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Abstract—Retinal vessel segmentation is an important step for
the detection of numerous system diseases, such as glaucoma,
diabetic retinopathy, and others. Thus, the retinal blood vessel
analysis can be used to diagnose and to monitor the progress
of these diseases. Manual segmentation of fundus images is
a long and tedious task that requires a specialist. Therefore,
many algorithms have been developed for this purpose. This
paper demonstrates an automated method for retinal blood
vessel segmentation based on the combination of topological
and morphological vessel extractors. Each of these extractors is
based on different blood vessel features to increase the detection
robustness. The final segmentation is obtained intersecting the
two resulting images, smoothing the vessel borders and removing
spurious objects remaining. Our proposed method is tested on
DRIVE and STARE databases, achieving an average accuracy
of 0.9565 and 0.9568, respectively, with good values of sensitivity
and specificity.

Keywords-retinal blood vessel segmentation; mathematical
morphology.

I. INTRODUCTION

Retinal fundus images provide an effective way to study and
diagnose the health of optic nerve, vitreous, macula, retina,
and blood vessels. In particular, the retinal blood vessels may
provide important information about several system diseases,
such as glaucoma [1], stroke, arteriosclerosis [2], arterial hy-
pertension, heart diseases, and diabetic retinopathy [3]. Early
detection allows the patients to treat themselves before the
disease can advance and avoid more serious complications,
like tunnel vision or even total blindness, in case of diabetic
retinopathy [4]. For these reasons, the segmentation of retinal
images is an important tool for pathologies monitoring and
other applications. The retinal blood vessels and the main
structures of a typical fundus image is depicted in Fig. 1. The
blood vessels originate from the center of the optic disk, spread
over the retina, and are responsible for supplying the blood
throughout the entire region. Also, they transmit information
signals from the retina to the brain [5].

The manual segmentation of retinal images is a long and
tedious task that requires a specialist [4]. In order to overcome
this situation, the development of computer aided systems is
necessary for this scenario and several methodologies have
been developed for this purpose. A large number of algorithms

Fig. 1. A typical example of retinal fundus image showing main features of
retina

and techniques have been published relating to the retinal
blood vessels segmentation [6]. But, the accurate blood vessel
segmentation is still a difficult task. The main obstacles are the
presence of noise, low contrast, poor quality of some images,
and anatomical variability of the vessels. For example, two
close vessels are often considered as one wide vessel. In con-
trast, a vessel with central light reflex may be misunderstood
as two vessels [7].

This work proposes a novel approach to segment the retinal
blood vessels using extractors that preserves their topological
properties and connectivity. Several methods that use the
vessel skeletons can be found at literature [6], [8]. The main
novelty of our method is to employ a parallel grayscale
skeletonization algorithm alongside morphological operations
to provide a viable solution to reach our goal. Our method
achieves significant results and obtains competitive measure-
ments in terms of accuracy and specificity against several



State-of-the-art models. In particular, we outperformed these
measurements in two widely used databases, namely, DRIVE
and STARE. According to the obtained results, the developed
method presented robustness to the typical problems of this
kind of images.

II. RELATED WORK

We provide here a brief review, categorization and analysis
of unsupervised methods for retinal blood vessel segmentation.
Several methods the detection of retinal blood vessels are
reported in the literature; so far, it has remained a non-trivial
problem. Authors often classify the segmentation techniques in
unsupervised and supervised methods [3] [6] [9]. The unsuper-
vised methods work without prior knowledge of labels. They
can utilize several techniques, such as matched filtering [10],
multiscale approaches [11], mathematical morphology [8],
fuzzy c-means clustering [12], and vessel tracing/tracking [13].
On the other hand, the supervised methods exploit some prior
labeling information to decide wether a pixel belongs to a
vessel or not. However, we recall that such methods require
label data that, in most cases, might not be present [6].
Some approaches fit in this category by using artificial neu-
ral networks and backpropagation algorithms [14], support
vector machines (SVM) [15], principal component analysis
(PCA) [16], and Gaussian mixture model (GMM) [17]. Our
method is categorized in the unsupervised category, i.e., we
do not utilize any labelling information.

