
Using Change-sets to Achieve a Bounded Undo and Make Tutorials in 3D Version
Control Systems

Rafael S. T. Vieira, Joaquim B. Cavalcante-Neto, Creto A. Vidal
Computer Science Department

Federal University of Ceará (UFC)
Fortaleza, Brazil

Email: rafaelstv@lia.ufc.br

Guillaume Vialaneix, Claudio T. Silva
Computer Science and Engineering Department

NYU-Poly
New York City, US

Email: csilva@nyu.edu

Abstract—A system that records changes made to a file is
called a Version Control System (VCS). Even thought VCSs
may store all kind of files, we focus on changes made to
polygonal meshes files. Our method allows the user to track
the history of topological and geometrical changes to part
of a model. This part is selected through a bounding box
selection mechanism, and the user can track the change-sets
of the selected mesh subset, i.e., the user can see the difference
between any consecutive versions of the modeling sequence.
With that mechanism, it is possible to construct a sub-tree
associated with the selected region to serve as a tutorial on
how that part was modeled. That sub-tree also allows the user
to undo local changes that do not propagate to the whole mesh.
That, so called, bounded undo is an important feature of our
method. Despite the important contributions, we also point out
some current limitations to our method and discuss ways that
might overcome them.

Keywords-mesh editing; modeling.

I. INTRODUCTION

Our problem is how to allow an artist to undo unwanted
changes on a polygonal mesh respecting spatial constraints.
Currently 3D modelers allow to undo changes, but only
linearly in time. This imposes an order, as such, more than5

an artist wants can be removed.
The data structure that stores changes made to a polygonal

mesh is a version control tree (VCT). VCT implicitly infers
a hierarchy of dependence between operations, which means
that removing a node forces dependent nodes to be removed.10

While traversing a VCT, we find that the numbering of
faces and vertices may change, egde conections may differ,
and overlapping elements and non-manifold structures may
emerge. Our algorithm is able to deal with all those cases.

Contribution: Our method offers two main contribu-15

tions. First, it generates specialized sub-trees for any mesh
regions, which are useful for tutorials. Second, it offers
bounded undo in a mesh VCS, i.e., it allows the user to select
a region of the mesh, and reverse the effects of modeling
changes restricted to the selected region (to undo features20

from a mesh). For instance, we are able to remove a nose
without creating holes or necessarily changing its topology
(Figure 1).

In the Section II, we present a brief history for version
control systems, and an overview of existing methods. Then,25

we describe our method in the Section III, show our results
in the Section IV, and summarize our method as well as
discuss future work in the Section V.

II. BACKGROUND AND RELATED WORK

Version control system: A version control system30

(VCS) is a tool that allows tracing changes made on data. In
this paper, VCSs for 3D meshes are referred to as 3D VCS.

Categories of 3D VCS methods: We can sort the
methods available for 3D VCS in three categories:

• Database[1], [2], [3], [4]: in which modeling software35

deal with mesh data either by storing their information
in data files, or by generating a sequence of mesh
commands on the fly. These methods try to determine
the best course to follow.

• Visualization[5], [6], [7], [8]: These methods seek to40

measure the editing frequency of mesh regions in the
mesh construction sequence, or to display meshes in
the most human-readable way possible by studying and
analyzing the data.

• Geometry Processing [9], [10], [11], [12], [13]: in45

which the properties of the mesh are used in order to
improve the descriptive power of the VCS. The systems
in this category use an enriched version control tree
to generate new meshes or to determine provenance
according to which kind of information they add or50

extract from the mesh.
Previous to our work, Denning et al.[6] proposed a way of
gathering commands by frequency for building a tutorial,
and later Denning and Pellacini [10] worked on a merge
algorithm for 3D version control systems using mesh edit55

distance. Dobǒs working in the area of 3D VCS [14], uses
clustering based on time for provenance [12], and developed
a merge algorithm using scene graphs [9]. However, most of
his work relates to the database category [2], [3]. His thesis
summarizes most of his previous works [13] for further60

information.



BoundedUndo
a. b. c. d.

h. g. f. e.

