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Maceió, Alagoas, Brazil

Email: {aflf,oliveiramc,aydano.machado}@ic.ufal.br
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Abstract—The lung cancer is the reason of a lot of deaths
on population around the world. An early diagnosis brings a
most curable and simpler treatment options. Due to complexity
diagnosis of small pulmonary nodules, Computer-Aided Diag-
nosis (CAD) tools provides an assistance to radiologist aiming
the improvement in the diagnosis. Extracting relevant image
features is of great importance for these tools. In this work we
extracted 3D Texture Features (TF) and 3D Margin Sharpness
Features (MSF) from the Lung Image Database Consortium
(LIDC) in order to create a classification model to classify small
pulmonary nodules with diameters between 3-10mm. We used
three machine learning algorithm: k-Nearest Neighbor (k-NN),
Multilayer Perceptron (MLP) and Random Forest (RF). These
algorithms were trained by different set of features from the TF
and MSF. The classification model with MLP algorithm using the
selected features from the integration of TF and MSF achieved
the best AUC of 0.820.

Keywords-lung cancer; small nodules; early diagnosis;
computer-aided diagnosis; texture features; margin sharpness
features; classification; machine learning.

I. INTRODUCTION

Cancer is characterized as an abnormal cell growth that
invades and destroys neighboring tissues. Lung cancer is the
most frequently diagnosed cancer and accounts for highest
number of cancer-related deaths compared to any other cancer
[1].

The survival rate for lung cancer analyzed in five years is
only 15%. However, if the disease is identified at an early
stage, the survival rate increases to 49%[2]. Therefore, early-
stage nodules identification becomes a significant analysis
in lung cancer screening; As soon as they are found more
curable and simpler treatment options may be available [3].
Furthermore, nodule malignancy classification depends on
temporal aspects like growth rate and size change between
two time-separated Computed Tomography (CT) scans [4]. So,
besides increasing the likelihood of patient survival, an early
identification of potentially malignant pulmonary nodules also
help emotionally the patient, avoiding the necessity to wait for
days or months to measure the change in size, form or texture
of the nodule.

Generally, nodules are visually evaluated and verbally char-
acterized with a lexicon of radiologic features/descriptors and
terms that are semi-quantitative but subjectively assessed such

as: spiculated, smooth, flat, spherical, and others. This features
may have a large amount of subjective, experiential and per-
ceptual variability [5]. The medical image interpretation pro-
cess has shown significant inter-observer variation in numerous
studies due various aspects, e.g. time constraints, readers’ per-
ceptual errors, lack of training, or fatigue [6]. Moreover, small
lung nodules (those less than 1cm in diameter) noted on CT
images make the differential diagnosis clinically difficult and
may confuse clinical decision-making [7], [8]. Because, among
other factors, small pulmonary nodules have low contrast in
comparison to the lung tissue and can be attached to other
complex lung structures (Fig. 1)[9]. Therefore, the diagnosis
of small lung nodules is a challenging task for specialists but
very important to the patient’s survival.

(a) 9.2mm vessel-
connected.

(b) 6.9mm vessel-
connected

(c) 5.7mm isolated

Fig. 1. Examples of pulmonary nodules (highlighted in red) with their size
and anatomical structure connected to it.

In order to aid the radiologist in the medical images
interpretation, Computer-Aided Diagnosis (CAD) tools have
been used to determine the probability of malignancy of a lung
nodule based on image features. Moreover, CAD tools have
the potential to improve the accuracy of nodule classification
(likely malignant or benign) by acting as a second opinion to
specialists [10].

Several quantitative features have been used to characterize
pulmonary nodules, e.g. texture, shape, form, density, etc
[11], [12], [13]. In particular, some studies have used these
quantitative features in the characterization of small pulmonary
nodules [10], [3]. But the question whether these quantitative
parameters are able to confer an advantage or not in the clas-
sification between benign and malignant nodules still remains
[10]. So, there is a need to discovery relevant contents from
the images to improve the performance of CAD systems and



there are few works using features on small lung nodules
classification.

The objective of this work was to create a classification
model for small pulmonary nodules, with diameter between
3-10mm, classifying them from benign and malignant using
3D Texture Features (TF) and 3D Margin Sharpness Features
(MSF).

