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Abstract—This paper presents a new approach for pedestrian
detection in the context of Driver Assistance Systems (DAS).
Given a camera with known intrinsic parameters, a flexible online
calibration scheme that explores the expected road geometry is
used to obtain the extrinsic parameters. With the full camera
parameters, the expected geometry and size of a standing person
is used to customize a baseline pedestrian detector based on
sliding windows and multiple scales. Our experimental results
show that the proposed approach allows the use of detachable
cameras in the context of DAS, improving the accuracy of the
baseline pedestrian detector. Furthermore, the flexible calibration
scheme allows to estimate the distance from detected pedestrians
to the camera using detachable cameras, opposed to the fixed
onboard cameras in commercial vehicles that support vision-
based DAS.
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I. INTRODUCTION

Road traffic accidents are a significant cause of death
around the world. There are over 1.2 million of lives lost
per year related to traffic accidents, which also cause 20 to
50 million non-fatal injuries [1]. The most fragile element
in traffic scenes is the pedestrian. Even at relatively low
speeds, crashes involving pedestrians are potentially lethal. For
example, Davis [2] modeled the relationship between the risk
of pedestrian fatality P and the impact speed s (in km/h) for
different age groups, and for the elderly (60+) he obtained

P = 1− e9.87−0.20s

1 + e9.73−0.20s
, (1)

so that the fatality rate is 90% for an impact speed of 60km/h,
which is the urban speed limit in some countries, as Brazil.

In the past years, a great amount of money has been invested
by both governments and the automotive industry to increase
road safety by providing automobiles roads with some kind
of intelligence. Many commercial vehicles are now equipped
with Driver Assistance Systems (DAS), which inform the
user about possibly dangerous situations on the road or even
taking action to prevent an accident. In particular, pedestrian
detection modules are responsible for identifying pedestrians
using onboard cameras (possibly with the support of other
more expensive sensors, such as LIDAR), so that the driver
could be alerted (or the vehicle could break) when collisions
with pedestrians are about to happen.

Such technologies are already present in commercial vehi-
cles, and some car manufacturers, such as Lexus and Toyota,
intend to add pedestrian detection as a standard feature in
almost all vehicles in the United States by the end of 20171.
However, vehicles in developing countries (where the number
and fatality of traffic accidents is higher) are far less techno-
logical.

This paper presents a simple and cheap pedestrian detection
scheme using detachable onboard cameras (such as smart-
phones). Given an offline calibration scheme for the intrinsic
parameters (which must be done only once for fixed focal
lens cameras), it allows a flexible installation setup in the
interior of the vehicle by performing an online calibration
scheme for the extrinsic parameters [3]. Given the full camera
matrix, it explores the expected height and vertical stance of
walking pedestrians to re-weight the output of baseline vision-
based pedestrian detection schemes using geometrical priors,
as in [4]. To reduce the computational burden of pedestrian
detection, temporal constraints based on the known speed of
the vehicle can be used to estimate pedestrian locations, so
that the detection process itself is not performed at every
frame. Finally, the flexible calibration scheme also allows the
estimation of the distance from the detected pedestrians to the
camera.

The remaining of this paper is organized as follows. Sec-
tion II presents a revision of related works about pedestrian
detection, focusing on DAS. Section III describes the proposed
method in details, and the results are presented and discussed
in Section IV. Finally, the conclusions and directions for future
work are provided in the last section.

II. RELATED WORK

There has been an increase in vision-based pedestrian
detection in the past years, focusing on still images and video
sequences [5]. In the context of DAS, there are also require-
ments of real-time execution and robustness [6], which makes
the problem even more complex. There are several existing
methods for pedestrian detection, as noted by recent survey
papers [7], [5]. This section will briefly revise some classical
pedestrian detection methods, and focus on approaches tailored
for DAS.

1http://corporatenews.pressroom.toyota.com/releases/lexus+toyota+
automated+braking+standard+2017.htm

http://corporatenews.pressroom.toyota.com/releases/lexus+toyota+automated+braking+standard+2017.htm
http://corporatenews.pressroom.toyota.com/releases/lexus+toyota+automated+braking+standard+2017.htm


A ground breaking work based on Haar-like features was
introduced by Viola and Jones [8]. Such features consist of
sums of pixels within rectangular regions, which can be done
at constant time regardless of the window size if integral
images are used, and were combined with motion cues in the
context of pedestrian detection [9]. Despite the computational
advantage, the use of such simple features limited the accuracy
for complex problems such as pedestrian detection.

