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Abstract—Many of the state-of-the-art algorithms for gesture
recognition are based on Conditional Random Fields (CRFs).
Successful approaches, such as the Latent-Dynamic CRFs, extend
the CRF by incorporating latent variables, whose values are
mapped to the values of the labels. In this paper we propose
a novel methodology to set the latent values according to the
gesture complexity. We use an heuristic that iterates through
the samples associated with each label value, estimating their
complexity. We then use it to assign the latent values to the label
values. We evaluate our method on the task of recognizing human
gestures from video streams. The experiments were performed
in binary datasets, generated by grouping different labels. Our
results demonstrate that our approach outperforms the arbitrary
one in many cases, increasing the accuracy by up to 10%.

Keywords-discriminative models; conditional random fields;
gesture recognition; activity recognition

I. INTRODUCTION

The fields of Computer Vision, Pattern Recognition and
Human-Computer Interaction still face the challenging prob-
lems of gesture and activity recognition. Over the last two
decades, generative models struggled to tackle these problems,
and, eventually, with advancements in the inference methods
for graphical models, Conditional Random Fields (CRFs) [1]
rose as a powerful discriminative alternative for dealing with
them, relaxing the dependency assumptions on the inputs.

More recently, models based on CRFs have achieved the
state-of-the-art results for such tasks [2]–[4]. They are part of
a bigger class of models which incorporate latent variables to
the original CRF, increasing the model’s expressiveness and
its capacity to find relevant substructure in the gestures and
activities [2], [3], [5], [6]. Two representative works of this
approach are the Latent-Dynamic Conditional Random Fields
(LDCRF) [6] and the Multi-View Latent-Dynamic Conditional
Random Fields (MV-LDCRF) [2], where there is a direct
mapping between the values of the latent variables and the
label variables. In other words, there is a disjoint set of latent
variable values associated with each label variable value 1, as
it can be seen in Figure 1.

Although these methods improve the original CRF by
training the latent variables as if they were the label variables,

1Hereinafter we refer to latent variable values and label variable values as
latent values and label values.

Fig. 1: Assignment of the latent values to the label values.
The arrows show that each latent value maps into exactly one
label value. We improve the existing models by determining
this assignment according to the complexity of the gestures.

they add a new parameter that needs to be tuned: the number
of latent values associated with each specific label value. In
this scenario, two questions arise: i) how the assignment of
these numbers impact the accuracy of the model, and if so, ii)
how to systematically determine them.

Each latent value may be interpreted as a subset or a sub
stage in a gesture or an activity. i.e. In the activity playing
a sport, using latent variables we may be able to model the
difference between playing football and playing chess, which
have a different set of gestures involved [3]. In a composite
gesture, such as first raising the right hand, and then the left,
we can use latent variables to model both stages differently, as
well as their interaction [6]. In this context, the assignment of
the number of latent values plays a key role in the development
of a model capable of representing the complexity of a gesture
or an activity.

In this paper we propose an euclidean distance-based al-
gorithm that, given the number of available latent values,
determines their assignment among the labels. Our approach
inspects the samples associated with each label in order to
get an associated complexity measurement, and then uses it
to distribute the latent values. We evaluate our method on
the task of recognizing human gestures from unsegmented



video streams in binary datasets using a LDCRF. Our results
show that the distribution of latent values has a high and non-
trivial impact on the accuracy of the model, and that using our
method improves the performance by up to 10% in accuracy
in the tested datasets. The code of our method is available
online2.

II. RELATED WORK

Many different probabilistic graphical models have been
used for recognizing human gestures and activities, such as:
Hidden Markov Models (HMMs) [7]–[9], Dynamic Bayesian
Networks (DBNs) [10], and Conditional Random Fields
(CRFs) [3], [11]. These graphical models are either generative
or discriminative, depending on whether they make indepen-
dence assumptions on the input or not. As we usually rely on
input that is heavily correlated, discriminative models tend to
perform better [12], especially for sequence labeling tasks [3],
[6]. Sminchisescu et al., for instance, outperformed a HMM
approach using a CRF for the task of classifying human motion
activities, such as walking and jumping [11].

