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Abstract—Remote Sensing Images (RSIs) have been used as a
major source of data, particularly with respect to the creation of
thematic maps. This process is usually modeled as a supervised
classification problem where the system needs to learn the
patterns of interest provided by the user and assign a class
to the rest of the image regions. Associated with the nature
of RSIs, there are several challenges that can be highlighted:
(1) they are georeferenced images, i.e., a geographic coordinate
is associated with each pixel; (2) the data commonly captures
specific frequencies across the electromagnetic spectrum instead
of the visible spectrum, which requires the development of specific
algorithms to describe patterns; (3) the detail level of each
data may vary, resulting in images with different spatial and
pixel resolution, but covering the same area; (4) due to the
high pixel resolution images, efficient processing algorithms are
desirable. Thus, it is very common to have images obtained from
different sensors, which could improve the quality of thematic
maps generated. However, this requires the creation of techniques
to properly encode and combine the different properties of
the images. Therefore, this paper proposes a boosting-based
technique for classification of regions in RSIs that manages
to encode features extracted from different sources of data,
spectral and spatial domains. The new approach is evaluated
in an urban classification scenario and a coffee crop recognition
task, achieving statistically better results in comparison with the
proposed baselines in urban classification and better results at
some baselines for the coffee crop recognition.

Keywords-Multimodal Classification; Remote Sensing; Data
Fusion.

I. INTRODUCTION

Over the years, there has been a growing demand for
remotely-sensed data. Specific objects of interest are being
monitored with earth observation data, for the most varied
applications. Some examples include ecological science [1],
hydrological science [2], agriculture [3], and many other
applications.

RSIs have been used as a major source of data, particularly
with respect to the creation of thematic maps. A thematic map
is a type of map that displays the spatial distribution of an
attribute that relates to a particular theme connected with a
specific geographic area. This process is usually modeled as
a supervised classification problem where the system needs to
learn the patterns of interest provided by the user and assign
a class to the rest of the image regions.

In the last few decades, the technological evolution of
sensors has provided remote sensing analysis with multiple
and heterogeneous image sources, which can be available

for the same geographical region: high spatial, multispectral,
hyperspectral, radar, multi-temporal, and multiangular images
can today be acquired over a given scene.

Typically, these sensors are designed to be specialists in
obtaining one or few properties from the earth surface. This
occurs because each sensor, due to technical and cost lim-
itations, has a specific observation purpose and operates at
different wavelength ranges to achieve it. Since the sensors are
specialists, they carry different and complementary informa-
tion, which can be combined to improve classification of the
materials on the surface and consequently increase the quality
of the thematic map. In this scenario, it is essential to use a
more suitable technique to combine the different features in
an effective way.

The remote sensing community has been very active in
the last decade in proposing methods that combine different
modalities [4]. In addition to support the research on this
important topic, every year since 2006, the IEEE Geoscience
Remote Sensing Society (GRSS) has been developing a Data
Fusion Contest (DFC), organized by the Image Analysis and
Data Fusion Technical Committee (IADFTC), which aims at
promoting progress on fusion and analysis methodologies for
multisource remote sensing data. Also, other data fusion chal-
lenges have been proposed more recently by the International
Society for Photogrammetry and Remote Sensing (ISPRS),
devoted to the development of international cooperation for the
advancement of photogrammetry and remote sensing and their
applications. All the effort to reach advance in this research
area shows the high interest and timely relevance of the posed
problems.

Multimodal classification is a challenging task for several
reasons. First, the data are generated by very complex systems,
driven by numerous underlying processes that depend on the
sensor used and a large number of variables which sometimes
we have no access, e.g., the atmospheric constituents cause
wavelength-dependent absorption and scattering of radiation,
which degrade the quality of images. Second, combining
heterogeneous datasets such that the respective advantages of
each dataset are maximally exploited, and drawbacks sup-
pressed, is not an evident task. Third, as pointed by [5], it
is very difficult to conclude what is the best approach for
multimodal data fusion, since it depends on the foundation of
the problem, the nature of the data used and the source of
information utilized.