Figure 1: The construction sequence of the left wing from a spaceship’s mesh (a partial tutorial; Subsection IV-A): a)
Extruding faces; b) Moving vertices; c) Extruding faces; d) Moving vertices; e) Moving faces; f-g) Smoothing mesh.
Bounded undo (h) was achieved by selecting the left wing (orange bounding-box), and undoing steps (e), (d), (c) and (b).
Green faces are in the change-set (i.e., difference between two meshes on the original sequence); and gray faces are constant
and outside the change-set. Notice that a simple undo cannot achieve the result shown in (h), because there are other steps
between the operations shown.

Our method – to extract spatial subsets from a version
control tree and using them for bounded undo – is in
the geometry processing category. Existing methods on this
category are unsuitable for bounded undo due to their65

ways of clustering data that are unaware of spatial changes
(frequency, and scene graphs). For instance, Denning [11]
allows highlighting features from models, but does not con-
sider features that may be disconnected, or inside the mesh
(for instance, undoing a mouth using his method may leave70

teeth behind the scene). Moreover, because his technique
does not have a classification method for operations, an
undo operation affects other operations that must not be
removed (global operations, explained later). The same is
also true to the technique from Dobǒs [13], due to his scene75

graph analysis only dealing with low level features. The most
recent works from Denning and Pellacini [10], [11] continue
clustering data by frequency.

Unrelated to 3D VCS, the works by Funkhouser et al.[15]
and Zheng et al.[16] hold some similarities to ours, but lack80

a gradual spatial selection, and is unconcerned with change-
sets. Notice that we gather changes on a volumetric region
along the production of a graphic asset. And our method can
work together with the method of Denning et al.[6]; while
their method is a good way of displaying mesh construction,85

it is unable to gather changes by volumetric mesh regions.
In the next section, we detail our method (Section III).

III. METHOD

In the following subsections, we discuss the concepts
(Subsection III-A), the prerequisites (Subsection III-B), and90

the overview of the algorithm (Subsection III-C). Then, we
present its steps: classification of operations (Subsection

III-D), the propagation of the selection (Subsection III-E),
and the sub-tree generation process (Subsection III-F). Fi-
nally, we present a synthetic view of the algorithm (Subsec-95

tion III-G).

A. Concepts

This subsection describes necessary concepts for under-
stating our work.

Version Control Tree (denoted E): The data structure100

used by version control systems is a version control tree
(VCT): a set of connected nodes without cycles. The tree
is also a directed acyclic graph (DAG) [17] if a tree has
orientation between nodes. A DAG may serve as input to our
algorithm, but, throughout this paper, a version tree refers105

to a VCT.
Node (denoted t ∈ N): A unit of information, which

contains ids, labels, relations with other nodes, and high-
level API functions, i.e., software-specific functions (with
their parameters).110

Operation (denoted OP ): Mesh reshaping through
insertion, deletion, or transformation of a mesh subset.
Examples of operations are deleting a face, rotating a part
of a mesh, adding hair details to a given mesh, etc.

Change-set (denoted ∆): The result of an operation,115

i.e., the set of differences between two meshes on the same
tree (the mesh before and after an operation). All mesh
elements (i.e., vertices, edges, and faces) changed by an
operation belong to a change-set, which implies its spatial
volume.120

Construction sequence: A path on the tree: a sequence
of nodes that goes from the root to a leaf. A set of operations
made in a prefined order, e.g., 0, 1, ..., t− 1, t.



CG Software

User Input

Plug-in

Software-specific
function

Software-specific
function

Change-set
+ Classification

Software-specific
function

Change-set
+ Classification

Intersects
with selection

Bounding-box
selection

Original Tree c. Extracted Treeb. Specialized Treea. Enriched Tree

Algorithmic scope

Figure 2: Overview of our algorithm (Subsection III-C) with the original tree in gray as its input: a) In green, all nodes
of the original tree are enriched with the information of its change-set and a classification; b) A bounding-box selection
is made and propagated, each node (with its change-set) that intersects with the propagated selection is in yellow; c) All
non-marked nodes are discarded to obtain the sub-tree.