One very popular feature used in pedestrian detection is
based on Histograms of Oriented Gradients (HOGs). In [10],
Dalal and Triggs used HOGs to encode the characteristics
of standing people, and used a linear Support Vector Ma-
chine (SVM) in the classification step. To cope with scale
and translation, sliding windows and multiresolution features,
computed at pyramids of images, were used. Schwartz and
colleagues [11] combined HOG with several other descriptors,
and used Partial Least Squares (PLS) to cope with high-
dimensionality features. Felzenszwalb et al. [12] proposed
a Deformable Parts Model (DPM) detector assuming that
an object is constructed by its parts using the histogram of
oriented gradient (HOG) to extract the characteristics of the
object and a latent SVM classifier.

Aiming to reduce the cost of building the multiscale features
in HOG, Dóllar and colleagues presents a hybrid approach in
which features are computed in sparse pyramid of images,
and interpolated in-between. Their method presented a good
trade-off between the speed of the scale invariant features
in [8] and the flexibility of gradient-based information of [10],
and inspired several more recent generic-purposed pedestrian
detection schemes [13], [14], [15] and also in the context of
DAS [16]. Also, a recent trend for generic purpose pedestrian
detection is the use of deep learning methods, as in [17], [18].

Differently from other approaches for object recognition that
use local features to classify an object, Torralba et al. [19] use
a context-based vision system for place and object recognition.
Global image features are computed to predict the scene,
which are used as priors for the local object detection and
recognition. The authors use GIST descriptors to develop a
low dimensional representation of the scene, which feed a
dynamic Bayesian Network/HMM [19], [20]. Premebida and
Nunes [21] proposed another context-based system based on
multiples sensors, composed by a LIDAR module acting as the
first stage of object detection, a module that informs the system
with contextual information from a semantic map of the roads,
and an image-based detector (based on a HOG+SVM classi-
fier) that uses sliding windows with the role of validating the
pedestrian in ROIs generated by the LIDAR. Their method also
uses a Bayesian approach on the mediation between the local
(from LIDAR and image modules) and global (from maps of
the roads) information. Kooij et al. [22] presented a context-
based model based on HOG+SVM classifier combined with
a dynamic Bayesian network for pedestrian path prediction in
the intelligent vehicle domain.

In the context of DAS, additional modalities (such as
infrared, laser scanners or stereo cameras) are usually explored
to improve robustness [23]. However, since the scope of this

paper is to deal with low-cost solutions using a detachable
camera, only methods that explore monocular cameras will be
analyzed.

In DAS, the onboard camera is typically installed in the
central portion of the windshield, approximately aligned with
the central axis of the vehicle. The upper portion of the images
is usually related to the sky, which could be used to reduce the
search space. Brehar and Nedevschi [24] explored a pinhole
camera model to reduce the search space of generic pedestrian
detection methods based on sliding methods, so that windows
closer to the camera are larger. Prioletti and his group [25] also
explored world-camera relationship for pedestrian detection,
using the inverse perspective mapping to remove detections
yielding implausible pedestrian heights. In fact, the use of
camera knowledge was previously presented in [26], where
the authors explored a simplified camera model (knowledge
of the horizon line) and local object geometry to improve the
performance of object detectors, in particular pedestrians.

Still in the context of DAS, traditional pedestrian detection
schemes and adaptations have been used. Chen et al. [27]
explored Haar-like features with motion information, which
are fed to an SVM for the classification step. Ohn-Bar and
Trivedi [28] studied the effect of including appearance patterns
(orientation, occlusions and visual cues) in the context of
pedestrian detection, concluding that these patterns can boost
detection rates. Zhang and collaborators [16] used a Haar-like
template pool, describing the body as parts (head, upper body
and lower body) that appear in a given order for standing
pedestrians.