There are also several research challenges in computational
scope when working with RSI classification such as: (1)
remote sensing data is inherently big, even at 250 m coarse
spatial resolution, Moderate-Resolution Imaging Spectrora-
diometer (MODIS) product can contain more than 20 millions
of pixels, jointly with a time series of five thousand observa-
tions. Most machine learning models described as a state of
the art (e.g., Deep Neural Networks, non-linear Support Vector
Machines), can not handle with the magnitude of this data;
(2) segmentation scale, accompanied by the large amount of
information at the level of object in very high spatial resolution
images, segmentation algorithms have difficulty in defining the
optimum scale to be used; (3) pixel mixture and dimensionality
reduction, images with high spectral resolution must be prepro-
cessed due to problems such as high dimensionality, treatment
of noise and corrupted bands, mixture of pixels due to the low
spatial resolution; (4) efficiency, even collecting information
from various sensors, efficiency and capability to process that
amount of data is desired or even crucial depending on the
application. In applications such as tsunami or earthquakes,
the data must be analyzed in near real time, and the difference
of a few seconds can save hundreds or even thousands of lives
in a seaquake.

In this work, we are interested in the use of RSI particularly
with respect to the creation of thematic maps by exploiting
multi-sensor data. So, in this work, we propose an approach
for the classification task, projected to receive two images,
over the same geographic region, with different domains as
input: an image with very high spatial (V HS) resolution and
another one with multi/hyperspectral (HS) resolution (Figure
1).

Hiperspectral

Very High Spatial

Fig. 1. An illustration of multimodal data acquisition. The figure shows two
different platforms: a plane and a satellite; carrying sensors which extract
different information (spectral and spatial) over the same region, creating a
multimodal perspective.

Our approach is based on the SAMME Adaboost method
[6], in which we created a framework based on a supervised
learning scheme, divided into five steps: (1) data acquisition,
the framework receives the VHS and HS images, acquired by
different sensors but over the same geographic area as input;

(2) object representation, the VHS image is segmented into
regions using a segmentation algorithm while the HS image
is analyzed by the spectral signature of each pixel; (3) feature
extraction, feature vectors are extracted from the segmented
regions of VHS using various descriptors and the spectral
signatures are obtained by different dimensionality reduction
methods; (4) training, using the features extracted from both
domains and diverse learning methods a set of weak learners
is created, which at every boosting iteration once is selected
to compose the final strong classifier; (5) prediction, given
the unseen samples and the set of selected weak learners, a
predict for every new sample is made regarding to the linear
combination of the weak learner predictions. In this approach,
we exploit the inherent feature selection of the Adaboost for
the combination of different modalities, as a natural process.

To summarize, the main contribution of this work is an
approach capable of combining different modalities of sensor
data by using the inherent feature selection of the boosting-
based strategy.

This paper is organized as follows: Section II is an overview
of the current multi-source remote sensing data fusion tech-
niques. Section III presents details of the proposed approach.
Section IV shows the corresponding evaluation protocol and
experimental results of the proposed method. We conclude this
work in Section V with some remarks and the future directions
in the research.

II. RELATED WORK

In data fusion, each data source describing the same scene
and objects of interest can be defined as a modality. In remote
sensing image analysis, the different modalities often represent
a particular data property carrying complementary information
about the surface observed [7].