Version (denoted V): The resulting mesh of a construc-
tion sequence, i.e., a mesh after all change-sets are applied125

to the mesh at the beginning of the sequence.
In the next subsection, we present the prerequisites to our

algorithm (Subsection III-B).

B. Prerequisites

The required inputs to our method are a version tree (or130

a DAG) and a selection. All commands issued by the user,
while using some modeling software, must be stored in a
VCT. The root of a version tree contains an API function
that inserts, for instance, a cube or a triangle in the scene,
and every API function applied to the initial object becomes135

a node in the version tree.
Operations from the version tree must have input param-

eters (a mesh region), and an API function [18] from a 3D
modeler(Figure 3). They must also guarantee atomicity, i.e.,
if two or more API functions use the same parameters, then140

the software that is building the VCT must save each API
function with its parameters. An operation is just the API
function when parameters are unnecessary.

Our method extracts a change-set from each operation;
therefore, parameters inside a node must contain all elements145

(i.e., faces, edges and vertices) on which the API function
acts. A connection between attributes of the elements, anal-
ogous to the one Maya allows [19], is also a parameter to
the purpose of this paper. In the next subsection, we give an
overview of our algorithm (Subsection III-C).150

C. Overview of the algorithm

Our algorithm uses as input a version tree and a bounding-
box selection (with an index for a VCT node) and proceeds
as follows (Figure 2): first, the change-sets of the operations
are found and VCT nodes are classified as local or as global155

Mt−1 Input Parameters API function

OPt

Figure 3: An operation (OPt) in a node from the version
tree acts upon a state of the mesh (Mt−1) and requires its
input parameters (in orange) and an API function from the
modeler (Subsection III-B).

(Subsection III-D); second, the input bounding-box selection
is propagated upwards and downwards in the version tree
according to the classification obtained from the first step
(Subsection III-E) – depth-first search [20] was used to visit
every node – and intersections between the propagated160

selection and the change-set for each node are computed;
last, a sub-tree (i.e., a subset of the tree) is generated
with nodes that belong to any non-empty intersection set
(Subsection III-F).

Figure 2 provide a graphical overview of our algorithm.165

In the next subsections, we detail these three steps, starting
with the classification of the operations (Subsection III-D).

D. Classification of the operations

We have first traversed the whole VCT, generating meshes
from each node. Geometric hashing[21] allow us to use170

coordinates of a vertex as an index (coordinates are used
as entries in a formula to output an index which references
a fixed-size array), and to find a mapping set of vertices be-
tween all related meshes (parent and child) in a construction



St−1

St

Mt−1 Mt

OPt

OPt
−1

Figure 4: Evolution of the selection with a single operation
on the mesh (Subsection III-E): assuming that t− 1 is the
parent of the node t without loss of generality, whenever
the operation OPt : Mt−1 →Mt is global and modifies the
geometry, the corresponding selection St−1 is transformed
into St by the same operation. When propagating upwards,
the operation OPt

−1 is used to transform St into St−1. The
color palette is the same as Figure 7 uses.

sequence. This means we know how each vertex that has not175

changed maps from one node to another. After this process is
done, we have used the complement of mapped-set to obtain
the change-set. Notice that this change-set can be found in
both parent and child node (complement is obtained from
both nodes).180

Vertices that do change can be associated to the previous
ones by propagating topology from mapped vertices, and,
since we know change-sets from both parent and child,
by mapping parent-change-set volume with child-change-
set volume by hierarchical subdivision of volume[22]185

(bounding-boxes[23] around change-sets are divided recur-
sively until all vertices are mapped respecting topology).

A mapping set allow us to classify a change-set in a
node (denoted ∆U (OPt)) as global, if the change-set region
contains the whole mesh, or, as local if it does not. Global190

operations determine implicitly points in a VCT where
mapping vertices start and stop, and because of this, they
cannot be removed. Each global operation is a root node of
its own change-set-tree.