For DAS, one class of approaches focuses on adapting
traditional pedestrian detection schemes, while others [24],
[25] somehow explore camera information to either reduce the
ROI or remove implausible detections. However, the world-
camera relationship is either obtained for specific datasets,
as in [24], or does not tackle camera calibration schemes,
which limits the application for fixed-camera setups [25]. In
this work, we also explore the camera-world relationship for
pedestrian detection. However, we use a camera calibration
technique that allows the use of detachable cameras [3],
since extrinsic parameters are obtained on-the-fly exploring
geometric information from the road. Also, the calibrated
camera is not used only to reduce the search space or to
remove candidates: it serves as a geometric prior that can be
plugged into any baseline pedestrian detector.

III. THE PROPOSED METHOD

The main goal of this paper is to propose a flexible approach
for pedestrian detection in the context of DAS. It allows the
use of any conventional monocular camera loosely mounted
in the interior of the windshield.

A. The camera setup

Let us consider a monocular camera installed in the interior
of a vehicle, on the central portion of the windshield. We
define the world coordinate system (WCS) such that the central
point of the camera is located at point (0, h, 0) in the WCS, as



illustrated in Fig. 1, where α (pitch), β (yaw) and γ (roll) are
the Euler angles related to the x, y and z axis, respectively.
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Fig. 1. 3D world and camera coordinate system.

As in [3], we also consider that there is no roll (since such
rotation is typically prevented by the windshield), and assume
a pinhole camera model. Then, the calibration procedure
explores the expected lane geometry within a straight portion
of the road, allowing to compute the rotation angles α and
β, as well as the camera height h. In such model, given a
point xw = (xw, yw, zw)T in the world coordinate system,
the corresponding point xc = (xc, yc, zc)

T in the 3D camera
coordinate system is given by a rigid transformation:

xc = R(xw − x0), (2)

where x0 is the position of the camera system, and

R =

 cosβ 0 − sinβ
− sinα sinβ cosα − cosβ sinα

cosα sinβ sinα cosα cosβ

 . (3)

is the rotation matrix (with no roll). The corresponding pro-
jection of xc into an image pixel u = (u, v)T is given by

u =
fsuxc
zc

, v =
fsvyc
zc

, (4)

where f is the focal length of the camera, su and sv relate
to the pixel dimensions, and (u, v)T are image coordinates
relative to the optical axis (uo, vo)

T of the camera. For
camera with fixed focal length lenses, fsu, fsv and (uo, vo)

T

are constant and can be obtained by performing an offline
calibration procedure a single time. There are many available
techniques for obtaining the intrinsic parameters of a camera,
and we chose the Matlab Camera Calibration Toolbox [29]
due to its simplicity and popularity.

The extrinsic parameters α, β and h depend on the camera
placement in the vehicle, and can be estimated on-the-fly based
on the geometry of a linear portion of the road with dashed
lane markings, as presented in [3] and revised next.

B. Camera calibration

Typical highways contain several straight portions of the
road, and the driver is expected to drive approximately in the
middle of the road, parallel to the lane boundaries. Moreover,
markings that separate adjacent lanes are usually dashed

(except when overtaking or lane changes are prohibited). The
rectangular geometry of the road in straight portions, as well
as the separation between lane markings, are explored for
camera calibration. Additionally, an approach that explores
planar motion is also presented to estimate the camera height.

1) Obtaining the pitch and yaw: Assuming that the vehicle
is moving parallel to the lane boundaries, the equations for left
and right lane boundaries in world coordinates are xw = x0

and xw = x0 +W , where x0 is the orthogonal distance from
the left lane to the camera, and W is the lane width, as shown
in Fig. 2. These parallel lane boundaries in world coordinates
are mapped into intersecting lines in camera coordinates, and
the point of intersection u = (uu, uv)

T is a vanishing point
of the scene. In fact, applying Equations (2) and (4) to xw =
x0 and xw = x0 + W leads to the parametric equations of
the lane boundaries in image coordinates, as a function of z.
Computing the limit as z →∞ for either of the projected lane
boundaries leads to the coordinates of the desired vanishing
point:

u =

(
−fu tanα,−fv

tanβ

cosα

)T
, (5)

where fu = fsu and fv = fsv are intrinsic parameters of the
camera.