In several approaches, there is an additional layer of latent
variables, which are not observed, but inferred. This layer
helps to model complex labels [2], [3], [5], [6], [13] and
is also used to exploit the underlying semantics between
temporal segments [3]. Although the authors agree with the
gains of using a layer of latent variables, they have diverging
interpretations on how exactly they do so. Hu et al. stated
that latent variables represent a subset of a given label.
For instance, take an hypothetical class3 for the activity to
open something. The layer of latent variables would help to
model the difference between opening a door and opening
a bottle [3]. On the other hand, Morency et al. claim that
latent variables represent different stages of a same label being
performed [6]. In a complex gesture or activity, different parts
of the motion would have different label values, for example.

CRFs are discriminative models which were first introduced
by Lafferty et al., and quickly adopted in the vision commu-
nity [1]. The two most successful extensions for gesture and
activity recognition based on CRFs are the Hidden Conditional
Random Fields (HCRFs) and the Latent-Dynamic Conditional
Random Fields (LDCRFs). The HCRFs add a layer of latent
variables that are connected to a single label variable, which
predicts the gesture or the activity which was performed for
all the observations [5]. The model presented by Hu et al.
exploits, by using a HCRF-like structure, full connectivity
between input, latent and label variables. The layer of latent
variables added has a direct mapping to the label variables. The
LDCRFs models, beyond adding the layer of latent variables,
have disjoint sets of latent values associated with each label
value. They also include one label variable per observation, en-
abling the output to be a continuous stream, and outperforming
models based on Support Vector Machines (SVMs), HMMs,
CRFs and HCRFs [6]. A representative LDCRFs approach

2https : //github.com/manelhr/hidden states
3We use the terms class and label value interchangeably.

is presented by Song et al. [2]. They proposed a multi-view
version of the LDCRFs and also of the HCRFs. By splitting
semantically related input variables in different views, the
performance of these models was improved.

Hu et al. and Sung et al. also presented two-layered discrim-
inative models for activity recognition. The model presented
by Hu et al. recognizes sub-level activities and high-level
activities successively, using the assumption that a high-level
activity is composed of multiple sub-activities. While the first
layer of the hierarchical model predicts low-level activity for
each temporal segment, the second uses the sub-activity to
estimate the high-level activity [13]. They added a set of latent
variables to enrich the expressiveness of the second layer,
and use the sub-activity as an observed variable. The model
presented by Sung et al. learns the sub-activities implicitly, by
considering them as latent variables [14].

In the aforementioned sequential discriminative models
where the latent values have a direct mapping to the label, the
assignment of the number of latent values per label value is
chosen arbitrarily. Typically the same number of latent values
is given for all label values [2], [3], [6]. Our work proposes
a systematic way to distribute these, presenting significant
performance gains in the tested datasets. Our method is valid
for all the models of this category, but we mainly build upon
the LDCRFs proposed by Morency et al. [6], since they were
used to measure the performance improvements achieved by
adopting our approach.

III. METHODOLOGY

A. Theoretical Background

In this section we briefly describe the main characteristics
and modeling of Conditional Random Fields (CRFs) and
Latent Dynamic Conditional Random Fields (LDCRFs). For
details on how the inference or the parameter learning can be
used, the reader is referred to [15], [16].

1) Conditional Random Fields: We review Conditional
Random Fields as presented by Lafferty et al. [1], but using
a factor graph notation for the sake of simplicity.

Let X = (X1, . . . , Xk) be a set of observed random
variables (e.g. feature vectors such as skeleton joints), and
Y = (Y1, . . . , Yl) a set of target random variables (labels).
G is a factor graph (V,E,A), whose nodes V have a direct
mapping with X ∪ Y, and where A is the set of factors
associated with the edges E that map the subset Xa ∪ Ya

into a positive real value4:

A = {ψ1, ..., ψm}, ψa : Ya ∪Xa 7→ R+. (1)

The graph G is a Conditional Random Field if P (y|x)
factorizes according to Equation 2:

P (y|x) = 1

Z(x)

∏
a∈A

ψa(ya,xa), (2)

4Notice that Xa ⊂ X,Ya ⊂ Y.



Fig. 2: A CRF graphical model. The feature variables Xi are
connected directly to the label variables Yi.