E. Propagation of the selection195

A spatial selection is made using a Bounding Box (BB
[23]) over a version following the classification of opera-
tions (Subsection III-D). This selection is then propagated
upwards toward the root and then downwards traversing the
entire tree (Figure 5); hence, every node of the tree has200

a selection associated with it. This is done to keep track
of the selected volume. Selections are affected by specific
global operations that alter the mesh geometry – translation,
rotation, shearing, scaling, etc (Figure 4).

F. Sub-tree Generation205

The specialized sub-tree is generated after the propagation
of the selection (Subsection III-E) by traversing the whole
tree as well as testing which change-set vertices are inside

a) St

b) OPt
−1

c) OPt

Figure 5: The propagation of a selection (Subsection III-E):
visited nodes are in orange and unvisited nodes in gray.
The input step is a bounding-box selection at a node t
(a). From there, the spatial selection is propagated upwards
by applying the inverse of global operations when needed
(b). Then, the selection is propagated downwards using,
whenever necessary, the same geometrical transformations
applied to the mesh (c).

or outside the corresponding spatial selection for each node;
and, if necessary, by also testing intersection between their210

faces (denoted ∆St(OPt)). To speed up this process another
kind of hierarchical subdivision of space is used, so that tests
can be performed locally [24].

A node is inserted into the sub-tree if it produced a
change-set inside the volume defined by the selection; once a215

tree is traversed, a sub-tree is obtained, and can be modified.
It is possible to display the original version of the main tree
and the specialized sub-tree (Figure 7).

Bounded Undo: To remove operations based on a mesh
region from a version tree implies removing local nodes220

from the generated sub-tree after all previous steps. Any
bounded undo operation to the sub-tree is applied by making
the node transparent in the main tree: the parent of the
undone node becomes the parent of its children. If necessary,
interaction with the sub-tree generates a warning of possible225

data loss from deleting global nodes in the sub-tree (local
nodes can still be removed). In the next subsection, the
whole algorithm for finding the specialized sub-trees is
presented (Subsection III-G).

G. Algorithm230

The algorithm for extracting the sub-tree (Algorithm 1) is
described in the following. Given a subset U ⊆ R3, assume
a single spatial selection St exists such that ∀t≤n : (U ⊃ St,
Mt(Ft, Vt)), where t, n ∈ N; St is initially an axis-aligned
bounding box; Mt is a mesh, i.e. a pair of a set of faces Ft235

as well as a set of vertices Vt; n is the number of nodes in
a VCT, and M0 = ∅.

Next, assuming that t− 1 is the parent of the node t
without loss of generality and y ∈ {F, V }, we define as
follows: the version tree E as the union of all operations240

E =
⋃n

t=0 OPt; an operation OPt : Mt−1 →Mt as

OPt = {x ∈ P(Λ) | Λ = {∀t :
⋃

{D(y), I(y), T (Vt−1)}}},
(1)

where P(Λ) is the power set of Λ, D : Mt → Mt − {y}
and I : Mt → Mt ∪ {y} are respectively the deletion and



the insertion of objects, T:R3 → R3 is a transformation; and
the region affected by a spatial selection as245

∆St(OPt) =

t⋃
i=t−1

{yi ∈ Mi | (yt−1 6= yt)∧((Fi ∩Si)∨(Vi ∈ Si))}.

(2)
All operations inside the version tree set E are analyzed

accordingly to the change-set regions ∆U (Equation 2) in
steps 1 to 5. When operations affect the whole subset U
– rigid body transformations, scaling, shearing, etc – they
are classified as global; otherwise they are classified as local250

ones. The method propagates the input selection (step 6) for
previous nodes in a path (steps 9 to 15); going upwards in
the version tree and applying on Snode the inverse matrix
in OP−1

node if it is a global node. Finally, in steps 17 to
26, the method finishes creating the spatial selection for255

unvisited nodes (downwards into the version tree), discovers
which regions intersect with the selection ∆Snode

at Step 22
(Equation 2), and produces the set ES . In the next section,
we present the obtained results with this algorithm (Section
IV).260