The joint complementarity exploitation of different remote
sensing sources has proven to be very useful in many ap-
plications of land-cover classification, and the capability of
improving the discrimination between the classes is a key
aspect towards a detailed characterization of the earth [5].
Concerning multisource data, a diversity of fusion techniques
has been proposed in the remote sensing literature, which can
be divided into levels according to the modalities used in the
fusion, as follows:

1) Fusion at subpixel level: Given k modalities datasets,
which usually involve different spatial scales, the modal-
ities are fused at subpixel level using appropriate trans-
forms [8]. These fusions are commonly used in the cases
where the main objective is to preserve the valuable
spectral information from multispectral or hyperspectral
sensors, with low spatial resolution, as an alternative to
pan-sharpening methods which can produce a spectral
distortion [9].
In the subject of proposed works based on spectral un-
mixing for data fusion, the spatial and temporal adaptive
reflectance fusion model proposed in [10], was used
in [11] for combining information from Landsat (30-
m resolution) and MODIS (250-m to 1-km resolution),



and a set of methods for increasing spatial resolution
associated to [12] was used for classification task [13],
[14]. An overview of the majority of nonlinear unmixing
methods used in hyperspectral image processing and
many recent developments in remote sensing are pre-
sented with details in [[15], [16]].

2) Fusion at pixel level: Given k modalities datasets, in
the fusion at pixel level exists a direct pixel correlation
between the modalities, which is used to produce data
fusion. In general, that fusion level attempts to combine
data from different sources in intent to produce a new
modality, which, afterward, could be used for different
applications. Some examples that rely on that case is
pan-sharpening, super resolution, and 3D reconstruction
from 2D views [5]. An evaluation of spatial and spectral
effectiveness of more common pixel-level fusion meth-
ods was realized in [17]. Regarding [17], several pan
sharpening methods have been proposed in the literature
[[18], [19]] primarily based on algebraic operations,
component substitution, high-pass filtering and multi
resolution analysis.
More recently, [20] made an analysis of the different
fusion techniques in images, also applied to remote
sensing at a pixel level, showing that all techniques have
their own limitation when used individually and they
also encouraged the utilization of hybrid systems.

3) Fusion at feature level: Given k modalities datasets,
various features are extracted individually from each
modality, e.g., edges, corners, lines, texture parameters,
followed by a fusion, which involves extraction and
selection of more discriminant attributes. Regarding [4],
one of the new research directions on feature level mul-
timodal fusion are the Kernel methods. At the domain
of remote sensing, there is a considerable number of
studies about kernel methods [21], once they provide an
instinctive way to encode data from different modalities
into classification and prediction models. One of the
first attempts to combine data from different modalities,
using a combination of kernel functions, was realized
by [22], who created a compound kernel by using the
weighted summation of spatial and spectral features
from the co-registered region. Extending the proposition
for more than two sources, a multiple kernel learning
[23] was applied to [24] for combining spatial and
spectral information, to combine optical and radar data
[25], using the same sensor but in different places [26],
also using different optical sensors to change detection
[27].

4) Fusion at decision level: Given k modalities datasets,
an individual process path is made for each modality,
followed by a fusion of the outputs, assuming that the k
outputs combined can improve the final accuracy [28].
In this way, the combination of complementary infor-
mation from different modalities is done through the
fusion of the results obtained considering each modality
independently. There are several ways to combine the

decisions, such as including voting methods, statistical
methods, fuzzy logic-based methods, etc. When the
results are explained as confidences instead of decisions,
the methods are called soft fusion; otherwise, they are
called hard fusion. An example of this type of fusion
was presented in the 2008 [29] and 2009-10 [30] data
fusion contests. [31] used a scheme of weighted decision
fusion, which uses the SVM and the Random Forest for
the probability estimation in the Landsat 8 and MODIS
sensors; [32] made a combination of fusion by feature
level using a graph-based feature fusion method together
with a weight majority voting of outputs from differents
SVM’s for the classification of hyperspectral and Light
Detection and Ranging (LiDAR) data.

The above-described levels do not cover all the possible
fusion methods since input and output of data fusion can
be different for each level of processing. In the most cases,
the fusion procedure is a junction of the four fusion levels
considered previously.

III. BOOSTING-BASED APPROACH

In this work, we aim at exploiting multi-sensor data in a
more general way, using the idea of boosting of classifiers,
based on the SAMME Adaboost method [6].