If u = (uu, uv)
T is known, both α and β can be easily

obtained through

α = − tan−1

(
vu
fu

)
, (6)

β = − tan−1

(
vv
fv

cosα

)
. (7)

Here, a key issue is how to obtain the intersection point
u of the linear lane boundaries automatically and in a ro-
bust manner. There are several existing approaches for lane
boundary detection, and an adequate choice for our purpose
is the linear-parabolic model used in [30]. In such model, the
lane boundaries are modeled as a linear function in the near
field, so that the vanishing point u can be computed directly
from the intersection of the linear portion of the right and left
lane boundaries as presented by the mathematical model in
Equation (8).

fk(v) =

{
ak + bk(v − vm), if v > vm
ak + bk(v − vm) + ck(v − vm)2, if v ≤ vm

,

(8)
where k ∈ {r, l} denotes which lane boundary we are referring
to (right or left), vm defines the boundary in the image between
the near and far fields, and v is the vertical pixel component.

2) Obtaining the camera height: To obtain the camera
height we explored the motion of planar points with known
motion pattern. Let us consider a 3D point W1 = (x1, 0, z1)

T

on the ground plane. Based on the known rotation matrix R,
W1 is projected onto image point I1 = (u1, v1)

T , and solving
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Fig. 2. Left: road in world coordinates. Right: road in image coordinates.

for x1, z1, leads to(
x1

z1

)
=

(
− fuhv1 cos2 β+fuhv1 sin2 β

fufv sin β+fvu1 cos β

−hu1 sin β−fuh cos β
u1 cos β+fu sin β

)
(9)

Assuming that the vehicle is moving along the central
axis of the road with known speed v, the position of W1

in the subsequent frame will be W2 = (x1, 0, z1 − dz)T ,
where dz = v/FPS is the displacement along the z axis
and FPS is the frame rate (frames per second) of the video
sequence. Subtracting dz from z1 in Eq. (9) and computing the
direct mapping leads to the corresponding image coordinates
I2 = (u2, v2)

T expressed by

(
u2

v2

)
=

( fu(h cos β−Φ sin β)
h sin β+Φ cos β

fv(fuhv1 cos2 β+fuhv1 sin2 β)
(fufv sin β+fvu1 cos β)(h sin β+Φ cos β)

)
(10)

where Φ = dz − hu1 sin β−fuh cos β
u1 cos β+fu sin β .

To find a pair of correspondence points I1 and I2 in adjacent
frames, we select region of interest around the two detected
lane boundaries, apply the classic Harris detector [31] to find
points with high curvature (such as the corners of dashed lane
markers), and then track them using the pyramidal Lucas-
Kanade (LK) algorithm [32], [33]. Given such correspondence
pair, each coordinate of Eq. (10) can be used to obtain the
camera height. More precisely, they are given by

hu =
dzf

2
u sin2 β + dzu1u2 cos2 β+

fuu1 cos2 β − fuu2 cos2 β+
+ · · ·

· · ·+ dzfuu1 cosβ sinβ + dzfuu2 cosβ sinβ

fuu1 sin2 β − fuu2 sin2 β
, (11)

hv =
dzu1v2 cos2 β+

fuv1 cos2 β − fuv2 cos2 β+
+ · · ·

. . .+
dzfuv2 sinβ cosβ

fuv1 sin2 β − fuv2 sin2 β
. (12)

In a given calibration frame, we can obtain a set of n
correspondence points between frames t and t+ 1, leading to
n estimates h(j)

u (t) and h(j)
v (t), for j = 1, ..., n. Although they

should be redundant, errors in R, in finding correspondence
points or by chosen points that are not on the ground plane
(e.g. on other vehicles) generate discrepancies. We then find
a single estimate for hu(t) and hv(t) at frame t given by

hu(t) = µκ
j

(
h(j)
u (t)

)
, (13)

hv(t) = µκ
j

(
h(j)
v (t)

)
, (14)

where µκ
j

(·) is a κ−trimmed mean [34] in variable j of a

sequence of values, which provides a robust estimate of the
mean.

To obtain the final estimate of the height, we consider the
values hu(t) and hv(t) at a given frame t, for t = 1, ..., Nf ,
where Nf is the number of frames used in the analysis.
Therefore, the final estimated height h̄ is given by

h̄ =
ĥu + ĥv

2
, (15)

where ĥu = µκ
t

(hu(t)) and ĥv = µκ
t

(hv(t)) are the robust

mean estimates in time of hu(t) and hv(t), respectively.