Algorithm 1 Calculate ES ⊂ E

1: for each node of E do
2: type(OPnode)← local
3: if ∆U (OPnode) ⊃Mnode then
4: type(OPnode)← global

5: St ← BB selection in a version (node t)
6: node← t
7: previousNode← parent(node)
8: while node 6= root do
9: SpreviousNode ← Snode

10: if type(OPnode) == global then
11: SpreviousNode ← OP−1

node(Snode)

12: node← previousNode
13: previousNode← parent(node)

14: node← root
15: while node 6= t do
16: if Snode == ∅ then
17: previousNode← parent(node)
18: Snode ← SpreviousNode

19: if type(OPnode) == global then
20: Snode ← OPnode(SpreviousNode)

21: if ΛSnode
(OPnode) 6= ∅ then

22: ES ← ES ∪OPnode

23: node← node + 1

IV. RESULTS

In this section, we describe obtained results from tutorials
as well as bounded undo (Subsections IV-A and IV-B) and
discuss the limitations of the current algorithm (Subsection
IV-C).265

Figure 6: Versions of 3 meshes in a VCS and spatial selec-
tions (in orange) associated with each one of them. Through
some of these selections, we have extracted specialized sub-
trees for creating the tutorials (Subsection IV-A) and for
applying the feature of bounded undo (Subsection IV-B).

Table I: Compairison of our algorithm and Denning’s.

Mesh Deltas Timing
Ours 3DFlow

Helmet 1321 1.7s 5s
Hydrant 691 1.25s 4s
Robot 1810 8s 15s
Shark 1457 1.1s 6s
Biped 1267 0.45s 5s

A. Creating a tutorial

A tutorial is an account or explanation of a subject, printed
or on a computer screen, intended for private study. Our
tutorial is made of an image printed on a display device
with a brief explanation on each step to teach how a specific270

region was created. However, a specialized sub-tree must
be found before a modeling tutorial is created. Using a
BB selection over a mesh region (in a version; Figure 6),
our algorithm extracted all necessary nodes; the obtained
construction sequences from the sub-tree are examples of275

tutorials such as the wings from the spaceship mesh (Figure
1), the front legs as well as the ears of the horse mesh (Figure
7), and the mustache of Don Quixote mesh (Figure 9). Next,
we show the results from the bounded undo (Subsection
IV-B).280

B. Bounded undo

To achieve bounded undo, we have used a bouding-
box (BB) as a spatial selection over a mesh volume in a
version (Figure 6) to obtain a specialized sub-tree. Then, we
removed some or all sub-tree nodes to make new versions285

in the VCT. For instance, we have removed some details
from the wings of the spaceship mesh, which created a
new version as can be seen in Figure 8; no modeling was
necessary at all.

Albeit we have selected just the left wing (Figure 6), since290

some undone operations extended to both wings (Figure 1),
the bounded undo affected both of them (Figures 8c and 8d).

In the best scenario, operations are limited to the interior
of the selection; an example is the construction sequences
of the front legs from the horse mesh (Figure 7). We also295



Table II: Analysis of the algorithm. O: original VCT; E: enriched tree; S: specialized tree; and T : specialized sub-tree
(Figure 2)

Mesh A selection No. of nodes: sub-tree / VCT Timing
O → E E → S S → T

Spaceship Vertical Stabilizer 8 / 92 <1s <1s <1s
Left Wing 16 / 92 <1s <1s <1s

Horse Ears 147 / 1196 <1s 1.4s <1s
Head 353 / 1196 <1s 1.7s <1s

Front Legs 104 / 1196 <1s 1.5s <1s
All Legs 210 / 1196 <1s 1.8s <1s

Don Quixote Mustache 177 / 1648 <1s 5.2s <1s
Goatee 144 / 1648 <1s 5.2s <1s

Left Hand 110 / 1648 <1s 5.4s <1s
Legs 134 / 1648 <1s 7.3s <1s

1024

565

566 575

577

1090

1091

590

591

1111

1112

610

1159

1160 1161 1180

1182 1183 1185 1186

1187 1196

315

316 317 411

412 420

421 424

425 426 430

611

431 442

443

422

1023

1112

575

577

1160 1161 1196

638

809

589

591

1108

1159

565

566

1090

421

1091 1111

1112

412 420

1155

422

411

424

425 431 443

selection(Ears)

selection(FrontLegs)