Z(x) =
∑
y∈Y

∏
a∈A

ψa(ya,xa). (3)

where Z(x) is the partition function. Lower case bold letters
represent assignments to these sets of random variables, and
ya and xa represent the values that correspond to the domain
of the factor ψa.

2) Linear Chain Conditional Random Fields: Given the
CRF model, is easy to derive a Linear Chain Conditional
Random Field, which can be seen in Figure 2. For each edge
(i, j) in the chain, define a feature function:

fk(vi, vj) =

{
1 (vi, vj) ∈ E
0 otherwise

. (4)

Let logψa be linear over the set of feature functions K =
{f1, ..., fm}, and the vector of parameters of the model θ̂ =
{θ1, ..., θm}:

ψa(ya,xa) = exp

{
θafa(ya,xa)

}
. (5)

We can then write the Linear Chain CRF as:

P (y|x) = 1

Z(x)
exp

{
T∑

t=1

K∑
k=1

θkfk(yt, yt−1,xt)

}
. (6)

Notice that we iterate through all the T levels of the chain
and all the K feature functions. We also modified the notation
for feature functions so that they can represent the feature
functions of both label− label and feature− label edges at
once. The partition function Z(x) is defined as:

Z(X) =
∑

yt,yt−1∈Y

exp

{
T∑

t=1

K∑
k=1

θkfk(yt, yt−1,xt)

}
. (7)

3) Latent-Dynamic Conditional Random Fields: Another
extension for CRF models presented by Morency et al. [6]
includes a third set of random variables H = (H1, . . . ,Hn).
The values of variables Hi have a direct mapping with the
label values, and the probability of each label value a label
variable Y might assume is the sum of the probabilities of its
associated latent values:

P (y|x) =
∑

h:∀hj∈HYj

P (h|x), (8)

Fig. 3: A LDCRF graphical model. A new layer, composed
of latent variables Hi, is used to enrich the expressiveness of
the model. The latent variables connect the label variables Yi
to the feature variables Xi and model the substructure of the
gesture or activity.

where each hj ∈ HYj
is a member of the set of possible

latent values for the class Yj . The final probability distribution
P (h|x) considering the latent variables instead of the label
ones is given by:

P (h|x) = 1

Z(x)
exp

{
T∑

t=1

K∑
k=1

θkfk(ht, ht−1,x)

}
, (9)

Z(x) =
∑

ht,ht−1∈H

exp

{
T∑

t=1

K∑
k=1

θkfk(ht, ht−1,x)

}
. (10)

A graphical representation of a LDCRF model is depicted in
Figure 3.

B. The Semantics of Latent Values

As stated, in a Latent Dynamic Conditional Random Field,
we split each target variable value yt into a series of equivalent
latent values h. This increases the capacity of the model
to represent complex labels, because it allows us to train a
classifier to a larger number of labels than the existing ones [6].

Consider, for instance, an LDCRF that receives the positions
of the joints of individuals as an input and has to decide which
sports people are playing at each frame. There are a myriad
of sports with distinct gestures and actions involved, and,
therefore, one could divide a class sport into other simpler,
more atomic classes, such as (football, handball, chess).
This is, intuitively, how Hu et al. view the role of latent
values [3]. They allow different subsets of an activity or
gesture to be represented by different label values, which
improves the accuracy.

Another perspective is provided by Morency et al., which
view the role of the latent variables as a way to model the
sub stages of a given gesture or activity [6]. Let’s consider
a gesture with a complex substructure, such as a sequence
of signals in American Sign Language (ASL). In this case,
different latent values may model different parts of the gesture.
Differently from Hu’s perspective, the idea is that the same
gesture may be modeled by different latent values in different
stages of the gesture.

In the following sections, we describe our algorithm for
assigning the number of latent values per class that takes



Fig. 4: Feature space of a CRF model. The lines separate the
instances assigned to different label values.

Fig. 5: Feature space of a latent model. Notice that we have
HY1 = {h1, h2, h3},HY2 = {h7},HY3 = {h5, h6},HY4 =
{h4}. The dashed lines separate the instances assigned to
different latent values.

those insights into consideration. Figures 4 and 5 illustrate the
feature space of a CRF and of a LDCRF with different sets
of latent values for each label, giving further insight on how
this assignment is done. In Figure 4 we classify the entries
as one of the four labels directly, whereas in Figure 5 we
classify them as one of the seven values our latent variable
might assume and then map those values into the label values.