C. Context-aware pedestrian detection

Traditional pedestrian detectors (and object detectors in a
broader sense) employ the detection filter at different scales
to generate suitable candidates for detection. Such multi-
resolution approaches can be implemented using a pyramid of
images (in which the original image is re-scaled), a pyramid
of classifiers (in which only the original image is used, and the
scale of the detection window changes), or the combination of
both (in which some re-scaled versions of the original image
are used, and a pyramid of classifiers is used in-between) [35].
However, there is only a small range of scales that make sense
to the dimensions of a real pedestrian for a given camera setup,
as illustrated in Fig. 3. More precisely, Fig. 3(a) shows a fixed-
size scanning window, which is plausible for the woman, but
too large for the other locations. Fig. 3(b) shows geometrically-
aware windows, for which the size depends on the ground-
plane location.

(a) (b)

Fig. 3. Example of detection windows with (a) fixed size, which lead to
implausible pedestrian heights at some points, and (b) adaptive size, depending
on the ground plane location.

It is important to mention that Hoiem and colleagues [26]
explored a simplified camera model (knowledge of the horizon
line) and local object geometry to improve the performance of
object detectors, and used generic pedestrian detection as an
example. Also, Brehar and Nedevschi [24] used the fact that
pedestrians closer to the camera are bigger in the ICS, while
Prioletti et al. [25] used the inverse perspective mapping to
remove detections yielding implausible pedestrian heights.



In this work, we rely on a better camera model (full
calibration, as described in the previous section) than [26],
[24], and explore geometric cues about a standing pedestrian
in the detection itself, not just for validation purposes as [25].

For a given bounding box B, let EB denote some kind of
pedestrian image-based evidence computed on B (e.g. HOG
or Haar-like features), and let yB denote its height in the
WCS computed using the known camera parameters (assuming
that the base of the bounding box is on the ground plane).
Following a Bayesian classifier, a pedestrian is detected when

P (ped)p(EB , yB |ped) > P (¬ped)p(EB , yB |¬ped), (16)

where p(EB , yB |ped) and p(EB , yB |¬ped) are the joint PDFs
of EB , yB for the pedestrian and non-pedestrian classes, and
P (ped) and P (¬ped) are the corresponding a priori proba-
bilities. Assuming that yB and EB are independent and that
p(yB |¬ped) follows a uniform distribution, inequation (16)
reduces to

p(EB |ped)

p(EB |¬ped)
p(yB |ped) > T, (17)

where T is an acceptance threshold.
Considering that the score R(EB) of any “baseline” pedes-

trian detector can be used to approximate the likelihood ratio
p(EB |ped)/p(EB |¬ped) (disregarding normalization issues)
and that p(yB |ped) follows a normal distribution with mean
yavg and variance σ2, the proposed detector is given by

S(B) = R(EB) exp

[
− (yB − yavg)2

2σ2

]
> TS , (18)

where the acceptance threshold TS is inherited from the
baseline detector R(EB). Due to the fast decay of the normal
distribution, just a few bounding boxes B with WCS heights
in the range [yavg − kσ, yavg + kσ] are needed in practice for
each location. In our experiments, we used 5 uniformly spaced
heights, with k = 2.

For detection methods that rely on image pyramids, a
classifier is trained with a pre-defined pedestrian model size,
typically a rectangular region with height vmodel. In the clas-
sification stage, the model is kept constant, and the image is
re-scaled to capture pedestrians at different scales: upsampling
is required to detect pedestrians smaller than the model,
and downsampling for pedestrians larger than the model. In
general, just downsampling is applied, so that the smallest
detectable pedestrian in the scene is roughly the height of
vmodel. Given a maximum pedestrian height ymax = yavg+kσ
(in the WCS), our method only creates candidates in which the
height of the corresponding bounding box height is larger than
a fraction of the height of the model bounding box vmodel. This
fraction depends on the height range of pedestrians in WCS
and its value can be employed in order to limit the number of
levels of the pyramid.

The largest pedestrian in the image should dictate the
smallest resolution of the image pyramid. Since the pyramid
is pre-computed in some methods to speed-up the process (as
in [35]), the use of a calibrated camera can also define the

smallest scale of the pyramid. Given a pedestrian with size
vped (in the ICS), the ideal scale s in the pyramid should
satisfy 2−svmodel = vped (assuming that the scale factor is
2−s). Hence, we scan all image pixels related to the ground
plane and compute the projection of a pedestrian with the max-
imum allowed size ymax, retrieving the height of the largest
bounding box in the ICS, called vmax. Hence, the smallest
scale in the pyramid is defined as s = log2(vmodel/vmax).