Mendonça and Campilho [8] proposed a vessel segmenta-
tion algorithm which combines differential filters, for cen-
terlines extraction, with morphological operators, used for
filling vessel segments. The intensity and the morphological
properties of vascular structures, such as linearity, connectivity,
and width are considered in this approach. The segmentation
algorithm is divided into three main steps: 1) The image is
preprocessed for background normalization and a multiscale
morphological enhancement technique is employed to improve
the contrast of the blood vessels; 2) Four directional differen-
tial operators are applied and their outputs are processed in
order to select connected sets of candidate points to be further
classified as centerline pixels using vessel derived features;
3) The final segmentation is obtained by an iterative region
growing method that integrates the contents of several binary
images from vessel width dependent morphological filters.

Martinez-Perez et al. [11] presented a method based upon
multiscale feature extraction. The scale-space analysis con-
cerning the width approximation, size, and orientation from
retinal blood vessels, is obtained by using two geometric
features: gradient magnitude and maximum principal curvature
of the Hessian tensor. These geometric features are based upon
the first and the second spatial derivatives of the intensity
calculated for each different scale that gives information about
the topology of the image. Then, the authors used a multiple
pass region growing procedure that progressively segments the
blood vessels using the feature information alongside spatial
information about the eight-neighbouring pixels, resulting in

a segmented binary image. The algorithm is tested with both
red-free fundus images and fluorescein angiograms.

Yang et al. [12] proposed an automatic-hybrid method com-
prising of two steps that combine mathematical morphology
and a fuzzy clustering algorithm. In the first step, linear
structuring elements at various orientations are used according
to the line type property of vessels. These structuring elements
are applied to perform an opening operation to smooth the
reversed color image. After the image has been smoothed,
the top-hat transformation is applied to strengthen the vessels
in the image. In that case, appropriated structuring elements
are used in various directions in order to increase the gray
difference between vessels and the background. After the
retinal vessel enhancement, the vessel extraction takes place
in the process through a fuzzy clustering algorithm followed
by a purification procedure.

Zhang et al. [10] proposed a novel extension of zero mean
Gaussian filter approach, namely Matched Filter with First-
Order Derivative of the Gaussian (MF-FDOG), for retinal
blood vessel segmentation. The traditional matched filter (MF)
is a simple, and yet effective, method for vessel extraction,
but it responds also to non-vessels and edges. The authors
considered that the cross section of a vessel is a symmetric
Gaussian function. Thus, it is employed a pair of filters, the
MF and the first-order derivative of the Gaussian (FDOG), to
detect the vessels. Around the pixel position, the true vessels
have a strong response to the MF and the local mean of
its response to the FDOG is close to zero. For non-vessel
structures, both the responses are high. This way, the differ-
ence implies that vessels and non-vessels edges can be better
distinguished by using the MF-FDOG than the traditional MF.
At the end, the vessel map is detected by applying a threshold
T to MF response map, while the threshold T is adjusted by
FDOG response map so as to remove the non-vessels edges
and extract the thin vessels.

In the Lam et al. [18] proposal, a novel multiconcavity
modeling approach is developed to segment both healthy and
unhealthy retinas. Three different concavity measures are pro-
posed to detect blood vessels and each measurement addresses
the negative impact produced by the lesions for identifying the
normal vessels. The authors proposed a perceptive transform
to model human visual perception in retinal image analysis
using Weber’s law [19]. They explored the fact that the bright
lesions can be distinguished from the vessels and non-vessels
by measuring the degree of concavity based on differentiability
because the bright lesions have a steep intensity transition
pattern. The dark lesions have an irregular shape intensity
structure while blood vessels have a line-shape intensity struc-
ture. A line-shape concavity detection method is developed
to prune the dark lesions while keeping the line-shape blood
vessels. A locally normalized concavity detection method
is proposed to normalize the strengths of noise removal in
different regions due the fact that retinal image has a spherical
intensity variation. At the end, these concavity measurements
are combined according to their statistical and geometrical
properties.



