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Fig. 1. The Spectral Descriptor: the process of extracting data from the 3D object is shown in the first line; the second line illustrates how the retrieval can
be faster with this descriptor.

Abstract—Content-Based Image Retrieval (CBIR) aims to
retrieve similar graphical objects from large databases based
on their contents. CBIR requires definition of descriptors, algo-
rithms that condense information from the object in order to
represent it usually as a real number or a vector in Rn. This ar-
ticle presents the Spectral Descriptor, a new descriptor designed
for retrieving three-dimensional geometric objects applied to aid
the diagnosis of Congestive Heart Failure (CHF). Our descriptor
is based on techniques of compressive sensing and rewrites the
coordinates of 3D objects vertices on a basis on which they
have a sparse representation. Tests with surfaces reconstructed
from heart MRI images, specifically from left ventricle, show
that the descriptor has presented a good performance, reaching
an average precision of approximately 85% for CHF and 71%
for non-CHF cases, maintaining high levels of precision. Results
also showed that the Spectral Descriptor can decrease the high
dimensionality of features vectors in CBIR systems.

Keywords-Content-Based Image Retrieval (CBIR); Spectral
Descriptor; Three-dimensional Objects; Congestive Heart Failure

I. INTRODUCTION

Medical images and objects, regarding to two-dimensional
(2D) and three-dimensional (3D) domains respectively, are
increasingly common in health area aiming at aiding the
diagnosis. However, these objects generate a huge volume of
data to be constantly stored and retrieved, becoming unfeasible
finding similar cases by manually querying the set of objects.

Content-based image retrieval (CBIR) has been investigated
to minimize this problem. Its goal is finding in an image
database the most similar objects to an object provided as a
query object. To reach this goal, CBIR extracts characteristics
from the object by using algorithms named descriptors, forms



a vector with the extracted characteristics and applies methods
to measure the similarity among objects. Considering the
health context, CBIR has been well explored in 2D domain,
but the complexity of 3D domain objects has limited its
applications.

Three-dimensional cardiac objects are commonly used in
the clinical day-to-day to aid the diagnosis of heart diseases.
Usually they are reconstructed from slices obtained by Mag-
netic Resonance Imaging (MRI) or Computed Tomography
(CT). As other health areas, the volume of data stored is huge
and it is not trivial to find specific cases in the images database.
At the same time, retrieving similar cases can be an efficient
strategy to aid to compose a diagnosis.

Some cardiac diseases present change in the shape of the
heart, which can be better observed in 3D objects than in 2D
slices sequence. An example is the Congestive Heart Failure
(CHF), which present changes mainly on the left ventricle. A
CBIR system to retrieve cases similar to one provided as a
query object can be an important tool to aid the diagnosis of
this anomaly.

This work presents a new descriptor named Spectral De-
scriptor aiming at extracting features from 3D objects to repre-
sent them and, thus, contribute to efficient retrieval. We applied
this descriptor to compare shapes of different left ventricles to
aid the diagnosis of CHF. However, it can be applied in any
problem with the same nature, i.e., problems where someone
desires retrieve similar 3D objects from a database considering
similarity among their shapes. The descriptor uses a singular
value decomposition (SVD) in a Laplacian matrix computed
from the 3D geometric objects in order to evaluate its Spectral
Coordinates.

This descriptor relay on two basic ideas: sparsity as well as
incoherence. Sparsity expresses the idea that the number of
degrees of freedom of a known signal is significantly smaller
than its length. Many natural signals such as images, sounds
and, specially, geometrical meshes are sparse or they have a
sparse representation in a proper basis. Incoherence extends
the duality between time and frequency. The basic idea is that
signals that have a sparse representation in a specific basis
must be spread out of this domain.

According to the work of Schulz, Velho and Silva [1],
some authors describe this duality as a Uniform Uncertainty
Principle (UUP) which guarantees that a signal cannot be
simultaneously dense in both two domains.