Figure 7: This image illustrates how tutorials (Subsection
IV-A) are made: two specialized sub-trees were generated
from the main version tree of the horse mesh. Nodes in yel-
low show that they have preserved their original relationship
on the sub-tree, while other nodes in orange show that they
have changed. The full tree from the mesh (in the middle)
has 1096 nodes, the sub-tree from selecting the ears has 147
nodes (bottom left) and the sub-tree from selecting the front
legs has 104 nodes (top right). Orange faces belong only
to the selected region; green faces belong to the change-set;
yellow faces belong to the change-set as well as the selected
region; gray faces are apart from the change-set as well as
the selection.

(a) Vs.1

(b) Vs.1(Vs.2) (c) Vs.1(Vs.3) (d) Vs.1(Vs.4)

Figure 8: Changing a specialized sub-tree, we achieved the
bounded undo (Subsection IV-B): a) An unchanged version
Vs.1; b) The version Vs.1 after removing all operations on
the vertical stabilizer Vs.1(Vs.2); c) The version Vs.1 after
removing some operations on the wings Vs.1(Vs.3); d) The
version Vs.1 after removing some operations on the wings
and some (a subset) on the vertical stabilizer Vs.1(Vs.4).

have removed the ears from the horse mesh (Figure 11) and
some details from the Don Quixote mesh: mustache (Figures
9 and 10b), goatee (Figure 10c), and hair (Figure 10d).

In all examples, we have applied the bounded undo to
the original version by deleting nodes from the sub-tree, but300

notice that the affected versions within a VCT depend on
the undone, local operations. The removed nodes became
invisible in the main tree, but it was possible to restore
undone nodes from the sub-tree and the previous state of
the VCT. In the following Subsection, we discuss the current305

limitations of the algorithm (Subsection IV-C).

C. Discussion

Storing all changes made by an artist in a VCS may be
seen as a limitation if someone stores all meshes. However,
a function with its parameters, as we require, has its size310

comparable to a single line of a text file (around 1024 bytes).
As such, if the artist works over 40 hours a week, executing
a function each second, we expect to have 144 MB of data



1559

1560

1566

1570

1609

1610 1637

1638 1641

1642 1643 1647

1567 1568

1571

1520

1521 1525

1526

1561

1562

1563

1564

1565

1526

497 1520

1521

1559

1525

496

1647

498

486

1560

359

363

1561

1560 1561

1566

1570

1609

1610 1637

1638 1641

1642 1643 1647

1567 1568

1571

1557

1558

1562

1563

1564

1565

1559

Divide Undo operations

1526 1647

1520

1521

486

496 497 498

1525

359

363

Remove mirror’s
nodes

Conquest

Figure 9: This sequence illustrates the bounded undo feature
(Subsection IV-B), explained under the divide-and-conquer
paradigm: The sub-tree is extracted (177 nodes) from the
main tree with 1648 nodes (divide); two nodes are removed
from the sub-tree that is merged back in the main tree
(conquer). The node 1647 in yellow shows a version Vq.1

and his modified version Vq.1(Vq.2) after the process is
completed (Figures 8, 10, and 11 shows more examples
of this process). The meshes use the same color palette as
Figure 7 does.

per week, in a year we shall have approximately 7 GB of
storage, which any regular hard disk is able to handle. Please315

notice, that textures or images, as well as any other files that
may exist in the VCS do not matter to our algorithm, only
geometric data.