Fraz et al. [6] obtained the skeleton of the blood vessels
by the detection of vessel centerlines while the vessel shape
and orientation map are produced by morphological bit planes
slicing. The centerlines are extracted by using the first order
derivative of a Gaussian filter in four orientations and then, the
evaluation of derivative signs and average derivative values is
carried out. The shape and the orientation map of blood vessels
are obtained by applying a multidirectional morphological top-
hat operator with a linear structuring element followed by bit
plane slicing of the vessel enhanced grayscale image. The
segmented vessel tree is generated by the reconstruction of the
vessel centerlines image with the vessel shape and orientation
map.

III. PROPOSED METHOD

We propose a segmentation method whose its capability is
based on a combination of two different vessel extractors:
a topological and a morphological one. Each extractor aims
different vessel features. The topological extractor focuses
on connectivity and the morphological extractor focuses on
vessel segment length. The obtained vessel networks from
each extractor are combined in order to form a single network.
The combined network is smoothed and spurious objects are
removed to improve the segmentation result. A schematic
overview is shown in Fig 2.
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Fig. 2. Vessel segmentation method

A. Green channel extraction

Initially, we extract the green channel from the RGB image
I in order to get the maximum contrast between the vessels
and the background to compose our initial image Ig , as in
Aramesh and Faez [20].

B. Morphological extractor

The morphological top-hat transform is used to extract
the blood vessels, making an initial vessel tree. The top-hat
transform is given by:

Iθt = Ig − γθ(Ig), (1)

where Ig is the image green channel and γθ(Ig) is a mor-
phological opening with linear structuring element oriented at
each θ degrees performed on green channel image with length
l. The structuring element length is chosen according to the
size of the vessels for each dataset. This operation produces an
image with an enhanced vessel structure. The sum of top-hat
along each direction enhances the vessels regardless of their
direction. The sum is depicted by:

IΣ =
∑
θ∈A

(Iθt ), (2)

where Iθt is the result of the top-hat performed with the
structuring elements. The set A can be defined as {x | 0 ≤
x ≤ 180 and x mod(22.5) = 0}. Later, the image is binarized
using a threshold value t, resulting in an image Ib. A low
threshold value is adopted to maximize the detection of vessel
pixels. To sumarize, our morphological extractor is composed
by these three operations, the top-hat transform, the sum of
top-hats and the binarization.

C. Topological extractor

The skeletonization algorithm presented by Couprie et
al. [21] is an alternative to traditional skeletonization following
a binarization. It allows reducing the blood vessels to thin
lines in gray level space. This is important because retinal
images are noisy, what makes finding a global thresholding for
binarization a difficult task. The topological vessel extraction
focuses on connectivity features to obtain a vessel network.
A common approach in image processing consists in the
segmentation of the object of interest followed by the use of
a thinning operation to produce a skeleton. This skeleton is
composed of thin line segments with the same connectivity
and topology from the initially segmented object. The success
of this kind of approach relies on the segmentation quality.
Unfortunately, as we already discussed, the quality of retinal
images is low.

Instead, we avoid the initial segmentation step and use
directly the grayscale image. The thinning algorithm lowers
the pixels gray levels respecting a simple connectivity pattern.
The result is an initial grayscale skeleton image where the
thin bright patterns are preserved and dark areas are thicked.
A further contrast criterion c is employed to eliminate some
spurious branches. The optimal value c is found using a grid
search on the interval (1, 8). After thinning, a crest line
detector produces a binary skeleton corresponding to the local
brighter thin lines in the grayscale skeleton. Then, the skeleton
image is dilated with a disc shaped structuring element. The
radius of the structuring element is adjusted in accordance with



the vessels width. The dilation is depicted by:

Iδ = δ(Is), (3)

where δ(Is) represents the dilation performed on skeleton
image. This last operation makes the width of the vessels
equals to the larger ones [22]. The Fig. 3 illustrates the process.
We note the robustness of the crest line extraction since the
binary skeleton in Fig. 3 (b) cannot be trivially obtained by a
single thresholding of the Fig. 3 (a).
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(a) grayscale skeleton