Initial results show that its performance is high, even for
high values of recall. The novelty presented in this paper, in
addition to the descriptor itself, is its use in the CBIR’s context,
particularly to be used in a computer-aided diagnosis system.

II. BACKGROUND

In a previous work, Emamnuel J. Candès [2] suggests
the possibility of new data acquisition protocols that trans-
late analogical information into digital information with less
sensors than it was previously considered necessary. In the
same work, the author provides the key mathematical results
underlying this new theory. Candès and Wakin [3] discuss

sensing mechanics in which a signal f(t) is stored using inner
product with linear functions, as shown in Equation 1.

yk = 〈f(t), φk(t)〉 . (1)

Specifically, given a n−dimensional k−sparse signal S, we
aim to find a m × n measurement matrix ΦΩ and solve the
optimization problem presented in the Equation 2.

min ‖S‖l1 , (2)
subject to ΦΩS = Y

The components y1, . . . , ym of the Y vector are called
measurements of the signal S, and Ω is a random measurement
subset of size |Ω| = m. Compressive Sensing (CS) theory aims
to choose ΦΩ to take as little measurements as possible and
yet, to produce a reliable reconstruction of S.

Most times, a signal X must be rewritten as (ΨX = S) in
a proper basis in order to have a sparse representation, where
Ψ is a change of basis matrix. Thus, instead of S in Equation
2, we have:

ΨX = S ⇐⇒ Ψ∗S = X

ΘΩS = Y,where ΘΩ = ΦΩΨ∗

Many natural signals such as images, sounds and, specially,
geometrical meshes are sparse or they have a sparse represen-
tation in a proper basis. We explore, in this work, an approach
that uses this new acquisition paradigm (Compressive Sensing)
applied to geometric meshes. Thus, we can achieve a sparse
representation, and use it a descriptor in a 3D CBIR context.

A. Spectral transformation

As described in Bı́scaro and Lima [4], our algorithm de-
composes the mesh into two data sets: vertices and faces.
We focused our study on the mesh geometry, i.e., the set of
vertices. Thus, the set of faces was kept the same previous
set. We decompose the set of vertices into three vectors called
X , Y and Z, each one representing the data set of vertices in
an axis of R3. However, the data from these vectors are not
in a sparse representation. So, we need to perform a spectral
decomposition using a Laplacian matrix defined as follows.

First, consider E the set of edges of a mesh M and let di
be the number of immediate neighbors of a particular vertex
vi (the valence or degree of vi). Let A be the adjacency or
connectivity matrix of M , as shown in Equation 3.

Aij =

{
1, if (vi, vj) ∈ E
0, otherwise (3)

and let D be a diagonal matrix such that Dii = di. Then, the
Laplacian Matrix in relative coordinates is defined as:

L = I −D−1A. (4)

Next, we calculate the first k eigenvectors through a SVD
decomposition, L = UΣV ∗ where U is an unitary matrix



n × k; Σ is a k × k diagonal matrix and the k × n unitary
matrix V ∗ denotes the conjugate transpose of n×k matrix V .
Each vector X,Y and Z is multiplied by U to obtain a sparse
representation.

An example of this approach is shown in Figures 2 and 3.
Figure 2 shows an original object, where Figure 2b illustrates
the dense nature of the vertices’ coordinates. The x-axis
represents the number of vertices while the y-axis represents
the magnitude of the values. The blue, green and red colors are
used to distinguish the axes X , Y and Z, respectively. Figure 3
shows the result of the spectral transformation, with k = 300.
Figure 3a shows the reconstructed object from the 300 most
significant coefficients. The coordinates become more sparse
after applying the change of basis, as shown in Figure 3b.

(a)

(b)

Fig. 2. Plot of the spectral and the Cartesian coordinates of a single
mesh: (a) Original object: 40,789 vertices and 79,524 triangles. (b) Cartesian
coordinates.

In this example we get a representation that requires only
0.73% of the initial amount of the object vertices.

B. CBIR

In general, CBIR systems allow to retrieve in a database,
the objects that are similar to an object provided as an input.