Finally, our candidates are evaluated in this reduced pyramid
using the test given by inequation (18). Furthermore, as usual
in sliding-window techniques, the final detection is achieved
after performing non-maxima suppression to the outputs of
S(B), and not on the scores R(EB) of the baseline detector.
In general, this helps to better fit the scale of the detection
window to the actual pedestrian size.

To show the potential of our method, we used as base-
line method the pedestrian detector presented in [7], and
our experimental results show that detection accuracy were
increased using camera information. We also show results
using HOG+SVM [10].

The computational time of the detector can be further
reduced by using the calibration in yet another manner. Instead
of running the detector at each frame, we can run the whole
process only at each tw frames. In between those frames,
a static pedestrian should present a displacement along the
z axis in the WCS due to the motion of the vehicle dz
within two adjacent frames, as described in Section III-B2.
Considering that the vehicle velocity is normally significantly
larger than the pedestrian, we assume that their relative speed
is approximately dz – i.e. we always assume static pedestrians.
Hence, the proposed pedestrian detection scheme is applied
at each tw frames, and in-between the trajectory of each
pedestrian (bottom-central coordinate of the bounding box) is
linearly interpolating assuming a constant displacement dz in
the WCS, which is projected to the ICS using the estimated
camera model. The height of the bounding box is kept constant
in the WCS, so that its projection to the ICS maintains the
correct perspective of the pedestrian obtained in the previous
detection frame.

IV. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed de-
tection method, we created a small dataset consisting of a
video taken from an on-board camera (iPhone 5S smartphone)
mounted on the dashboard of a vehicle passing by an urban
area. This dataset contains 2103 high-resolution frames (1920
× 1080), and a total of 1498 pedestrians were manually
annotated (bounding boxes). The video, together with its
ground truth, is available publicly for future reference and
benchmarks2. It is important to note that there are several pub-
licly available datasets for generic-purpose pedestrian detec-
tion and even in the context of automotive applications, such
as [36], [7]3. However, information about camera parameters
is missing, so that our method cannot be applied.

2Link not yet included due to blind review
3http://www.vision.caltech.edu/Image Datasets/CaltechPedestrians/

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/


The set of experiments aimed to evaluate the performance
of the detection procedure that includes geometric information
and a baseline pedestrian detection method. In this paper, we
modify the widely cited method by Dollar and colleagues [7]
to include our geometric priors based on the calibration
procedure. However, it is important to emphasize that the
proposed approach is compatible with any sliding-window
technique.

As it is common in the literature, we use the intersection
over union approach (Jaccard coefficient) to determine if the
detection is valid or not – value above 0.5 as in [37]. By
varying the threshold of acceptance for the detection bounding
boxes, as proposed in [35], [38], we generate precision-recall
curves depicted in Fig. 4. It can be observed that, for any recall
value (particularly those in the range [0.3; 0.4]), the precision
value produced by our technique is higher than the baseline.
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Fig. 4. Precision-recall curves for pedestrian detection proposed (using
camera calibration) and the baseline method (without calibration) [36].

Additionally, we modified the traditional pedestrian detector
based on HOG+SVM [10]. Our implementation uses the
OpenCV standard models and the source code was made avail-
able4. The results of the standard sliding-window technique
against our approach using calibration to generate candidates
can be observed in Fig. 5. For this experiment, we made a
pyramid of 10 levels using a reduction of 5% at each level.
The baseline method created around 70K candidates, and ours
19K. The average running time for the unaltered version was
3.28s per frame, while ours was 0.3s per frame.

The results indicate that our approach of applying geometric
information in the detector’s pipeline significantly increases
the overall accuracy of the system. The main reason behind
this improvement is that the generation of candidates is much
more coherent with the pedestrians appearing in the scene,
and detection results with implausible pedestrian heights are
avoided. An example of comparison between the baseline
detector and the proposed approach is shown in Fig. 6, which
shows the results from three different frames of our video
sequence. As it can be observed, the baseline method produces
detections (marked with arrows) that are clearly incompatible
with real pedestrians. On the other hand, such candidates

4 https://github.com/gustavofuhr/pedestrian detector calibrated.
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Fig. 5. Precision-recall performance on variations of the traditional
HOG+SVM detector [10] with and without calibration.

would either have a very small score (due to the Gaussian
weight based on pedestrian height estimates) or would not
even be tested, since their heights are clearly much larger than
ymax.