(b) thinning and crest line detection

Fig. 3. Topological vessel network extraction

D. Intersection

The fourth step of our method consists in the intersection
of the two images: morphological and topological vessel net-
works. The resulting intersection of these two images compose
our preliminary vessel tree. The intersection of these images
is given by:

I∩ = Ib ∩ Iδ, (4)

where Ib represents the sum of top-hat binarized image and
Iδ represents the dilated skeleton image. The intersection
eliminates the noise and part of spurious objects. Thus, the
undesired information that appears in the sum of top-hat image
does not appears in the dilated skeleton image, and vice versa.

E. Smoothing

The final step of the method consists of two main oper-
ations. The first operation is the vessel border smoothing.
This operation makes the segmented vessels have the shape of
the manual segmentation, increasing the resulting quality. For
smoothing, we use a morphological opening operation with
disc shaped structuring element s. The second operation is
the spurious objects elimination. The final segmentation IΩ is
obtained by eliminating small objects that have fewer than p
pixels by using an area opening operation [23]. The values
of these two parameters are found empirically by analysis of
the image features. The segmentation results of each step are
shown in Fig. 4.

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Input image and outputs of segmentation steps. (a) Green channel
of fundus image. (b) Result of parallel grayscale skeletonization algorithm.
(c) Dilated skeleton. (d) Binarized sum of top-hat. (e) Intersection. (f) Final
segmentation

IV. EXPERIMENTS

In this section, we present the databases on which the
retinal vessel segmentation algorithms were evaluated, the
performance measures adopted and the obtained results.

A. Databases

The Digital Retinal Images for Vessel Extraction (DRIVE)
[24] is a publicly available database, consisting of a total
of 40 color fundus eye photographs. The photographs were
obtained from a diabetic retinopathy screening program in
the Netherlands. The screening population consisted of 400
diabetic subjects between 25 and 90 years of age. Forty



photographs have been randomly selected, 33 do not show any
sign of diabetic retinopathy and 7 show signs of mild early
diabetic retinopathy. The set of 40 photographs was divided
into a test and training set both containing 20 images. There
are two hand-labeling available for each test image by two
different human observers. The manually segmented images by
1st observer are used as ground truth and the segmentations
of 2nd observer are tested against the 1st observer, serving
as a human observer reference for performance comparison
truth [25]. The performance of the vessel segmentation algo-
rithms is measured on the test set [6].

The STructured Analysis of Retina (STARE) database [25]
was conceived and initiated in 1975 by Michael Goldbaum,
M.D., at the University of California, San Diego. The full
set contains 400 images, which 40 are used for blood vessel
segmentation and 10 of these contain pathology. Of these, two
observers manually segmented all the images. The 1st observer
segmented 10.4% of pixels as vessel, against 14.9% vessels
for the 2nd observer. The difference in segmentation between
the two observers is due to the fact that the 2nd observer
segmented thinner vessels. The manually segmented images by
1st observer are used as ground truth and the human observer
reference is obtained using the 2nd observer against the 1st
observer.

B. Experiments setup

The mask is a binary image with the same resolution as
that of fundus image. Pixels belonging to the fundus are
marked with ones and the background of the fundus with
zeros [26]. The fundus mask for each image is used to remove
the background noise by multiplying the mask by the original
image and to delimit the region of interest (ROI). The fundus
mask for the DRIVE images are already available in the
dataset, but the STARE database does not offer the masks.
Thus, for each original image of this database, we created a
fundus mask using the Hue, Saturation, and Intensity (HSI)
color. The intensity channel image is thresholded with a low
threshold value to produce the mask since the background
pixels are significantly darker than the fundus pixels.

C. Performance measurements

The performance measures are obtained by the pixel-based
classification result. Pixels in the segmented image can be
classified as a vessel or a non-vessel. There are four possible
classifications. Two of them are correct classifications and
two are misclassifications. The correct classifications are the
True Positive (TP) and True Negative (TN) and the two
misclassifications are the False Negative (FN) and the False
Positive (FP). These terminologies are shown in Table I.