The choice of an approach based on boosting is related to
the inherent advantages of the strategy and its application in a
multimodal classification of RSIs. Regarding the advantages,
we can highlight: (1) algorithm flexibility, being possible to
combine any method of learning as well extracted features
obtained from different domains; (2) efficiency, when dealing
with RSIs, the use of robust and efficient methods is desired,
due to the complexity of the data (e.g., images with hundreds
of spectral bands, very high spatial resolution) and the high
computational cost for processing; (3) tuning parameters,
unlike most of the robust methods in the literature (e.g.,
SVMs, Neural Networks) that use non-linear models thus
requiring various parameter settings, the boosting approach
uses a combination of weak linear models to create a more
complex function, and requires only a single parameter, the
number of rounds to be trained; (4) well-known algorithm,
in addition to the solid mathematical foundation behind the
method, the literature also indicates successful works using
boosting in remote sensing [33] and for other applications to
computer vision [34].

We create a framework based on a supervised learning
scheme, dealing with different scenarios, regions, and objects,
on the creation of thematic maps for the classification task.
We propose a scheme, with a combination of a pixel, feature,
and decision levels, to handle an amount of information from
different modalities, and combine them for a final decision for
each pixel in the thematic map. Contrary to approaches from
the literature, our method uses the inherent feature selection
of the boosting for the combination of different modalities, as
a natural process.

The proposed method is projected to receive two images
from the same place with different domains as input: an



image with very high spatial resolution and another one with
hyperspectral resolution.

The boosting approach is divided into five main steps:
data input, object representation, feature extraction, training,
predicting. Figure 2 illustrates the proposed framework. We
detail each step next.

Object Representation

Feature Extraction

Hyper Spatial Image Hyperspectral Image

Classification

Segmentation Pixel Spectral Signature

Data Input

Region Based Features Dimensionality Reduction

v1 v2

v4v3

Strong Classifier
Prediction

α = 0.42

α = 0.65 α = 0.92

Weak Classifiers

(2)(1)

Fig. 2. The Proposed Boosting-based approach framework. (1) The proposed
method is projected to receive two images from the same place with different
domains as input: an image with very high spatial resolution and another one
with hyperspectral resolution; (2) the VHS image is segmented into regions
using a segmentation algorithm while the HS image is analyzed by the spectral
signature of each pixel; (3) feature vectors are extracted from the segmented
regions of VHS using various descriptors and the spectral signatures are
projected by using different dimensionality reduction methods; Given the
amount of feature extracted from both domains, the boosting training starts
in (4), where for every round one weak classifier will be chosen to compose
the final strong classifier. The samples which are incorrectly labeled in every
round, have their weight increased and will be focused by the learners in the
next round. The collection of selected weak classifiers are combined in (5) to
build the strong final classifier, which is used to predict the samples of the
test data regarding the confidence of each weak model.

A. Object Representation

The first step is to define the objects to be described
by the feature extraction algorithms. Let IV HS and IHS be
input images with VHS and HS resolutions, respectively. Let
Y t
′

R and Y tR be image labels from training and test data
respectively. In an experimental scenario, YR = Y tR ∪ Y t

′

R ,

where YR is the image labels of the entire dataset. For the
IV HS , we performed a segmentation process over the regions
of Y tR in order to split the entire image into more spatially
homogeneous objects. It allows the codification of suitable
texture features for each part of the image.

Due to the low spatial resolution of the IHS , we consider
the pixel as the unique spatial unit. Anyway, we are more
interested in exploiting the spectral signature of each pixel.

B. Feature Extraction
Concerning IV HS , we have used image descriptors based on

visible color and texture information to encode complementary
features. For the IHS , we exploit dimensionality reduction/pro-
jection properties from the spectral signature in order to obtain
diversity. Notice that feature extraction process requires a
region mapping between spatial and spectral resolutions, since
IV HS and IHS are from different domains.

