraction and pattern
recognition, specially in the context of face and medical
image analysis where linear counterparts have demonstrated
the capabilities of such weighting maps [32].

C. High Performance Requirements

From a theoretical viewpoint it is proved that many naturally
occurring problems for tensors of order n = 3 are NP-hard
[14]; that is, solutions to the hardest problems in NP can be
found by answering questions about tensors in Rm1×m2×m3 .
For instance, it is demonstrated that the graph 3-colorability is
polynomially reducible to the tensor eigenvalue problem over
R (given X ∈ Rm×m×m find a nonzero vector x ∈ Rm and
λ ∈ R such that

∑m
i,j=1 Xijkxixj = λxk, k = 1, 2. . . . ,m).

Thus, deciding tensor eigenvalue over R is NP-hard. Finding
the best rank-1 tensor decomposition is also an NP-hard
problem [33]. Therefore, while very useful in practice, tensor
methods present important computational challenges in the
case of big tensors.

Hence, high performance algorithms have been proposed in
order to address the computation requirements behind tensor
operations. For instance, in [18] it is proposed a distributed
memory parallel algorithm and implementation for computing
the Tucker decomposition [10] of general dense tensors. The
algorithm casts local computations in terms of specific routines
to exploit optimized, architecture-specific components with the
aim of reducing inter processor communication during data
distributions and corresponding parallel computations.

In general, the tensor subspace learning and decomposition
depend on intermediate products whose size can be much
larger than the final result of the computation, referred to
as the intermediate data explosion problem (computation of
matrix Φ(k) for MPCA). Also, the entire tensor needs to
be accessed in each iteration, requiring large amounts of
memory and incurring large data transport costs. Besides, in
some operations (like mode-k flattening in Definition 4), the
tensor data is accessed in different orders inside each iteration,
which makes efficient block caching of the tensor data for
fast memory access difficult if the tensor data is not replicated
multiple times in memory.

In the specific cases of the techniques discussed in this
paper, the asymptotic analysis is very useful to give the notion
of the amount of required computation. Since MPCA itera-
tively compute the solution we can perform the computational
complexity through the analysis of one iteration [11]. For
simplicity, it is assumed that m1 = m2 = . . .mn = m. The
most demanding steps in terms of floating-point operations are
the formation of the matrix Φ(k) , the eigen-decomposition,
and the computation of the multilinear projection Ỹi. The
corresponding computations complexities are given, respec-
tively, by: O

(
N · n ·m(n+1)

)
, O

(
m3
)

and O
(
n ·m(n+1)

)
.

Therefore, if m ≥ 3 we get a computational complexity of
O
(
N · n ·m(n+1)

)
for MPCA. So, MPCA faces a compu-

tational bottleneck because the computational requirements
increase exponentially with the dimension n. From the view
point of memory requirements it should be noticed that all the
computation can be incrementally performed by reading Xi

sequentially from the disk. Therefore, the memory require-
ments is limited by the number of elements of each tensor
Xi, given by O (

∏n
i=1mi).

The spectral technique needs the computation of
O (
∏n
i=1m′i) variances and each variance needs n

floating-point operation to be calculated which renders
a computational complexity of O (

∏n
i=1m′i) (see

expression (32)). The computational complexity of the
TDPCA-MLDA and TDPCA-SVM are given by the
computational complexity of MLDA and SVM in the reduced
space Rm′1×m′2×...×m′n , which are given, respectively,
by [34], [35]: O(min(N,

∏n
i=1m′i) ·

∏n
i=1m′i)) and

O(max(N ·
∏n
i=1m′i) · N2). The Fisher criterion depends

on the computation of O (
∏n
i=1m′i) numbers and each one

needs O (N) floating-point operation to be calculated which
renders a computational complexity of O (N ·

∏n
i=1m′i). If

we consider small sample size problems (N �
∏n
i=1m′i)

then we obtain that the computational complexity of spectral
is the lowest one (O (

∏n
i=1m′i)), followed by TDPCA-

MLDA and Fisher (N · O (
∏n
i=1m′i)). The computational

complexity of TDPCA-SVM is the highest one, given by
(N2 · O (

∏n
i=1m′i)). If m = min {m′i; i = 1, 2, ·, ·, ·, n},

then all the above results led to a computational complexity
that depends on mn and, like MPCA, increase exponentially
with the tensor order n.

Despite of the solution in high performance computing
already found in the literature [36], we still need the devel-
opment of software architectures exploring new possibilities
in hardware and theoretical developments to address the men-
tioned bottlenecks in order to make big tensor decomposition
practical as well as scalable.

IX. CONCLUSIONS

In this paper, we review subspace learning, dimensionality
reduction, classification and reconstruction problems in tensor
spaces. We discuss these problems and show their particular
solution in the context of MPCA. In the specific area of pattern
recognition, we review advanced methodologies for tensor dis-
criminant analysis. The problem of ranking tensor components
to identify tensor subspaces for separating sample groups is
focused on the context of statistical learning techniques.

We discuss the mentioned problem using the traditional
algebraic formulation of tensors. However, we consider the
geometric approach for tensor fields to discuss opened issues
related to manifold learning and tensors. High-dimensional
modeling is becoming challenging across the data-based mod-
eling community because of advances in sensor and storage
technologies that allow the generation of huge amounts of
data related to complex phenomena in society and Nature.
Tensor techniques offer a structure for data representation and
analysis, as already demonstrated in the literature. However,
we must pay attention in some aspects when considering



tensor-structured data sets. Tensor-based research is not just
matrix-based research with additional subscripts. Tensors are
geometric objects and the connection between their geometric,
statistics and algebraic theories must be understood in order
to fully explore tensor-based computation for data analysis.
The incorporation of prior knowledge to steer the data mining
tasks and the help of parallel computation were also discussed
as fundamental research directions in this area.
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