TABLE I
TERMINOLOGIES IN VESSEL CLASSIFICATION.

Vessel Present Vessel Absent
Vessel detected True Positive (TP) False Positive (FP)

Vessel not detected False Negative (FN) True Negative (TN)

Our method is evaluated in terms of accuracy, sensitivity,
and specificity. The accuracy is measured by the ratio of
the total number of correctly classified pixels (sum of true
positives and true negatives) by the number of pixels. The
sensitivity is the ability of the algorithm to detect the vessel
pixels and the specificity is the ability of the algorithm
to detect non-vessel pixels. These performance metrics are
defined in Table II based on the terms in Table I.

TABLE II
PERFORMANCE METRICS FOR VESSEL SEGMENTATION.

Measure Description
Accuracy (TP + TN)/(TP + FP + TN + FN)
Sensitivity TP/(TP + FN)
Specificity TN/(TN + FP)

Other performance metrics are also considered in our eval-
uation, such as False Positive Rate (FPR), False Negative Rate
(FNR), Positive Predictive Value (PPV), Negative Predictive
Value (NPV) and Matthew’s Correlation Coefficient (MCC).
The False Positive Rate (FPR) gives the percentage of pixels
erroneously detected as vessel pixels. The False Negative Rate
(FNR) gives the percentage of pixels erroneously detected as
non-vessel pixels. The Positive Predictive Value (PPV) is the
probability that an identified vessel pixel is a true positive.
It gives the proportion of the identified vessel pixels which
are true vessel pixels. The Negative Predictive Value (NPV)
is the probability that an identified non-vessel pixel is a true
negative. It gives the proportion of the identified non-vessel
pixels which are true non-vessel pixels. Finally, the Matthew’s
Correlation Coefficient (MCC) is used in machine learning and
is a measure of the quality of binary (two-class) classification.
The coefficient can assume any value in the interval between -
1 and +1. A value of -1 indicates a total disagreement between
prediction and observation, 0 no better than random prediction
and +1 indicates a perfect prediction.

These performance metrics are not available for most of the
published methods and are summarized in Table III.

TABLE III
ADDITIONAL PERFORMANCE METRICS FOR VESSEL SEGMENTATION.

Measure Description
FPR FP/(FP + TN)
FNR FN/(TP + FN)
PPV TP/(TP + FP)
NPV TN/(TN + FN)
MCC TP×TN−FP×TN√

(TP+FP)(TP+FN)(TN+FP)(TN+TN)

V. RESULTS AND DISCUSSION

Our method is evaluated on both DRIVE and STARE
databases. The 20 images of the test set with their respective
ground truth segmentation were is used in our experiment.
All the State-of-art methods used only the test set. Thus, our
proposal has been limited to use this set of images.



A. Evaluation
In Tables IV and V is shown the performance of surveyed

method against ours. The results were extracted directly from
the original papers.

TABLE IV
AVERAGE PERFORMANCE RESULTS FOR DRIVE DATABASE.

(PARAMETERS: l = 19; t = 44; c = 6; s = 3; p = 60).

Methodology Accuracy Sensitivity Specificity
Proposed method 0.9565 0.7323 0.9783
Lam et al. [18] 0.9472 - -

2nd human observer 0.9470 0.7763 0.9723
Mendonça and Campilho [8] 0.9452 0.7344 0.9764

Fraz et al. [6] 0.9430 0.7152 0.9769
Zhang et al. [10] 0.9382 0.7120 0.9724

Martinez-Perez et al. [11] 0.9344 0.7246 0.9655
Yang et al. [12] - - -

Proposed method* 0.9607 0.7654 0.9789
*2nd human observer as ground truth.

TABLE V
AVERAGE PERFORMANCE RESULTS FOR STARE DATABASE.

(PARAMETERS: l = 19; t = 42; c = 8; s = 4; p = 52).