C. Computing The Complexities and Assigning Latent Values

In order to decide which of the label values will benefit
from having multiple latent values assigned to it, we propose
a heuristic algorithm for finding the labels which can be better
represented by many subsets or substages and the proportion
to which they should receive latent values.

In the first step, we compute a measure of the complexity
associated with each of the labels of the classifier according
to Algorithm 1. Let L = {l1, l2, l3..., ln} be a set of labels
in a dataset. We normalize the different samples that have
the same label values 5 (lines 2 – 8) and then calculate
the point-to-point euclidean distance between the pairs of
features of these samples (lines 11 – 17). This measures

5Notice that each sample (f1, . . . , fn, l) is a tuple of time-series with the
same length, where each fi is a numerical time-series which correspond to
the values of the features and l is a categorical time-series which correspond
to the values of the labels.

the complexities associated with each label, v0, . . . , vn, by
estimating the difference among the samples of a given label.
Each complexity measurement vi is then normalized, dividing
it by the total sum of all measurements (lines 18 – 21). This
makes vi ∈ [0, 1] and

∑
∀i∈Y vi = 1.

This heuristic is in agreement with the intuitions previously
presented. If there are labels with different sub activities or sub
gestures, as one would obtain from grouping opening a bottle
and opening a door in the same label, when we calculate the
point-to-point euclidean distance between the pairs of features,
we would get a high value, as the samples from different sub
activities will differ among themselves. Consequently, we then
assign more latent values to these labels.

On the other hand, if we have labels with a complex
substructure, is it expected that there will be an overlap
between different stages of the gesture when we take the
point-to-point euclidean distance. Indeed, such assumption
makes sense, since people will not execute each part of a
complex gesture or activity in the exact same time. Notice that
considering this setting we also will give a higher measure of
complexity for labels with several sub stages.

Once we computed the complexities, we proceed to dis-
tribute the latent values according to Algorithm 2. Our algo-
rithm increments the number of latent values associated with
a given label value such that the normalized array norm will
be close to the array v calculated in the first algorithm (lines
5 – 11). The algorithm receives as input the number of values
we want to distribute, the complexity measures calculated in
the previous step, the set of distinct labels and a real value
c ∈ [0, 1]. Notice that c is a limit for the maximum percentage
of latent values that one label value might claim. In the array
buckets = {v1, ..., vn}, the position buckets[i] is the number
of latent values assigned to the i-th label.

IV. EXPERIMENTS

We evaluated our method on the task of unsegmented
human gesture recognition using binary datasets. Those were
created by grouping the labels of existing datasets such as
the ArmGesture dataset and a subset of 6 labels of the
NATOPS dataset. Bellow we describe them, give details of
our implementation and on the experiments protocol.

A. Datasets

The ArmGesture dataset [17] contains the data on six
arm gestures described by 2D joint angles and 3D euclidean
coordinates for left/right shoulders and elbow. The six gestures
are presented in Figure 6 (a). The data was collected from 13
participants with an average of 120 samples per class, and
subsampled by the factor of 2 [2].

The NATOPS dataset [18] contains twenty-four body/hand
gestures used when handling aircraft on the deck of an aircraft
carrier. We used the same subset of gestures chosen by Song
et al. [2]. These gestures can be seen in Figure 6 (b).

One of drawbacks of these datasets is that the gestures do
not differ much in terms of complexity. Thus, in order to better
measure the impact of our method, we generate datasets were



Algorithm 1 Algorithm for measuring the complexity of each
label.