Almost every CBIR system can be performed in four stages:
Pre Processing; Feature Extraction; Similarity Comparison

(a)

(b)

Fig. 3. Object after Compressive Sensing: (a) 3D reconstructed object. (b)
Spectral coordinates.

and Relevance Feedback.
During the Pre Processing step, the image or the geometric

object, in our case, investigated in order to prepare it to feature
extraction. Techniques to remove noise and to enhance regions
of interest are commonly used in this step.

In the Feature Extraction stage, the descriptors are de-
veloped. They are algorithms responsible for the low-level
object description. Features such as color, shape, and texture
are investigated and processed. Then, they are represented in
a more comparative way, usually numbers. Thus, the set of
features composes a “features vector”. Researchers have been
studied faster and more robust extraction methods aiming to
increase the accuracy of the CBIR systems [5]. The informa-
tion resultant of this process is stored and indexed in a database
system.

The step of Similarity Comparison aims to compute the
difference between two objects based on their features. One
of these objects is given as search parameter while the other
is stored in the database system and had its features previ-
ously extracted. Distance functions are the simplest methods
used in this step, but it is also possible to apply statistical
techniques and other computational methods, such as artificial



intelligence. There are many ways to exhibit the results for
users. In general, the most used is the ranking method, which
presents thumbnail images sorted according to their similarity
degree in relation the object provided as the query model. [6].

The Relevance Feedback is an optional step in the CBIR
systems. It aims to decrease semantic gap existing between
user and computer. Through an user evaluation about results
presented is possible to refine the search and improve the tool
precision [7].

C. Congestive Heart Failure

CHF is a common chronic cardiac disease which affects
about 22 million people in the world and it is identified 2
million new cases [8] per year. This disease is related to the
ventricles chambers dysfunctions, mainly on left ventricle.

The main characteristic of CHF is the inability of the heart
achieve the demand of the different organ systems, causing an
extra strain on the heart to supply this deficiency. In a long
term, this overload could deform the ventricles structures [9].
These ventricle deformation are small and their identification
requires the analysis of many two-dimensional slices of the
images exam – usually MRI or CT. It is a difficult task,
especially when the physician do not have much expertise on
this subject.

III. RELATED WORKS

In recent years, particularly in medical field, CBIR systems
focused in 3D domain have been little explored in the litera-
ture.

The work of Arya et al. [10] was one of the first to create
a rudimentary 3D CBIR system for brain images. Their CBIR
system had performance limitations due to the amount of data
to be processed.

Yanxi and Dellaert [11] presented a weighted similarity
metric based on Bayes decision theory. The authors applied
their technique in recovering neuro-cardiological CT images
for both healthy and injured brains. The methodology exploits
the fact that the normal human brains present an approximate
bilateral symmetry, which is often absent in pathological
brains.

Cai, Feng and Fulton [12] presented a system for stor-
age and retrieval of Positron Emission Tomography (PET).
According to the authors, their system allows an efficient
retrieval for content-based physiological and kinematic struc-
tures. However, their work was focused on specific structure
retrieval (lungs).

Dong et al. [13] presented an approach that classifies the
local structures in line-like, blob-like and sheet-like patterns.
Such classification is performed based on second-order deriva-
tives. The limitations of this approach are that the information
extracted is not discriminative enough and that the technique
needs to be adapted for each scenario that will be used.

In relation to cardiac problems, Glatard, Montagnat and
Magnin [14] analyzed medical imaging properties and rated
the Gabor filter aiming to perform clinically relevant queries
on large image databases that do not require user supervision.

As a case study they used a set of cardiac images but their
work just differentiates phases of the cardiac cycle.

In [15] Spherical Harmonics were used to map the left
ventricle structure into a sphere. Then, by using the normalized
and invariant sphere, the authors compare the left ventricles
in two different states (dilated and relaxed). Since it was a
preliminary study, they did not present a formal evaluation.

