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Abstract—Pedestrian detection is a well-known problem in
Computer Vision, mostly because of its direct applications in
surveillance, transit safety and robotics. In the past decade,
several efforts have been performed to improve the detection in
terms of accuracy, speed and feature enhancement. In this work,
we propose and analyze techniques focusing on these points. First,
we develop an accurate oblique random forest (oRF) associated
with Partial Least Squares (PLS). At each node of a decision
tree, the method utilizes the PLS to find a decision surface that
better splits the samples, based on some purity criterion. To
measure the advantages provided by PLS on the oRF, we compare
the proposed method with the oRF based on SVM. Second, we
evaluate and compare filtering approaches to reduce the search
space and keep only potential regions of interest to be presented
to detectors, speeding up the detection process. Experimental
results demonstrate that the evaluated filters are able to discard
a large number of detection windows without compromising
the accuracy. Finally, we propose a novel approach to combine
results of distinct pedestrian detectors by reinforcing the human
hypothesis, whereas suppressing a significant number of false
positives due to the lack of spatial consensus when multiple
detectors are considered. Our proposed approach, referred to
as Spatial Consensus (SC), outperforms all previously published
state-of-the-art pedestrian detection methods.

Keywords-Oblique Decision Tree; Partial Least Squares; Fil-
tering Approaches; High-Level Information; Fusion of Detectors.

I. INTRODUCTION

Since the past decade, pedestrian detection has been an
active research topic in Computer Vision, mostly because of its
direct applications in surveillance and robotics [1]. This task
faces many challenges, such as variance in clothing styles and
appearance, distinct illumination conditions, frequent occlu-
sion among pedestrians and high computational cost.

According to Benenson et al. [1], the most promising
pedestrian detection methods are based on deep learning and
random forest. Despite accurate, deep learning approaches
(commonly convolutional neural networks) require a powerful
hardware architecture and considerable amount of samples
to learn a model. Moreover, the best results associated to
such approaches are comparable with simpler methods [2],
[1]. On the other hand, random forest approaches are able
to run on simple CPU architecture and can be learned with
fewer samples. The increasing number of studies based on
this classifier is due to several advantages that this approach
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presents including low computational cost to test and its design
naturally treats problems with more than two classes [3].

According to the definition of Breiman [4], a random
forest is a set of decision trees, in which the response is a
combination of all tree responses at the forest. We can classify
a random forest according to the type of the decision tree being
considered: orthogonal or oblique. In the former type, each tree
node creates a boundary decision axis-aligned, i.e, it divides
the data selecting an individual feature at a time. The latter
type separates the data by oriented hyperplanes, providing
better data separation and shallower trees [5]. Inspired by
these features, in the first part of this work, we propose a
novel oblique random forest (oRF) associated with Partial
Least Squares (PLS) [6], which is a popular technique to
dimensionality reduction and regression [7], [8].

Even providing an accurate detection, the proposed method
based on oblique random forest leads to a high computational
cost, since each detection window must be projected in each
node at the tree (path from the root to the leaf) to obtain
its confidence. This is a drawback of this class of oblique
random forest. However, filtering approaches can be utilized
to address the referred problem. Filtering approaches are
executed before the feature extraction and classification stage,
and they focus on reducing the amount of data that has to
be processed, allowing the consideration of fewer samples
(detection windows), reducing the computational cost.

Although filtering approaches are effective, it is unclear
which filters are more appropriate according to the detector
employed since there is not a study evaluating this relationship.
Even though similar studies have been performed in previous
works [9], [10], where several techniques to improve the
detection rate were evaluated, to the best of our knowledge,
there is not a comparison among filters in terms of efficiency
and robustness, i.e., the ability of rejecting candidate windows
while preserving the detection rate. This motivated the second
part of our work, where we evaluate and compare filtering
approaches to both reduce the search space and keep only
potential regions of interest to be presented to detectors [11].

While numerous classification methods and optimization
approaches have been investigated, the majority of efforts
in pedestrian detection can be attributed to the improvement
in features alone and evidences suggest that this trend will
continue [2], [1]. In addition, several works show that the
combination of features creates a more powerful descriptor
which improves the detection [7], [9], [12]. Despite the com-



bination of features provide a better discrimination, pedestrian
detection is still dealing with some problems. The existence of
false positives, such as tree and plates, which are very similar
to the human body, is a difficult problem to solve. To address
this problem, previous works employed high level information
regarding the scene to refine the detections [13], [1], [14].