Methodology Accuracy Sensitivity Specificity
Proposed method 0.9568 0.6699 0.9797
Lam et al. [18] 0.9567 - -

Zhang et al. [10] 0.9484 0.7177 0.9753
Fraz et al. [6] 0.9442 0.7311 0.9680

Mendonça and Campilho [8] 0.9440 0.6996 0.9730
Martinez-Perez et al. [11] 0.9410 0.7506 0.9569

2nd human observer 0.9348 0.8951 0.9384
Yang et al. [12] - - -

Proposed method* 0.9406 0.6120 0.9787
*2nd human observer as ground truth.

We achieved the best average accuracy and specificity at
DRIVE and STARE databases when compared to these meth-
ods. Our average sensitivity is slightly inferior to Mendonça
and Campilho [8] on DRIVE. However, the sensitivity and
specificity results were not provided in Lam et al. [18]. Fur-
thermore, Yang et al. [12] do not exhibit any of these measures
at all. The advantage of our method is the robustness to noise
features, which most of the segmented non-vessel pixels are
correctly true negative, indeed. It is shown in Table VI the
additional performance measures for both databases.

TABLE VI
ADDITIONAL PERFORMANCE RESULTS.

Metric Database 2nd human Fraz et al.[6] Proposed
observer method

FPR DRIVE 0.0277 - 0.0216
STARE 0.0616 - 0.0020

FNR DRIVE 0.2237 - 0.2676
STARE 0.1049 - 0.2554

PPV DRIVE 0.7756 0.8112 0.7675
STARE 0.8950 0.7294 0.7190

NPV DRIVE 0.9818 0.9600 0.9742
STARE 0.9562 0.9700 0.9624

MCC DRIVE 0.7700 0.7359 0.7245
STARE 0.7316 0.6908 0.6901

As aforementioned, the developed method is effective to
segment retinal blood vessels. Moreover, the ability to detect

non-vessel pixels is the strength of our work, as one can see in
Table VI, in which lowest FPR rates were obtained. Even with
the presence of noise and pathologies, which are responsible
for false positive detections, our method showed robustness
when compared to the 2nd human observer. However, Fraz et
al. [6] did not report these measurements.

The obtained results from DRIVE and STARE databases
can be seen in Figs. 5 and 6, respectively, as well as the 2nd
and the 1st manual segmentation. The best cases occurs when
there is a low presence of thin vessels, since the large vessels
are segmented easily. Thus, the accuracy in this kind of image
is high. Although our method is able to segment some thin
vessels, this still remains a difficult task, resulting in lower
accuracy and sensitivity rates, when there is a large number
of thin vessels, as in other methods. Such behavior can also
be observed in Tables IV and V. Concerning the segmentation
from human observer, the 1st human observer segmented less
thin vessels than 2nd human observer at DRIVE while in
STARE, 2nd human observer segmented more thin vessels
than first one. Thus, the accuracy and sensitivity values in-
crease slightly when adopting the specialist that segmented
less thin vessels as ground truth. Moreover, the poor quality
of STARE in comparison to DRIVE contributes to inferior
results in that database.

VI. CONCLUSIONS AND FUTURE WORKS

An automated method for blood vessel segmentation in
retinal fundus images using the combination of a morpho-
logical and topological extractors was presented in this pa-
per. The morphological extractor was employed to extract
the maximum pixels belonging to the vessel tree while the
topological one was applied to ensure the topological vessel
properties and connectivity. After we combined these two
vessel trees, we smoothed the vessel borders and removed
spurious objects, aiming to get a more accurate retinal vessel
tree. The methodology has been validated in two widely used
databases, namely, DRIVE and STARE, and has been com-
pared against others methods found at literature. In addition
to the high accuracy and specificity metric values obtained,
our proposal can easily adjust itself to other databases by
setting a few parameters, such as the top-hat threshold, contrast
of skeletonization algorithm and the area size of the objects
to be removed at the final step. These adjustments provide
an effective way to increase the segmentation performance
according to the database features. The development of a
technique that can extract a large number of thin vessels,
increasing the sensitivity and the application of the method
on others databases are the topics of future works.
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