1: procedure COMPMEASURE(instances, L)
2: for l ∈ L do
3: aux← instances of label l
4: length← argmax(aux.length)
5: for ∀x ∈ aux do
6: x← linearInterpolation(x, length)
7: end for
8: end for
9: n← L.length

10: v ← zeros(n)
11: for l ∈ L do
12: aux← instances of label l
13: for ∀x, y ∈ aux do
14: dist← euclideanDistance(x, y)
15: v[l]← v[l] + dist
16: end for
17: end for
18: valuesSum← v[0] + ...+ v[n]
19: for ∀s ∈ v do
20: s← s÷ valuesSum
21: end for
22: return v
23: end procedure

different labels have different complexity measurements, but
that are still based on real world data. Given the two original
datasets, we make them binary by grouping the labels into
two sets, each of which will become a new label. Notice that
there are several grouping strategies. For instance, in a dataset
with labels ({l1}, {l2}, {l3}...{ln}), one may group the label
as ({l1}, {l2, l3...ln}), ({l1, l2}, {l3...ln}).

Since we also want to evaluate how our model performs
when the samples contain several gestures, we created new
versions by grouping the different video segments of the
original datasets in groups of three and concatenate them. We
call these datasets many gestures datasets, and the other ones
single gesture datasets.

Each created dataset is identified by the following expres-
sion:

concat(id, {1st labels set},−, {2nd labels set}),

where id is either AG for the ArmGesture dataset or NT
for the NATOPS dataset, the label fields are the numbers of
the labels grouped together (separated by an hyphen). The
expression NT01−2345, for instance, refers to the dataset
created by grouping the labels {0, 1} and the labels {2, 3, 4, 5}
in the NATOPS dataset. We then have to specify if the dataset
has many gestures or a single gesture.

B. Experiments Protocol

We performed three experiments with the datasets. The first
one is a proof of concept on how the assignment of latent
values may change the accuracy of a LDCRF. The second and

Algorithm 2 Algorithm for distributing latent values across
labels values given a complexity measurement.

1: procedure DIST(number, values, L, c)
2: n← L.length
3: buckets← ones(n)
4: left = number − L.length
5: while left 6= 0 do
6: norm← (bi)÷ (

∑
j∈buckets

bj),∀i ∈ buckets

7: dif ← abs(buckets− values)
8: i ← indexMin(dif) s.t. the normalized array

where we we add 1 to bi has bi < c.
9: left← left− 1

10: bucket[i]← bucket[i] + 1
11: end while
12: return buckets
13: end procedure

the third ones make comparisons between the accuracy of a
LDCRF whose states have been assigned using our method
and arbitrarily.

1) Experiment 1: As stated, this experiment is a proof of
concept to show that the assignment of the latent values is
non-trivial and has a considerable impact in the accuracy.

For a the NT23−0145 many gestures dataset we plot the
confusion matrix (Figure 7) of four different assignments of
latent values. In the first assignment, the first label value has
two associated latent values and the second one has only
one, whereas in second assignment the first label value has
one associated latent value and the second one has two.
The remaining assignments are the cases where both labels
values have either one and two latent values, respectively. The
training and the test sets were obtained by dividing the dataset
into three parts, from which 2/3rds were for the training and
the remaining 1/3rd for testing.

2) Experiment 2 and 3: For Experiments 2 and 3, we
compare the accuracy of training a LDCRF with our method
of assigning latent values (for two values of c, 0.75 and 1)
with the accuracy of an arbitrary assignment. We split the data
into a test set of 1/3rd of the data, and performed a 5-fold
cross validation in the remaining 2/3rds. We then obtain total
number of latent values to which had the best performance in
the 5-fold cross validation for our method of assignment and
for the arbitrary one. This parameters is then used to train
the model with what was the validation 2/3rds of the data
and test it with the 1/3rd which was originally the test set.
This procedure is repeated 3 times, varying the validation set
chosen initially (as in a 5-fold cross validation nested inside
a 3-fold cross validation).

In the validation phase, we selected the total number of
latent variable values from a predetermined number of possi-
bilities. For the binary datasets created from the ArmGesture
dataset those values were {2, 4, 6, 8, 10, 12, 14} and for the
datasets created from the NATOPS dataset those values were
{2, 4, 6, 8}. The choice of these values adopted three criteria:



(a) Gestures from the ArmGesture dataset.

(b) Gestures from the NATOPS dataset.

Fig. 6: Datasets used in experiments.

TABLE I: Results of our method in binary datasets. We present the accuracy and the standard deviation for two values of c
and the normal distribution. We also present the percentage of the complexity values calculated for each of the two binary
labels in row CM.