The most recent work regarding high level information,
proposed by Jiang and Ma [14], relies on the following
hypothesis. If two detectors find the same object, given a
specific overlapping area, the window with lower response is
discarded and its confidence multiplied by a weight is added
to the kept window. This is powerful because in the event
of a true positive, the discarded window helps to increase the
confidence of the kept one, while in the case of a false positive,
it contributes to decrease the confidence. However, when the
windows do not overlap, their method keeps both, which might
increase the number of false positives. Aiming at tackling such
limitation, in the third part of this work, we propose a novel
late fusion method called Spatial Consensus (SC) to combine
multiple detectors [15].

According to the experimental results, the proposed oblique
random forest based on PLS (oRF-PLS) achieves comparable
results when compared with traditional methods based on
HOG features. Besides, we demonstrate that a smaller forest
is produced when compare to the oblique random forest based
on SVM (oRF-SVM). Regarding the filtering approaches, we
demonstrate that the evaluated filters are able to discard a
large number of windows without compromising the detection
accuracy (Due to the lack of space, the experimental results
of the filtering approaches are not in this paper). Finally,
regarding the our spatial consensus algorithm, experiments
showed that it outperforms the state-of-the-art, achieving the
best results in all evaluated datasets.

Contributions. The main contributions of this work are the
following. Our first contribution is a novel alternative to
generate the oRF, providing a smaller forest when compared
with the traditional oRF-SVM [6]. Our second contribution is
a detailed study of a series of filtering approaches that provide
a lower computational cost to the detection [11]. Finally, our
last contribution is a novel late fusion approach that enables
to combine multiple detectors improving the detection [15].

The publications achieved with this dissertation are listed
as follows.

1) Jordao, A., de Melo, V. H. C., and Schwartz, W.
R. (2015). A study of filtering approaches for sliding
window pedestrian detection. In Workshop em Visao
Computacional (WVC), pages 1-8.

2) Jordao, A., de Souza, J. S., and Schwartz, W. R. (2016).
Spatial consensus: A late fusion approach to combine
pedestrian detectors. In International Conference on Pat-
tern Recognition (ICPR). Accepted.

3) Jordao, A. and Schwartz, W. R. (2016). Oblique random
forest based on partial least squares applied to pedestrian
detection. In IEEE International Conference on Image
Processing (ICIP). Accepted.

II. METHODOLOGY

In Section II-A, we introduce the steps to build the the
oblique decision tree associated with the PLS and SVM. Then,
in Section II-B, we present our proposed late fusion algorithm
to combine multiple detectors.

Regarding the filtering approaches (The Fast), the following
filters were used in our evaluation: entropy filter, magnitude
filter, random filtering [8], and saliency map based on spectral
residual [16]. Due to the lack of space, the description of the
filtering approaches is not in this paper. A detailed discussion
regarding the filtering approaches can be found in [11].

A. Oblique Random Forest with PLS (The Good)
This section starts by describing the framework to build an

oblique decision tree. Afterwards, we describe how to employ
the PLS and SVM with the oblique random forest, respectively.

The steps performed to construct the oblique decision trees
composing the oRF are the following. First, we employ feature
selection on the data received by the tree. As noticed by
Breiman [4], this technique ensures diversity between the trees,
presenting an important contribution to improve the accuracy.
Second, a starting node (root), Rj, is created with all data. The
creation of a node estimates a decision boundary (hyperplane)
to separate the presented samples according to their classes.
Third, the data samples are projected onto the estimated
hyperplane and a threshold τ is applied on its projected values
splitting the samples between in two children (Rjr, Rjl). The
samples below this threshold are sent to the left child, Rjl,
and samples equal or above to the threshold are sent to its
right child, Rjr. This procedure is recursively repeated until
the tree reaches a specified depth or another stopping criterion.

To estimate the threshold that better separates the data
samples, we employ the gini index as quality measure. The
gini index is computed in terms of

∆L(Rj , s) = L(Rj)−
| Rjls |
| Rj |

L(Rjls)−
| Rjrs |
| Rj |

L(Rjrs),

(1)
where L(Rj) =

∑K
i=1 p

j
i (1 − pji ), s ∈ S (S is a set of

thresholds), K represents the class number and pji is the ratio
of class i at the node j. We choose gini index because it
produces an extremely randomized forest [3].