More recently, Ayary et al. [16] also used Spherical Har-
monics to quantify deformations in different parts of the
left ventricle in myocardial scintigraphy images, and this
information was used to classify left ventricle structures in
healthy or abnormal.

Related to the CHF specific disease, Bergamasco and
Nunes [17] proposed a system for searching and retrieving
clinical history based on 3D medical objects reconstructed
from MRI Images to aid the diagnosis of congestive heart
failure. Their work uses a local shape distance descriptor to
retrieve 3D medical objects based on their deformations in
specific locals. This provided a more precision retrieval, when
compared to global approaches, since the problem analyzed
(small deformations in the bottom of the left ventricle) requires
a local approach.

In Bergamasco el al. [18] the same problem is addressed,
however with a different approach to measure the similarity
called Spectral Cluster (SC). To extract the features from
the 3D objects, the authors use an adaptation of the Hough
transform called 3D Hough Transform Descriptor (3DHTD).
According to the authors, their approach reached 83% of
overall accuracy. As an improvement of their previous work,
Bergamasco et al. [19] used a bipartite graph technique in
order to improve the retrieval precision. According to the
authors, accuracy increased by 10% when compared to a
method that use distance functions as similarity metric.

A. Sparse Representation of 3D Models

Research in 3D models sparse representation started to take
off in the mid- to late-90s, and has been focused in compres-
sion algorithms. The 3D mesh information can be divided into
geometric information, parameter information, and topology or
connectivity information. The geometric information concerns
the vertices coordinates and the normal vectors at the vertices;
the parameter information refers to any information that can be
stored in the mesh, for instance, color, heat information, forces,
etc; the connectivity information is related to the neighborhood
information among the vertices, the genus of the surfaces and
so on.

Khodakovsky et al. [20] offer a progressive compression
scheme that can handle arbitrary surface topology and highly
detailed geometry. They use semi-regular wavelet transforms,
zerotree coding and subdivision-based reconstruction scheme
to improve their approach. Karni and Gotsman [21] project
the x, y and z coordinate vectors onto basis functions to
obtain a geometric spectrum for each coordinate. Those basis
functions are, in fact, the Fourier basis functions. Therefore,
encoding and decoding are performed by means of the Fast
Fourier Transform (FFT). The connectivity is mapped on a



6-regular connectivity without using geometry information in
the process. This approach is non-optimal, but provides an
acceptable trade off between performance and computational
cost.

The work of Du and Geng [22] provides a compres-
sive sensing-based method for mesh compression by using
a Laplace operator. According to the authors, the results
are suitable for large-scale data compression; however, no
experiments about BPV rates or PSNR [23] of the results are
presented.

Krivokuca, Abdulla and Wünsche [24] have proposed a
method for creating frames to be used as overcomplete dic-
tionary for progressive compression of 3D mesh geometry.
The authors obtained a sparse representation by decomposition
of the mesh geometry onto orthogonal basis. Damkjer and
Foroosh [25] presented an approach to work with larges cloud
of points and also to preserve the objects features.

IV. METHODOLOGY

A. Materials

We used 27 cardiac objects to evaluate our approach. They
were obtained by segmentation and reconstruction of sets of
MRI images of the heart.

Each set of slices was segmented and reconstructed using
the softwares Seg3D[26] and ImageVis[27], respectively. Fig-
ure 4 presents a step-by-step of the segmentation task and
Figure 5 presents a surface reconstructed of the left ventricle.

In our objects set, 55% of the objects presented CHF and
45% were normal cases. 76.6% of the patients were over 40
years. These 3D objects were provided and classified as CHF
and non-CHF case by experts of the Heart Institute (InCor),
which is the largest medical center in Brazil that investigates
cardiac diseases.

B. Implementation

The 3D objects loader, descriptors and similarity functions
were implemented in Java language, using the Java3D li-
brary [28]. The Spectral Descriptor described in section II
was implemented in Matlab environment [29]. Algorithm 1
illustrates the main steps of the process.