C. Training
Let R = {ri ∈ R : r1, ..., rn} be a set of regions ri created

by the segmentation process over Y tR. For each region ri we
have a set of features Xi extracted from the IV HS and IHS
images. Let Xtrain = {(X1, y1), ..., (Xn, yn)} be a family of
sets of features extracted from both domains, also refer here
as the training data, where Xi ⊂ Xtrain,∀i, and yi the real
label of the region ri.

Algorithm 1 outlines the steps for the boosting approach.

Algorithm 1 Boosting-Based Approach.

1 Input: Number of rounds T, Number of classes K, and the
training data Xtrain.

2 Initializing: For each region ri, initialize the weights
wi =

1
n , i = 1, 2, ..., n.

3 for t = 1 to T do
4 for each learning algorithm li do
5 Train weak classifiers Ht

li
(x) using Xtrain

regarding to the weights wi
6 Evaluate each Ht

li
(x) on Xtrain, by computing

Errtli (Equation 1)
7 end for
8 Select the weak classifier H∗t with minimum error,

Err∗ = min(Errtli )
9 Compute αt = ln 1−Err∗

Err∗ + ln(K − 1)
10 Update the weights wi = wi ∗ exp(αt|(yi 6= Ht(x)))
11 Normalize the weights wi = wi∑n

i=1 wi

12 end for
13 Output :
14 F(x) = argmax

k

∑T
t=1 α

t|(H∗t = k)

Errtli(H
t
li(Xtrain)) =

n∑
i=1

wi|(yi 6= Ht
li
(X))∑n

i=1 wi
(1)

In initializing phase, we assign for every region ri a weight
wi with same value equal to 1

n , where n is the number of



total regions (Line 2). The strong classifier F (x) is built in a
sequential boosting scheme. Therefore for every round t (Line
3), a set of weak classifiers Ht

li
(x) is trained using all features

in Xtrain regarding to the weights wi (Line 5). Afterwards,
we evaluate every weak classifier in Ht

li
(x), by computing the

accuracy weighted error (Errtli ) on the same set of features
Xtrain (Line 6). Given the amount of the weak classifiers
Ht
li
(x), we select the one evaluated with the minimum error

(Err∗), and compute the coefficient αt at the round t in
concern of the error (Lines 8-9). Thereafter, the regions ri,
which were misclassified at the round t, have their weight wi
updated by a factor of eα

t

, and finally all the regions have
their weights normalized (Lines 10-11).

D. Predicting

In the same matter of the training phase, let R′ = {r′i ∈ R′ :
r′1, ..., r

′
n} be a set of regions r′i created by the segmentation

process over Y t
′

R . For each region ri, we have a set of features
X ′i extracted from the I ′V HS and I ′HS images. So, let Xtest =
{(X ′1), ..., (X ′n)} be a family of sets of features extracted from
both domains, also referred here as the test data, where X ′i ⊂
X ′test,∀i.

Once the strong classifier F (x) is built, and given a new
region r′i, the features X ′i are used to predict the label for
each selected weak classifiers H∗t at every round t, and to
choose the final class k regarding to the maximum argument
of a linear combination of the coefficients αt at the class k
(Eq. 2).

F (x) = argmax
k

T∑
t=1

αt|(H∗t = k) (2)

IV. EXPERIMENTS

A. Datasets

1) Urban Land-Cover: This dataset was proposed in the
IEEE GRSS Data Fusion Contest 20141, provided for the
contest by Telops Inc., Québec, Canada, which involved two
airborne imagery acquired at different spectral ranges and
spatial resolutions: 1) a coarser-resolution Long Wave Infrared
(LWIR) hyperspectral image and 2) fine-resolution visible
(VIS) image. Both airbone data were acquired on May 21,
2013, using two different platforms with a short temporal
gap, covering an urban area near Thetford Mines in Québec,
Canada, which contain residential and commercial building,
roads, vegetation, etc.