Once the trees have been learned, given a testing sample
v, each node sends it either to the right or to the left child
according to the threshold applied to the projected sample.
For a tree, the probability of a sample to belong to class
c is estimated combining the responses of the nodes in the
path from the root to the leaf that it reaches at the end.
The prediction of the random forest for a given sample v
is performed by aggregating the predictions of the trees by
arithmetic average.

Specifically, to build each node in an oblique decision tree
associated with PLS, the samples received by a node have
their dimension reduced to a latent space p-dimensional using
the PLS. Then, the best threshold to split the data samples is
obtained using the gini index on the regression values given
by the PLS.



The difference to build the oRF-SVM is that the received
data samples do not have their dimensionality reduced and a
linear SVM is learned at each tree node. The remaining of the
process is the same. This way, the approaches can be compared
only in terms of better data separation and generalization.

B. Spatial Consensus (The Better)

This section describes the steps of our proposed algorithm
to combine multiple detectors iteratively. Using the responses
coming from these detectors, we weight their scores, giving
more confidence to candidate windows that are more likely
to belong to a pedestrian (our hypothesis is that regions
containing pedestrians have a dense concentration of detection
windows from multiple detectors converging to a spatial
consensus) and eliminating a large number of false positives.

The first issue to be solved when performing detector
response combination (late fusion) is to normalize the output
scores to the same range because different classifiers usually
produce responses in a different ranges. For instance, if
the classifier used by the ith detector attributes a score of
[−∞,+∞] to a given candidate window and the classifier of
the jth detector attributes a score between [0, 1], the scores
cannot be combined directly. To address this problem, we
employ the same procedure used by [14] to normalize the
scores. The procedure is described as follows.

First, we fix a set of recall points, e.g, {1, 0.9, 0.8, ..., 0}.
Then, for each detector, we collect the set of scores, τ , that
achieve these recall points. Finally, we estimate a function that
projects τj onto τi (details in Section V). After normalizing
the scores to the same range, we combine the candidate
windows of different detectors as follows. Let detroot be the
root detector from which the window scores will be weighted
based on the detection windows of the remaining detectors
in {detj}nj=1. For each window wr ∈ detroot, we search for
windows wj ∈ detj that satisfies a specific overlap according
to the Jaccard coefficient given by

J =
area(wr ∩ wj)

area(wr ∪ wj)
, (2)

where wr and wj represent windows of detroot and detj ,
respectively. Finally, we weight wr in terms of

score(wr) = score(wr) + score(wj)× J. (3)

The process described above is repeated n times, where n is
the number of detectors besides the root detector. Algorithm
1 represents the aforementioned process. Regarding the com-
putational cost, the asymptotic complexity of our method is
denoted by

O(cwroot ×
n∑

j=1

cwj) = O(cwroot × p) = O(cw2),

where cwroot is the number of candidate windows of detroot,
cwj denotes the number of detection windows of the jth detec-
tor and p is the amount of all candidate windows in {detj}nj=1.
Similarly, the approach proposed by [14] (weighted-NMS
method) presents complexity of O(cw log cw+cw2). Although

Algorithm 1: Spatial Consensus
input : Candidate windows of detroot and {detj}nj=1

output: Updated windows of detroot
1 for j ← 1 to n do
2 project detj score to detroot score;
3 foreach wr in detroot do
4 foreach wj in detj do
5 compute overlap using Equation 2;
6 if overlap >= σ then
7 update wr score using Equation 3;
8 end
9 end

10 if wr does not presents any matching then
11 discard wr;
12 end
13 end
14 end

both methods present a quadratic complexity, p is extremely
small because the non-maximum suppression is employed
for each detector before presenting the candidate windows to
Algorithm 1 (see Section V), which renders the computational
cost of both our Spatial Consensus method and the baseline
approach [14] to be negligible when compared with the
execution time of the individual pedestrian detectors.

Removing the dependency of root detector. According to the
algorithm described above, the execution of the SC algorithm
requires the selection of a root detector. To address this
restriction, we propose a generation of a “virtual” root detector,
referred to as virtual root detector. The idea behind building
this virtual root detector is to increase the flexibility of the
algorithm – this way, we do not need specify a particular
pedestrian detector as the input to the SC algorithm.