Data: An ASCII file representing a Mesh M
1 Create a matrix Ov with the mesh’s vertices ;
2 Create a matrix Of with the mesh’s faces (connectivity) ;
3 Create a Laplacian Matrix L as described in section II ;
4 Compute the SVD decomposition of L; L = UΣV ∗ ;
5 Compute SC = U ∗Ov ;
6 Write the vector SC in an output file;

Algorithm 1: Spectral Descriptor

The ASCII file that represent our meshes is usually in
OFF format [30] and contains geometric information (ver-
tices’ coordinates) as well as connectivity information (mesh’s
faces). The output vector (line 6 of algorithm 1) is used as a
feature vector in our Spectral Descritor. The k value described

(a)

(b)

Fig. 4. Segmentation task: (a) manual segmentation (in blue color) of the
left ventricle in a MRI slice; (b) segmented structure.

Fig. 5. 3D object of the left ventricle reconstructed.

in section II is responsible for selecting the first k largest
eigenvalues of the Laplaciam Matrix. The justification for this
choice is due to the fact that the highest values contain most



of the information contained in the mesh.

C. Experiment and evaluation

We conducted an experiment composed by 6 tests performed
on each of all the 27 objects reconstructed from the left
ventricle, previously presented. We tested the retrieval for each
object varying the coefficient k in 50, 100 and 200. For each
value of k we tested the behavior of the retrieval by using
Euclidean and Manhattan distance as similarity function.

The experiment was evaluated by the Precision versus
Recall metric. Precision versus Recall is a metric widely used
in CBIR context. Precision (Equation 5), for a specific class,
can be described as a number of true positives, i.e., the
number of items correctly labeled as belonging to the positive
class, divided by the total number of elements labeled as
belonging to the positive class (including the false positives).
Recall (Equation 6) is the number of true positives divided
by the total number of elements that actually belong to the
positive class (the sum of true positives and false negatives)
[31].

Precision =
relevant objects ∩ retrieved objects

retrieved objects
(5)

Recall =
relevant objects ∩ retrieved objects

relevant objects
(6)

V. RESULTS AND DISCUSSION

We obtained the average precision and we noted that re-
trieval of objects without CHF was better than retrieval of
objects with CHF in any scenario: with different coefficients
and both for Euclidean and Manhattan distance. Tables I and
II detail the average precision for each similarity function. It
is possible to note that the average precision of the retrieval
using Manhattan Distance was 5% better than the retrieval
using the Euclidean Distance.

TABLE I
AVERAGE PRECISION USING EUCLIDEAN DISTANCE

Average Precision - Euclidean Distance
Coefficient CHF presence Non-CHF

50 59,01% 81,69%
100 61,55% 82,91%
200 62,99% 83,28%

TABLE II
AVERAGE PRECISION USING MANHATTAN DISTANCE

Average Precision - Euclidean Distance
Coefficient CHF presence Non-CHF

50 67,23% 84,95%
100 68,40% 84,95%
200 70,57% 82,07%

Figures 6, 7 and 8 present the Precision vs. Recall curves
from the results using Euclidean Distance. Figures 9, 10 and
11 show the Precision vs. Recall curves using Manhattan
Distance.

Fig. 6. Precision vs. Recall using Euclidean Distance and k = 50.

Fig. 7. Precision vs. Recall using Euclidean Distance and k = 100.

Fig. 8. Precision vs. Recall using Euclidean Distance and k = 200.

As aforementioned, the retrieval precision was better for
non-CHF cases. It is possible to note that the descriptor
presented high levels of precision (about 80%), even for high
values of recall. This is a positive point of the proposed
descriptor, since the most of descriptors decrease the perfor-
mance to high values of recall, i.e., as the number of 3D
objects retrieved increases, the precision tends to decrease,
since the differences become smaller.

In the tests using Manhattan distance as similarity function
and 200 coefficients we noted the best retrieval precision
(70% for objects with CHF and 82% for objects without the
anomaly). We also noted that the precision with Euclidean
distance decreased on the second or third 3D object retrieval



Fig. 9. Precision vs. Recall using Manhattan Distance and k = 50.