Our algorithm has limitations: the specialized sub-tree
may contain operations that extend beyond the desired320

area. For illustration, a specialized sub-tree was generated
selecting the space around the mustache with a BB (Figure
6). However, since this selection intersects with part of the
face (Figure 10a), some operations that are unrelated to the
mustache are present in the sub-tree. In practice, this is325

insignificant to the size of the sub-trees, which remained
smaller than the whole version tree – the sub-tree being a
member from the power set of the VCT. The decrease on
its size was up to over 90% (Table II) while its display and
interaction improved.330

A bounded undo may affect more than the desired area
if the change-set is greater than the selected volume (tres-
passing the boundary). For instance, the left wing from
the spaceship mesh was selected (Figure 1), however, some
nodes had operations affecting both wings (their attributes335

were connected). Therefore, the removal of operations from
the left wing has also affected the right wing (Figure 8).

Some objects in the scene may need to be removed
after the bounded undo. For instance, the mustache of Don
Quixote mesh was first created as a sphere that was dragged340

and transformed in the scene (Figure 9). Therefore, a sphere
is left on the associated versions if we remove all operations

(a) Vq.1

(b) Vq.1(Vq.2) (c) Vq.1(Vq.3) (d)
Vq.1(Vq.4)

Figure 10: Changing a specialized sub-tree, we achieved the
bounded undo (Subsection IV-B): a) An unchanged version
Vq.1; its color palette is the same as Figure 7 uses; b)
The version Vq.1 after removing operations on the mustache
Vq.1(Vq.2); c) The version Vq.1 after removing all operations
on the goatee Vq.1(Vq.3); d) The version Vq.1 after removing
all operations on the goatee and on the hair Vq.1(Vq.4).

(a) Vh.1 (b) Vh.1(Vh.2)

Figure 11: Changing a specialized sub-tree, we achieved the
bounded undo (Subsection IV-B): a) An unchanged version
Vh.1; b) The version Vh.1 after removing all operations on
the ears Vh.1(Vh.2).

associated with the mustache.
Traversing the whole version tree while performing geo-

metrical operations requires time (Table II), and our algo-345

rithm was parallelized to increase its speed, and we have run
multiple selections at a multi-core machine to create multiple
sub-trees at a time. Our speed-up was so great that we have
achieved better results than 3DFlow algorithm [25], which is
currently among the state of the art algorithm for change-sets350

operations (Table I). Notice that it is as fast as O(nlogm) to
access a known sub-tree; where n is the number of sub-tree
nodes, and m is the number of VCT nodes.

In the following section, we summarize our work (Section
V).355



V. CONCLUSION

We have introduced a new feature for 3D VCS, a bounded
undo. Our method made a specialized sub-tree from a VCT
based on change-sets and, and removed operations on a mesh
volume while preserving the remaining mesh respecting the360

limitations discussed. Moreover, another application for our
specialized sub-tree is a tutorial for specific mesh features;
each construction sequence from the sub-tree with a descrip-
tion of the operations made is a candidate. It is possible to
improve the results of tutorials by combining our work with365

the one from Denning et al.[6].
As future work, we expect to find more properties for

change-sets, to improve the selection to a more flexible
geometry, and to find new applications for our sub-tree
– experimenting with the automatic generation of graphic370

assets for VCSs.

REFERENCES

[1] H.-T. Chou and W. Kim, “A unifying framework for version
control in a cad environment,” in Proceedings of the 12th
International Conference on Very Large Data Bases, ser.375

VLDB ’86. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1986, pp. 336–344.

[2] J. Doboš and A. Steed, “3d diff: An interactive approach
to mesh differencing and conflict resolution,” in ACM SIG-
GRAPH 2012 Talks, ser. SIGGRAPH ’12. New York, NY,380

USA: ACM, 2012.

[3] J. Doboš, K. Sons, D. Rubinstein, P. Slusallek, and A. Steed,
“Xml3drepo: A rest api for version controlled 3d assets on
the web,” in Proceedings of the 18th International Conference
on 3D Web Technology, ser. Web3D ’13. New York, NY,385

USA: ACM, 2013, pp. 47–55.

[4] P. Nyamsuren, S.-H. Lee, and S. Kim, “A web-based revision
control framework for 3d cad model data,” International
Journal of Precision Engineering and Manufacturing, vol. 14,
no. 10, pp. 1797–1803, 2013.390

[5] S. L. Su, S. Paris, F. Aliaga, C. Scull, S. Johnson, and
F. Durand, “Interactive visual histories for vector graphics,”
no. MIT-CSAIL-TR-2009-031, June 2009.