To generate windows for the virtual root detector, let us
consider the set of detectors {detj}nj=1. For a detection
window wj

i ∈ detj with dimensions (x, y, width, height), we
search for overlapping windows in the remaining detectors
(wl

i, l = 1, 2, ..., k) to create a set of windows that will be
used to generate a single window belonging to the detvr using
wvr

i = 1
k

∑k
l=1 w

l
i, where k is the number of overlapping

windows to the window wj
i . Finally, we assign a constant C

(for instance, C = 1) to this novel window. This constant
contains the score of this window and its value will be updated
after executing the SC algorithm described earlier. Once the
windows of the virtual root detector had been generated, we
can execute the same SC algorithm.

III. EXPERIMENTAL RESULTS

To quantify the detection performance, we employed the
standard protocol evaluation used by state-of-the-art called
reasonable set (a detailed discussion regarding this protocol
of evaluation can be found in [2], [1]), where is measured the
area under the curve on the interval from 10−2 to 100 false



positive per image, in which lower values are better. However,
in some experiments, we report the results using the interval
from 10−2 to 10−1. The area under curve in this interval
represents a very low false positive rate (that is a requirement
to real applications, e.g., surveillance and transit safety), this
way, we evaluate the methods under a more rigorous detection.

IV. OBLIQUE RANDOM FOREST EVALUATION

This section details the experimental setup utilized to val-
idate our proposed oblique random forest as well as the
comparison between our method with the baselines. At the
calibration stage of the oRFs parameters, we utilized the TUD
pedestrian dataset as validation set [17].
Feature Extraction. We extract the HOG descriptor for
each detection window following the configuration proposed
by [18], with blocks of 16× 16 pixels and cells 8× 8 pixels.
This configuration results in a descriptor of 3780 dimensions.
We are using these 3780 features during the feature selection
process (see Section II-A), for both the oblique random forest
to provide a comparison not influenced by the features.
Tree Parameters. To tune the parameters for both oRFs,
we adopted the grid search technique where each parameter
is placed as a dimension in a grid. Each cell in this grid
represents a combination of the parameters.

In this experimental validation, we focus on the impact of
two aspects in our forests: numbers of trees and number of
feature used in the feature selection stage. We are using the
term nF to denote the number of features randomly selected
to create a tree node (as explained in Section II-A). To both
oRFs, the maximum depth allowed at the growing stage of the
tree is 5. In some preliminary experiments, we noticed that
increasing the depth, the gain does not improve considerably.
Therefore, we fixed this depth, which reduces considerably the
search space in the grid search technique. On the validation
set, the best parameters to oRF-SVM were using 200 trees
and nF = 400, where it achieved a miss rate of 41.67%. The
oRF-PLS obtained the best results with 40 trees and nF =
550, presenting a miss rate of 38.18%.
Influence of the Number of Trees. Table I shows the miss rate
obtained by each approach on the validation set, as a function
of the number of trees composing the forest. According to
the results, with the same number the trees (except 200),
the detection accuracy of oRF-PLS outperforms the oRF-
SVM. Furthermore, to achieve competitive results, the oRF-
SVM demands a larger number of trees, which renders the
computational cost extremely high. In addition, by computing
the standard deviation of the miss rate, we can notice that
the oRF-SVM is more sensitive to variation of the number of
trees to presenting a standard deviation of 10.58 percentage
points (p.p) while our proposed method presented a standard
deviation of 2.42 p.p. Thus, the use of PLS to build oRF is
more adequate than use the SVM once it produces smaller and
more accurate forests.
Time Issues. In this experiment, we show that the proposed
oRF-PLS is faster than the oRF-SVM. For this purpose, we

TABLE I
MISS-RATE (LOW IS BETTER) ON THE TUD PEDESTRIAN DATASET IN

FUNCTION OF THE NUMBER OF TREES.

Number of trees
8 16 24 32 40 200

oRF-PLS 45.5 44.3 42.1 43.3 38.2 44.7
oRF-SVM 77.2 54.4 58.3 62.6 55.6 41.7

performed a statistical test between the time (in seconds) to
run the complete pipeline detection on an image of 640×480
pixels. To each approach, we execute the pipeline 10 times
and compute its confidence interval using 95% of confidence.
The oRF-PLS obtained a confidence interval of [270.2, 272.44]
against [382.72, 392.72] achieved by the oRF-SVM. As can be
observed, the confidence intervals does not overlap, showing
that the methods present statistical differences regarding the
execution time, being the proposed method faster.