Additionally, we evaluate the number of candidates our
approach creates against the baseline method. Since this values
depends on the size of the input image and also the range
of scales scanned in the baseline approach (which is usually
set by the user), we downsampled our 1080p images using
multiple scaling factors, and the results are shown in Fig. 7.
Since our method samples the ground plane to generate
multiple candidates and the horizon line of our video is within
the image plane, such sampling could, theoretically, go on
forever. However, we make a threshold based on pixels to
limit the minimum height for the creation of candidates. In
this experiment, we set the threshold to 10% of the height
from the re-scaled image. Clearly, the number of candidates
generated by our method is much inferior then a common
sliding-window technique – at the original resolution, the
number of candidates is reduced by a factor of 2.5.

We also tested our propagation discussed in the final part
of Section III. Fig. 8 show the precision-recall curves of
computing the detection by setting the temporal detection
stride tw to 5 and 10 frames, and propagating the bounding
boxes in-between detections. As expected, the precision is
reduced since no image feature is extracted in these frames,
which can multiply the false positives of the detector (and
add false negatives when new pedestrians enter the scene).
However, if the window, tw is kept small, such as tw = 5,
the accuracy may still be sufficient for real life applications.
Moreover, since the computational time for the propagation is
negligible compared from the detector, the speedup shows a
factor of tw−1 in the performance. Also, for the experiments
described here, the vehicle speed is constant at 40km/h for the
whole sequence, and a system with automatic speedometer can
be included to account for variable speeds.

Yet an additional advantage of using a flexible calibration
scheme that allows the use of detachable cameras is that the
distance from the detected vehicle to the pedestrian can also
be estimated, as illustrated in Fig. 9.

https://github.com/gustavofuhr/pedestrian_detector_calibrated
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Fig. 6. Comparison between the baseline detector (red) and the proposed
improvement (blue).

V. CONCLUSION

This paper presented a flexible approach for pedestrian
detection in the context of driver assistance systems that
allows the use of detachable cameras instead of fixed vehicular
onboard cameras. Initially, the intrinsic camera parameters are
obtained using an offline procedure, and the extrinsic parame-
ters that extract the rotational and translational parameters of a
given camera setup are obtained online. With the full camera
parameters, a baseline pedestrian detector is adapted to include
geometric information about a typical standing pedestrian.
An simple temporal prediction scheme can also be included,
reducing the computational cost with small accuracy loss.

The experimental results showed that the proposed model
is able to successfully discard detections with implausible
human heights (which decrease the false positive rate), with-

Table 1

Resize factor N candidates 
normal

N candidates 
calibrated

0.1 156 2747

0.15 3242 6134

0.2 10000 10758

0.25 20960 16813

0.3 35300 24011

0.35 54224 33400

0.4 76775 43374

0.45 103730 54882

0.5 134840 67458

0.55 169275 81374

0.6 208154 96649

0.65 251561 113389

0.7 298233 132642

0.75 348986 152359

0.8 404828 172776

0.85 462953 194703

0.9 526440 218208

0.95 595190 242732

1 666356 268907
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Fig. 7. Number of candidates generated by the methods as a function of
image downsampling factor.
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Fig. 8. Precision-recall curve using the temporal prediction scheme, in which
the detection is only performed at every tw frames.

out compromising the true positive rate. Also, the use of a
calibrated camera allows to precisely define a small range of
detection scales for each pixel in the image, whereas typical
pedestrian detectors based on sliding windows require an ad
hoc definition of the global scale range. Furthermore, it is

x

y

z
Dist: 30.03m

Dist: 12.08m

Fig. 9. Grid based on camera calibration overlaid to a frame of the video
sequence, and estimated distances from pedestrians to the camera.



possible to estimate the distance from detected pedestrians to
the camera, although the accuracy of these estimates must be
further evaluated.

As future work, we plan to close the calibration-pedestrian
detection loop, using the output of the pedestrian detector to
refine the camera calibration procedure. We also plan to add
more videos to the database acquired with different devices
and camera placements, and to strongly explore temporal
information for pedestrian detection.
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