Fig. 10. Precision vs. Recall using Manhattan Distance and k = 100.

Fig. 11. Precision vs. Recall using Manhattan Distance and coefficient k =
200.

– this means that the CBIR system retrieved “wrong” case
already in the beginning of the retrieval. This fact configures
a bad performance, since usually it is easier for a descriptor
to retrieve the most similar objects, which are related to small
values of distances. By using Manhattan distance we noted
retrieval mistakes just on the 4th or 5th 3D object retrieved.

The best performance obtained using Manhattan distance
could be explained by the sparse nature of the descriptor
vectors. The Manhattan distance is more precise as more
sparse were the elements to compare since numerical accuracy
problems with the calculation of the square root are avoided.

As mentioned before, our intention is investigate the Com-
pressive Sensing theory as a possible approach to represent

3D objects in a suitable way for application in CBIR con-
texts. A regularly discussed problem in CBIR systems is
the high dimensionality of the features vector. As shown
in our experiment, the Spectral Descriptor, derived from the
CS theory can be a suitable way to minimize this question,
since the amount of coefficients can be adjusted according
the characteristics of object. Although we intend conduct
more experiments considering other objects, we realized that
the retrieval precision does not increase proportionally to the
increase in the number of coefficients. Thus, we can state that
few numbers of coefficients can result in good precision rates,
contributing to decrease the dimensionality of the features
vector in CBIR problems. This happens just because we
consider a sparse representation of the 3D object instead of
consider all its vertices and faces.

Bergamasco and Nunes [32] proposed a novel approach
based on 3D object shape information obtained by 3D Hough
Transform. This descriptor also used Euclidean distance as
similarity function and had the most precise results on their
experiments, reaching 85% of precision in lower values of
recall. Comparing our approach with results obtained in [32],
we noted that our current approach overcomes the precision re-
sults. In their experiments, authors noted an average precision
of 44% for CHF cases and 58% for non-CHF exams, while
in this work we found 59% for CHF and 81% for non-CHF
cases in the worst case.

VI. CONCLUSION AND FUTURE WORKS

This paper presented the use of the Compressive Sensing
theory to develop a new descriptor aiming at improving
retrieval in 3D CBIR systems. The descriptor was applied
to retrieve 3D cardiac models to contribute to aid the CHF
diagnosis. The coordinates of the compressed models were
used to form the features vectors, representations of models
which are compared using a similarity function to determine
the similarity between two models. Our proposal makes a base
change such that the coordinates of the vertices of a 3D model,
which previously had a dense representation, can be rewritten
on a basis of which have a sparse representation.

Our descriptor relay on a kind of “uncertainty principle”
between a canonical basis and a measurement basis which
states that a mesh, when interpreted as a signal, cannot have
a dense representation in both basis at the same time.

Although still in early stages of testing, our descriptor
proved useful in CBIR applications, particularly in our test
environment with left ventricular heart models. The strength
of the descriptor developed here was the identification of non-
CHF models. The performance for cases with CHF can be
further improved, for example by using a larger number of
SVD decomposition on coefficients as well as the use of more
accurate three-dimensional models.

Additionally, our descriptor must be tested in a more
varied set of templates in order to confirm its potential as
a tool to improve CBIR systems performance. Additionally,
as future work we intend to test our approach with models
that comprises another anomalies as well as other types of



3D models. We also planning conduct a complete comparison
of this spectral descriptor with other descriptors in order to
evaluate not only its precision, but also the response time and
the memory and storage requirements.

In this work, we compare our results considering the results
of a descriptor previously developed which retrieved similar
objects in a CBIR system. Another possibility for improving
this study is to compare the technique used for obtaining the
sparse representation of mesh with other techniques found in
the literature cited in the section III, as well as conducting ad-
ditional tests from variation of the parameters of the technique
presented here.
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