Comparison with Baseline Approaches. Our last exper-
iment regarding the oblique random forest compares the
proposed oRF-PLS with traditional baselines pedestrian de-
tectors [2], [1]. Our proposed method outperforms common
classifiers used in pedestrian detection, e.g., linear SVM
(HOG+SVM [19] and QDA (PLS detector [7]) in 8.72 and
2.83 p.p. respectively, on the interval 10−2 to 100. When
evaluated on the interval 10−2 to 10−1, our method outper-
formed the HOG+SVM and the PLS detector in 13.11 and
4.61 p.p. respectively. Moreover, the oRF-PLS outperforms
a robust partial occlusion method, HOG+LBP [19], in 1.84
and 6.28 p.p to the area in 10−2 to 100 and 10−2 to 10−1,
respectively. According to the results, the proposed oRF-PLS
is able to obtain equivalent (or better) results when compared
with traditional classifiers.

V. SPATIAL CONSENSUS EVALUATION

This section first evaluates the steps required to execute
the spatial consensus algorithm. Finally, compares our method
with the baseline and state-of-the-art pedestrian detectors.

Preparing the input detectors. Initially, we need to define
detroot and a set of detectors {detj}nj=1. Due to the large
number of pedestrian detectors currently available, there are
many options to determine both detroot and {detj}nj=1 [1],
[2]. In this work, we define these detectors as the eleven best
ranked pedestrian detectors on the INRIA person dataset. The
best ranked detector, the SpatialPolling [20], was set to be the
detroot and the remaining detectors were set to {detj}nj=1.
Once specified {detj}nj=1, the order of the set members does
not affect the result, since all detectors of {detj}nj=1 must be
evaluated to discard a window of detroot.

At the score calibration step, we use the INRIA person
dataset to acquire the set of scores τ . Then, to map the
{detj}nj=1 score to detroot score, we consider a linear regres-
sion. From the scatter plot between τroot × τj , we observed
that a linear regression is a suitable choice to perform this
mapping. However, once the scores are calibrated, we use the
estimated regression on the other datasets.



Spatial Consensus vs. weighted-NMS. In this experiment,
aiming a fair comparison, we report the results provided by
better combination of detectors in each dataset, to both the
algorithms. In addition, using the INRIA Person dataset, we
estimated the best thresholding σ for the Jaccard coefficient
as 0.6 for both algorithms.

The weighted-NMS achieved the best results on the INRIA
dataset when two detectors are added, Sketch Tokens [21] and
Roerei [22], outperforming the state-of-the-art by 1.48 p.p.
On the other hand, the best result of our approach is achieved
adding nine detectors, improving the state-of-the-art in 2.77
p.p. (8.45%). On the ETH dataset, the weighted-NMS method
achieved its best result, 35.19%, by combining Roerei and
Franken [23] detectors. This combination was not enough to
outperform the TA-CNN [24] (current state-of-the-art on this
dataset with 34.98%). On the other hand, our approach reached
best results adding, beyond these two detectors, the LDCF [25]
detector, where we overcome the state-of-the-art in 1.37 p.p.

The best result of the weighted-NMS on the Caltech dataset
was achieved combining the Roerei and Franken detectors.
This combination increased the detroot miss rate from 29.24%
to 40.54%. On the other hand, we achieved best results adding
eight detectors and decreasing the detroot miss rate from
29.24% to 23.16%. In addition, the use of our approach
reduces the difference to most recent state-of-the-art detector
(CompACT-Deep [26] - 12.43%) from 16.81% to 10.73%.

Influence of a less accurate detector. To evaluate the robust-
ness of our method to the addition of a detector with high false
positive rate, we introduced the HOG detector [18] (miss rate
of 46%) on the INRIA person dataset. When it was inserted
into {detj}nj=1, the miss rate achieved by our method went
from 7.95% to 8.90% and to the weighted-NMS the result,
was from 14.11% to 16.78%, demonstrating that our algorithm
is more robust to less accurate detectors.

Comparison with the state-of-the-art. In this experiment,
we compare the results of the proposed SC algorithm with
state-of-the-art methods. To perform a fair comparison, we
considered the results reported by the authors in their works.

Figures 1(a) and (b) show that our algorithm outperforms
the state-of-the-art on the INRIA and ETH datasets achieving
miss-rate of 7.95% and 33.61%, respectively. Furthermore,
Figure 1(c) shows that our method achieves significant results
on the Caltech dataset with miss rate of 19.84%.