Single Gesture Many GesturesExp Dataset
Ours c=1 Ours c=0.75 Normal CM Ours c=1 Ours c=0.75 Normal CM

AG0−12345 98.9± 0.3 97.2± 3.3 98.9± 0.3 02, 98 97.3± 1.3 97.5± 0.9 97.7± 1.1 03, 97

AG01−2345 99.2± 0.4 99.3± 0.5 99.2± 0.4 14, 86 85.0± 24.8 97.2± 0.8 97.3± 1.3 14, 86

AG012−345 94.3± 0.4 93.8± 0.9 94.3± 0.4 41, 59 89.2± 2.9 90.7± 0.6 90.6± 0.9 37, 63

NT0−12345 92.7± 0.9 92.8± 1.0 92.9± 1.2 02, 98 91.5± 1.2 92.6± 0.8 92.0± 1.1 03, 97

NT01−2345 92.2± 1.6 96.3± 1.0 86.6± 13.4 13, 87 86.2± 3.6 93.8± 0.4 83.8± 22.0 17, 83

II

NT012−345 79.5± 12.6 73.4± 12.6 79.5± 12.6 45, 55 74.2± 1.3 79.5± 17.6 74.2± 1.3 52, 48

AG01−2345 99.2± 0.4 99.3± 0.5 99.2± 0.4 14, 86 85.0± 24.8 97.2± 0.8 97.3± 1.3 14, 86

AG12−0345 95.6± 1.0 95.4± 0.7 95.4± 0.7 18, 82 90.1± 1.6 90.4± 1.3 90.5± 1.9 14, 86

AG23−0145 99.8± 0.3 99.8± 0.3 99.8± 0.3 18, 82 96.9± 1.7 97.2± 1.1 94.7± 4.8 19, 81

AG34−0125 96.1± 1.3 96.1± 1.3 96.1± 1.3 32, 68 90.8± 1.6 90.8± 1.6 90.8± 1.6 38, 62

AG45−0123 98.2± 1.0 98.2± 1.0 98.2± 1.0 22, 78 96.3± 1.2 95.4± 0.7 94.6± 0.3 27, 73

NT01−2345 92.2± 1.6 96.3± 1.0 86.6± 13.4 13, 87 86.2± 3.6 93.8± 0.4 83.8± 22.0 17, 83

NT12−0345 71.9± 3.1 71.8± 1.1 73.4± 1.7 19, 81 70.5± 1.6 72.4± 3.4 72.0± 2.3 23, 77

NT23−0145 92.2± 1.7 84.0± 0.9 86.2± 5.1 24, 76 89.7± 1.8 81.1± 1.4 85.7± 12.0 23, 77

NT34−0125 69.6± 0.9 69.8± 1.0 70.0± 1.4 22, 78 69.3± 1.6 69.7± 1.6 66.8± 1.8 20, 80

III

NT45−0123 99.3± 0.0 99.3± 0.1 99.3± 0.1 20, 80 94.4± 1.0 94.7± 1.2 87.8± 10.4 21, 79

(i) even numbers, so that the arbitrary assignment always gave
all labels the same amount of latent values, (ii) feasibility for
computing time, (iii) values that do not over-fit the model.

In Experiment 2 we created the datasets using the
following algorithm: we start with the label grouping
{}, {l0, l1, l2, l3, l4, l5}. Then we incrementally create new
datasets by adding the label with the lowest index from the
second group to the first group and generating the correspon-

dent binary dataset. We stop when both groups have the same
number of labels. The idea behind exploring this pattern is
to see how the difference in the complexity of binary labels
would affect the method. Notice that this is possible because
as we add more label values to be collapsed in the first
of the mentioned groups, we decrease the difference of the
complexity measurement between the two label values.

In Experiment 3 we created the datasets by combining the



labels in all possible forms to obtain two groups, containing
two and three labels respectively. These labels are then col-
lapsed to generate the binary labels of the new dataset. We
explore this pattern to see how our assignment would improve
the LDCRF given a more subtle difference in the complexity
measurement of the binary label values.

C. Implementation Details

We implemented our Latent Dynamic CRF based on the
Latent Graph CRF model from PyStruct [19]. For the inference
we use the Quadratic Pseudo-Boolean Optimization (QPBO),
with the interface also provided by PyStruct. The initial
assignment of the latent values was done with a deterministic
implementation of the k-means clustering technique, which
uses a PCA to initialize its centroids.