In order to perform a supervised learning, the dataset
contains a training map which includes seven different classes:
trees, vegetation, road, bare soil, red roof, gray roof, and
concrete roof. Tables I, II and III show the main information
about the dataset and the distribution of the classes in pixels.
An illustration of the Urban Dataset is showed in Figure 3.

The dataset shows several challenges connected to the
remote sensing multimodal classification: the multiresolution

12014 IEEE GRSS Data Fusion Contest. Online: http://www.grss-ieee.org/
community/technical-committees/data-fusion

(a) VIS Image (b) LWIR hyperspectral (c) Ground Truth Train

(d) VIS Image (e) LWIR hyperspectral (f) Ground Truth Test

Fig. 3. Urban Dataset - IEEE GRSS Data Fusion Contest 2014.

TABLE I
GENERAL INFORMATION - URBAN LAND-COVER - TRAIN.

Visible Image Hyperspectral Image
Width 2830 pixel 564 pixel
Height 3989 pixel 755 pixel

Spatial Resolution 0.2 m 1 m
Bands 3 84

TABLE II
GENERAL INFORMATION - URBAN LAND-COVER - TEST.

Visible Image Hyperspectral Image
Width 3769 pixel 751 pixel
Height 4386 pixel 874 pixel

Spatial Resolution 0.2 m 1 m
Bands 3 84

TABLE III
DISTRIBUTION OF PIXELS PER CLASS.

Classes Train Pixels (%) Test Pixels (%)
Bare soil 7.87 3.38

Road 19.79 55.73
Trees 4.87 6.93

Vegetation 32.61 7.13
Red roof 8.19 9.41
Gray roof 9.42 9.84

Concrete roof 17.21 7.54

between the sources, the multisensor fusion, and also the
complementarity between spectral and thermal data in terms
of information extraction.

2) Coffee Crop Recognition: This dataset is composed
of two satellite-based imagery acquired at different spectral
ranges and spatial resolutions: 1) moderate-resolution imag-
ing spectroradiometer (MODIS) image and 2) high-resolution
visible image. The satellite-based data were acquired on the
following dates: May 21, 2010, and September 24, 2011,
covering a region of coffee cultivation in Patrocı́nio, Minas

http://www.grss-ieee.org/community/technical-committees/data-fusion
http://www.grss-ieee.org/community/technical-committees/data-fusion


Gerais, Brazil. The MODIS utilized is a Surface-Reflectance
Product (MOD 09), computed from the MODIS Level 1B land
bands 1, 2, 3, 4, 5, 6, and 7 (centered at 648 nm, 858 nm, 470
nm, 555 nm, 1240 nm, 1640 nm, and 2130 nm, respectively).

The high-resolution visible image was obtained by using
the satellite Satellite Pour l’Observation de la Terre (SPOT)
5, which offer a higher resolution of 2.5 to 5 meters in
panchromatic mode.

The main research challenge in this application is related
to the large number of patterns that plantations can take.
This effect on a coffee plantation is illustrated in Figure
4. The difference in age of the stands, the different types
of management of plantations and the distortions caused by
irregular relief are the main causes of these patterns.

(a) Coffee (b) Entire Image (c) Non-Coffee

Fig. 4. Intravariance class challenge in Dataset - Coffee Crop Recognition.

In order to perform a supervised learning, the dataset
contains a training map which includes two different classes:
coffee and non-coffee. Tables IV and V show the main
information about the dataset and the distribution of the classes
in pixels. An illustration of the Coffee Crop dataset is showed
in Figure 5.

(a) SPOT VHS (b) MODIS Multispectral (c) Ground Truth

Fig. 5. Dataset - Coffee Crop Recognition.

TABLE IV
GENERAL INFORMATION - COFFEE CROP RECOGNITION.