Domain Knowledge. This experiment evaluates the impact of
using domain knowledge regarding the dataset to assign the
detectors to detroot and to {detj}nj=1, i.e., instead of follow-
ing the ordering based on the INRIA dataset (as discussed
in the Section II-B), we attribute the top ranked detector
to detroot and the remaining ten best ranked detectors to
{detj}nj=1, according to results achieved on that particular
dataset. We call this procedure Domain Knowledge (SC+DK).

Given the definition of the SC+DK, we now describe the
detailed configuration where we achieved the best results on
the ETH and Caltech dataset, respectively. To the former
dataset, we specified the TA-CNN [24] detector as the detroot

and the {detj}nj=1 was composed of the SpatialPooling and
Franken [23] detectors. To the latter, the detroot was the
CompACF-Deep detector [26] and the {detj}nj=1 was com-
posed of the DeepParts [27] and CheckerBoards+ [28].

According to the results shown in Figure 1(b) and 1(c),
the use of the aforementioned extra knowledge, allowed our
method to outperform all previously published state-of-the-
art methods in 7.66 and 0.32 p.p. on the ETH and Caltech
datasets, respectively. Such improvements are even more em-
phasized when considering the miss-rate from 10−2 to 10−1,
where we outperformed the state-of-the-art in 11.15 and 2.84
p.p. on the ETH and Caltech datasets, respectively.
Virtual Root Detector. This experiment evaluates the pro-
posed approach to remove the requirement of specify a root
detector. Different from techniques that we presented so far,
which use the best pedestrian detector as root detector, in
the virtual root detector approach, referred to as SC+VR, we
utilize it only to calibrate the scores.

Regarding the results presented in Figure 1, we can notice
that the SC+VR outperforms the SC approach (where an initial
root detector must be defined) in 0.5 and 3.32 p.p. to INRIA
and Caltech, respectively. To the ETH dataset, the miss rate
increased 0.13 p.p., in relation to SC approach.

According to these results, we conclude that the virtual root
detector enables the SC algorithm has more flexibility, without
compromise the accuracy.
Time issues. As described in Section II-B, the complexity of
our method is equal to the weighted-NMS. Although quadratic,
both methods run in real time since the traditional NMS is
performed for each individual detector before starting the al-
gorithms. Besides, the values of proot and p are corresponding
to the number of pedestrians at the scene, which is usually
very low. To verify that these values are extremely small, we
collected the average of people per image in the INRIA person
and the ETH (seq#2) datasets. The values are 3.3 and 43.6,
respectively (not large enough to impact the computational
time of our algorithm).

Since the value of p is small, our approach is able to run
in real time. To show that, we computed the time average to
execute of the SC on an image 640 pixels, using 10 detectors to
compose {detj}nj=1 and without any parallelization technique.
The SC runs in 67 milliseconds, on average (this experiment
was executed 10 times). Additionally, the most recent survey
of computation cost at the detection pedestrian [29], showed
that the faster detector presenting high accuracy is able to
process 15 frames per second on a GPU [29]. Therefore, we
conclude that our method is able to improve the detection
results and could be fast to execute, even though our algorithm
requires results of individual detectors.

VI. CONCLUSIONS

This work faces the problem of finding pedestrian in images.
Throughout this work, different methods are proposed and
analyzed to address three main challenges listed below.

The first one, it is to distinguish humans from background
features. To this end, we propose a novel oblique random for-
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Fig. 1. Comparison of our proposed approach with the state-of-the-art. Results using the miss-rate of 10−2 to 100 (standard protocol).

est. We compare the proposed method with the oblique random
forest based on SVM. Our experimental results demonstrated
that a smaller forest is generated when using the PLS instead
SVM, which is ideal to such type of random forest since
it presents high computational cost. Besides, our method
achieved comparable results when compared with traditional
classifiers employed in the pedestrian detection.

The second one, it is associated with the computational
cost required to provide a faster detection. Our experiments
allowed us to perform a quantitative analysis on the number of
detection windows rejected by the filtering stage. Furthermore,
we demonstrated that each detector has different behavior
(miss rate) according to filter applied.

The last one, focuses on improving the detection using the
high-level information regarding the scene. To this end, we
propose a novel approach to combine results of distinct detec-
tors. The proposed method outperforms the state-of-the-art in
two pedestrian detection benchmarks and achieves comparable
results on the Caltech dataset. Moreover, we showed that with
previous knowledge of the domain, our method outperforms
the most powerful detectors in each dataset.
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