V. RESULTS

In this section we present and analyze the results of the
experiments proposed in Section IV.

A. Experiment 1

The confusion matrix of the assignment of latent values,
(1, 2), (2, 1), (1, 1), (2, 2) 6 for the NT23−0145 dataset, can
be seen in Figure 7. Each row of each matrix is normalized
so that we can compare the gains of a given latent value
assignment for each of the classes. The results show that
the model with the (2, 1) assignment has the better accuracy
trade-off, with approximately 89.5% average accuracy 7. It is
worth mentioning that the model with the (2, 2) assignment
is significantly worse than all the others, with only 51.5%
average accuracy. A clear example of a case where more latent
values do not correspond to a better model. Together, these
results show that assigning the latent values according to our
computed complexity measurement improves the accuracy of
the LDCRF. Additionally, they show that this assignment has
a non-trivial impact in the accuracy of the model.

B. Experiment 2 and 3

The results for Experiments 2 and 3 are shown in Table I.
We present results for our approach for two values of c and
also for the arbitrary assignment. The column CM contains the
calculated complexity measurement for the two labels in the
dataset. The cells in bold indicate cases where the accuracy
achieved by training the model with our method was 1%
bigger than the arbitrary choice, as well as cases where the
arbitrary choice outperformed ours by 1%. Notice that the
second scenario happened once, in the NT12−0345 dataset,
where the arbitrary assignment had an accuracy slightly higher
than ours. On the other hand, our method outperformed the
arbitrary choice by significant values in the many cases. In
the NT01−2345 single gesture dataset and in the NT01−2345
many gestures datasets, for instance, we increased the accuracy
of the method by roughly 10%.

6Notice that in this case (x, y) means that (|HY1
| = x, |HY2

| = y).
7The average accuracy is calculated by multiplying the values shown in the

table by the number of instances in each of the cases.

Fig. 7: Confusion matrix for the NT23−0145 many gestures
dataset using different assignments of latent values. The rows
of the matrix are normalized, for comparing the accuracy of
the classes and the shading of each cell is proportional to the
number of instances that correspond to the given scenario.

Two interesting questions that might arise given the results
shown are (i) why does our method gives much better results
with the NATOPS dataset than with the ArmGesture dataset
and (ii) why does our method performs better in datasets where
the difference in the estimated complexity for the binary labels
is not too big. We draw the following observations. The low
gains in performance in the ArmGesture dataset is probably
due to how easy the dataset is. The accuracy is already too high
with modeling that uses just a few latent values, and adding
more models just makes the dataset overfit. In many cases the
models selected in the validation for the ArmGesture dataset
used only two latent values, which is equivalent to a normal
linear chain CRF. It is worth noting that, when we have a
larger imbalance in the complexity of the binary labels, it also
becomes easier to classify, as one must only learn less complex
labels. This might be the reason of the better performance of
our method compared to the arbitrary assignment in datasets
whose difference in the associated complexity of the binary
label is small.

VI. CONCLUSION

The assignment values of latent values is an important
parameter in CRF based models with a layer of latent vari-
ables. The previous work on such models had a very intuitive
approach towards the purpose of the latent variables, and did
not address the problem of finding an ideal assignment of these
values throughout the label values.

We introduced a new method for assigning them in Latent-
Dynamic Conditional Random Fields which outperforms an ar-
bitrary distribution of those values. We evaluated our approach
using real world binary datasets for the task of unsegmented



human gesture recognition, and provided empirical results of
the advantages of our method. The method is generalizable for
all the models with a latent layer whose values have a direct
mapping with the label values.

Our method showed significant improvements in the hardest
of the datasets we used for benchmarking (the NATOPs
dataset), and was particularly effective when the difference in
the complexity measurement calculated was not too high. By
applying our technique we increased the recognition accuracy
by roughly 10% in some cases.

In the future, it is of interest to investigate the semantics
of the latent layer and its impact on the models performance.
To help in such investigation, we plan to create a new dataset
where the labels have a significant difference with respect to
complexity.
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