Visible Image Multispectral Image
Width 3721 pixel 22 pixel
Height 4234 pixel 24 pixel

Spatial Resolution 5 m 500 m
Bands 3 7

3) Setup: We have used the two datasets described in sub-
section IV-A, evaluating one for an urban land-cover multiclass
problem, and other for the coffee crop recognition binary
problem.

TABLE V
DISTRIBUTION OF PIXEL PER CLASS - COFFEE CROP RECOGNITION.

Classes Percentual (%)
Coffee 28,86

Non-Coffee 71,14

As evaluation metric, we used the Overall Accuracy and
Cohen’s Kappa metrics. For the statistical test of significance,
we used paired Student t-test (confidence of 95%).

Segmentation. We used the IFT-Watershed [35], with pa-
rameters of spatial radius 10 and volume threshold equal
to 100. Since we are dealing with large images, the IFT-
Watergray is effective, efficient and capable of segmenting
multiple objects in almost linear time.

Feature Extraction. In the urban dataset, we used four im-
age descriptors to encode spatial information: BIC ([36]), CCV
([37]), GCH ([38]), and Unser ([39]), while in the coffee crop
dataset, we used the four descriptors before mentioned jointly
with ACC ([40]). In order to extract spectral information in
urban dataset, we have used four different approaches: (1)
the raw data of HS image (84 Bands), (2) the Fisher Linear
Discriminant (FLD) components, (3) the first three principal
components of PCA, and (4) the first four PCA components,
while in the coffee crop dataset, we withdraw the FLD due to
the low spectral resolution.

Training. In the urban dataset, we used the entire training
set and fit a group of six weak learners: Gaussian Naive
Bayes, k-Nearest Neighbors (3, 5 and 10-Nearest Neighbors),
Decision Tree (DT), and a SVM with linear kernel, using the
features extracted by each descriptors, resulting in the total
of 48 classifiers (24 from each domain). We choose to use a
training phase composed by 500 weak learners to construct the
strong classifier since we are dealing with a multiclass dataset
and the iterations necessary to the SAMME stabilization are
commonly higher.

At the coffee crop dataset, the entire image was split in
a Stratified ShuffleSplit 5-cross validation scheme, using a
group of three weak learners: Multinomial Naive Bayes, one-
level Decision Tree, and a SVM with linear kernel, using the
features extracted by each descriptors, resulting in the total
of 30 classifiers (15 from each domain). We chose to use a
training phase composed by 200 weak learners to construct
the strong classifier since we are dealing with a binary dataset
and the iterations necessary to the SAMME stabilization are
sufficient.

We have used the implementation of the learning methods
available in the Scikit-Learn Python library. All learning meth-
ods were used with default parameters, which means we did
not optimize them whatsoever. The management of HS data is
made using the Spectral Python (SPy) Library, including the
extraction of features from the spectral domain. In this work,
we used the nearest neighbor assignment to map the regions
extracted from a IV HS to a set of pixels signatures in IHS . We
also used the up-sample nearest neighbor assignment method
to analyze thematic maps created only using the spectral



features, in the same size of the spatial domain.
Baselines. We have implemented the boosting approach

method using different settings as baselines, regarding the
dataset. In the Urban Dataset, we used as baseline a diversity-
based fusion framework [41] adaptation to encode spatial and
spectral feature, and a late fusion framework for RSIs multi-
modal classification [42] ; In the Crop Coffee Dataset, we used
the following baselines: (1) the boosting scheme using only
the BIC descriptor from the spatial domain and the decision
tree (DT) as weak classifier, resulting in a traditional Adaboost
algorithm; (2) the boosting scheme with all descriptors from
the spatial domain and the decision tree as weak classifier;
(3) The same settings of (2), including the spectral features;
(4) the boosting scheme using only the BIC descriptor from
the spatial domain but using all the weak classifiers (CLFs);
(5) The same settings of (4), but using all the features from
spatial and spectral domains.

B. Results and Discussion

The results obtained by the proposed method (Boosting
Approach) against the baselines, with the confidence intervals
(95%), are presented in Tables VI (Urban Dataset) and VII
(Crop Coffee Dataset).