[6] J. D. Denning, W. B. Kerr, and F. Pellacini, “Meshflow:
Interactive visualization of mesh construction sequences,”395

ACM Trans. Graph., vol. 30, no. 4, pp. 1–66, Jul. 2011.

[7] H.-T. Chen, T. Grossman, R. Schmidt, B. Hartmann, G. Fitz-
maurice, and M. Agrawala, “History assisted view authoring
for 3d models,” ACM Conference on Human Factors in
Computing Systems, 2014.400

[8] J. Freire, D. Koop, F. Chirigati, and C. Silva, “Reproducibility
using vistrails,” To appear in Implementing Reproducible
Computational Research, 2014.

[9] J. Doboš and A. Steed, “Revision control database for 3d
assets,” 2012.405

[10] J. D. Denning and F. Pellacini, “Meshgit: Diffing and merging
meshes for polygonal modeling,” ACM Trans. Graph., vol. 32,
no. 4, pp. 1–35, Jul. 2013.

[11] J. D. Denning, “ModFlows: Methods for Studying and Man-
aging Mesh Editing Workflows ,” Ph.D. dissertation, Dart-410

mouth College, Computer Science, Hanover, NH, June 2014.

[12] J. Doboš, N. J. Mitra, and A. Steed, “3d timeline: Reverse
engineering of a part-based provenance from consecutive
3d models,” Computer Graphics Forum (Special issue of
Eurographics 2014), 2014.415

[13] J. Doboš, “Management and visualisation of non-linear his-
tory of polygonal 3d models,” Ph.D. dissertation, UCL (Uni-
versity College London), 2015.

[14] “3d repo: 3d version control system,” http://3drepo.org/, 2014,
online; acessed 2014-02-1.420

[15] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer,
A. Tal, S. Rusinkiewicz, and D. Dobkin, “Modeling by ex-
ample,” ACM Transactions on Graphics (Proc. SIGGRAPH),
Aug. 2004.

[16] Y. Zheng, D. Cohen-Or, M. Averkiou, and N. J. Mitra,425

“Recurring part arrangements in shape collections,” Computer
Graphics Forum, 2014.

[17] E. Sink, Version Control by Example. Pyrenean Gold Press,
2011.

[18] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device430

Drivers, 3rd Edition. O’Reilly Media, Inc., 2005.

[19] “Maya autodesk,” http://usa.autodesk.com, 2014, online;
acessed 2014-02-1.

[20] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson,
Introduction to Algorithms, 2nd ed. McGraw-Hill Higher435

Education, 2001.

[21] H. J. Wolfson and I. Rigoutsos, “Geometric hashing:
An overview,” IEEE Comput. Sci. Eng., vol. 4,
no. 4, pp. 10–21, Oct. 1997. [Online]. Available:
http://dx.doi.org/10.1109/99.641604440

[22] R. P. I. I. P. Laboratory and D. Meagher, Octree
Encoding: a New Technique for the Representa-
tion, Manipulation and Display of Arbitrary 3-
D Objects by Computer, 1980. [Online]. Available:
https://books.google.com.br/books?id=CgRPOAAACAAJ445

[23] C.-T. Chang, B. Gorissen, and S. Melchior, “Fast oriented
bounding box optimization on the rotation group so(3,R),”
ACM Trans. Graph., vol. 30, no. 5, pp. 122:1–122:16, Oct.
2011.

[24] R. Yokota and L. A. Barba, “Hierarchical subdivision of450

space in FMM (fast multipole method),” 03 2012. [Online].
Available: http://dx.doi.org/10.6084/m9.figshare.91440

[25] J. D. Denning, V. Tibaldo, and F. Pellacini, “3dflow:
Continuous summarization of mesh editing workflows,” ACM
Trans. Graph., vol. 34, no. 4, pp. 140:1–140:9, Jul. 2015.455

[Online]. Available: http://doi.acm.org/10.1145/2766936