TABLE VI
ACCURACY AND KAPPA INDEX IN URBAN DATASET

Techniques used Accuracy (%) Kappa
Spatial+Spectral (Faria’s Paralel) [41] 83,34 +- 0,26 74,73 +- 0,39
Dynamic Majority Vote [42] 84,96 +- 0,48 77,19 +- 0,65
Boosting-based Approach 88,02 +- 0,27 81,67 +- 0,42

The comparison shows a statistically significant difference
among the boosting approach and the baseline proposed,
regarding with the t-student test, in both datasets.

Our boosting approach is based on the combination of
different features and learner algorithms, letting the feature
selection of the boosting decide how to incorporate the weak
learners to create a strong model.

In the Urban Dataset, as showed in Table VI, the boosting-
based approach outperformed the baselines proposed in the
two metrics, showing the effectiveness of the method to handle
with data from different sensors.

In the Crop Coffee Dataset, as showed in Table VII, the
boosting-based approach outperformed the baselines proposed
only in the Kappa index metric, showing the partial effective-
ness of the method to handle with data from different sensors.

Even the boosting-based method handled well with the
urban dataset, in the coffee crop dataset, the injection of

TABLE VII
ACCURACY AND KAPPA INDEX IN CROP COFFEE

Techniques used Accuracy (%) Kappa (%)
Boost(DT) + BIC 79,73 +- 1,86 47,34 +- 2,31
Boost(DT) + spatial 82,66 +- 3,14 56,44 +- 6,97
Boost(DT) +spatial+spectral 82,83 +- 3,07 57,14 +- 6,68
Boost(CLFs) + BIC 81,83 +- 1,91 53,78 +- 2,53
Boost(CLFs) +spatial+spectral 82,57 +- 5,15 56,84 +-12,24

an additional spectral information did not help the model to
improve the final results in respect to the accuracy metric.
In this case, we can see a huge difference between the pixel
resolution of the images (5 m to 500 m), and a poor spectral
information (7 bands), preventing the fusion model to get
better results. In addition, even the spectral information does
not help the model, the use of diverse learning methods and
descriptors at spatial domain showed the complementarity of
information, improving the final results.

As shown in the literature, the use of multiple modalities
does not always lead to improvements with respect to the
use of a single mode [5]. This usually happens when the
considered data that is not relevant for the application could
pollute the analysis. In the proposed dataset the low size of
spectral data (22 x 24 pixels), and a poor spectral resolution
(7 bands) made unfeasible the extraction and combination of
spectral information effectively.

V. CONCLUSION

This work addressed the use of RSI particularly with respect
to the creation of thematic maps exploiting multi-sensor data.
We dealt with two main challenges: the combination of ref-
erenced images from different domains (spatial and spectral)
and how to exploit different types of features, extracted from
these sensors. To this purpose, we proposed a boosting-based
approach to the classification task, projected to receive two
images, over the same geographic region.

We evaluated the Boosting-based approach in an urban
scenario and coffee crop recognition conducting a series of
experiments in the datasets that demonstrated a significant
improvement using the Kappa index and Overall Accuracy
metrics in comparison with the proposed baselines at the urban
scenario, but not statistically relevant in concern to the coffee
crop recognition dataset using the Overall Accuracy.

The joint complementarity exploitation of different remote
sensing sources has proven to be very fruitful in the urban
scenario dataset proposed, however the efforts to combine the
information from a multispectral data with great difference
of spatial resolutions and a poor spectral resolution prevent
the Boosting-based approach to utilize the spectral features as
additional information for the strong model.

As future work, we plan to evaluate the Boosting-based
approach using other remote sensing datasets which contain
spatial and hyperspectral information, and covering a higher
spatial area. As another future work, we intend to adapt the
framework to handle with different sensors, e.g., LIDAR,
which contain elevation information from the objects.
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