A. Related work

Reeves AP et al. [3] used 46 image features such as: 3D
geometry features, 3D features of the density distribution,
surface curvature features and features of the margin, to
determine the malignancy status of pulmonary nodules eval-
uated with combined image data from the two large datasets,
the Early Lung Cancer Action Program (ELCAP) and the
National Lung Cancer Screening Trial (NLST), with a total of
736 nodules, 412 malignant and 324 benign with volumetric
derived diameters between 3-29mm size-unbalanced. Different
data subsets were used for such to determine the impact of
class size distribution imbalance in datasets. One was the size-
balanced nodule dataset, with 326 nodules (163 malignant
and 163 benign) and volumetric derived diameters between
5-14mm. For classification were used: the distance weighted
k-NN, the Support Vector Machine (SVM) with a Polynomial
kernel (SVM-P), with a Radial Basis Function kernel (SMV-
R), the Logistic Regression and the size threshold. With a 5-
fold cross validation, a mean AUC of 0.772, with standard
deviation of 0.031 was achieved with the SVM-R for the
size-unbalanced data sets, the best performance. The best
classification performance for the balanced dataset achieved
average AUC of 0.708 (standard deviation 0.062) with SVM-
P trained on balanced data.

Dhara et al. [14] used a set of 49 features combining 2D
shape-based, 3D shape-based, 3D margin-based, 2D texture-
based and 3D texture-based features on the classification of
benign and malignant pulmonary nodules from 891 cases
of Lung Image Database Consortium (LIDC) and Image
Database Initiative public database. The classification scheme
used different configurations of the databases regarding the
classifications made by the radiologists. Using the SVM algo-
rithm with a 5-fold cross validation approach their best AUC
average performance achieved was 0.950. It is important to
say that this work did not take into account nodule size issues
on the classification.

B. Work structure

The remainder of this paper is organized as follows: section
II describe implementation and details from the material and
method used. Section III presents the results and discussion
of this work. Lastly, section IV concludes this paper.

II. MATERIALS AND METHODS

The overview schema of this work can be view on Fig. 2.
Fist, we create a database (Section II-A) from a medical
imaging repository (LIDC) in order to integrate information
about exams data, images features and nodule size. Next, we

had a step to measure the nodules size (Section II-B), we
defined a size threshold to select the small nodules of our
database (Section II-C), extracted the image features from
small nodules selected (Section II-D), we carried out a feature
selection step (Section II-E) and then we classified such
nodules (Section II-F). The results of Nodule Size Measuring
and Feature Extraction stage were stored in our database.

LIDC E. Feature
Selection

F. Classification

A. Lung Nodules 
Database

C. Small Nodule
Selection

B. Nodule Size
Measuring

D. Feature
Extraction

Fig. 2. General schema used in this work.

The feature selection and classification process were per-
formed using the tool RapidMiner Studio [15], version
6.5.002. The tests were performed on a PC Intel Core
i5, 3.10Hz CPU and 8GB RAM with operational system
GNU/Linux Ubuntu 14.04 LTS.

A. Lung Nodules Database

We used the medical images from the LIDC [16], which
consists of CT scans for lung cancer with lesions identified
and classified by four experienced radiologists in a process
of image interpretation which required the experts to read the
CT scans and marking of lesions using a graphical interface.
The identified nodules were ranked by radiologists according
to subjective characteristics, among them likelihood of malig-
nancy, following the conditions:

• Malignancy 1: high probability to be benign;
• Malignancy 2: moderate probability to be benign;
• Malignancy 3: indeterminate probability;
• Malignancy 4: moderate probability to be malignant;
• Malignancy 5: high probability to be malignant.
The LIDC is a collection not organized on database schema,

so, there is no correlation between images, exams data and
classification of nodules by radiologists. Furthermore, the
LIDC does not contain information about nodule size or image
features.

We created a database using a NoSQL approach Document-
oriented [17], the Data Base Management System (DBMS)
used was the MongoDB [18]. All lesions images were manu-
ally segmented using the radiologist’s marks and then placed
into our database. We extracted the image features from these
lesions images. As the LIDC has four radiologist’s marks,
we use only one of the four marks to avoid redundancies.
The criterion for choice was that made by the radiologist that
identified the highest number of lesions in each exam.

Our Database has 752 exams and 1,944 lung nodules from
LIDC on five ratings probability of malignancy. However, nod-
ules with likelihood of malignancy 3 were discarded because
they have probability of indeterminate malignancy, resulting



TABLE I
NODULE NUMBERS BETWEEN 3-10MM USED FROM OUR DATABASE.

Benign Malignant
Likelihood of Malignancy 1 2 4 5 Total

Nodule Numbers 69 68 123 14 274
Sum 137 137

in 1,171 nodules. For this work, nodules with probability of
malignancy 1 and 2 were considered benign, and nodules with
probability of malignancy 4 and 5 were considered malignant.

B. Nodule Size Measuring

The nodule size can be assessed as a single 2D measure of
greatest diameter, typically performed in the axial plane along
the axis of longest diameter [5]. Thus, for each nodule of
the database we calculate the distance between the minimum
and maximum coordinates in the respective x and y axes and
choose the one with the longest distance.

C. Small Nodule Selection

The smallest nodule found in our database has 3.27mm in
diameter. According to Bartholmai et al. [5], nodules <10mm
have a nonzero risk for malignant and nodules greater than
10mm are much more likely to be malignant. Therefore, in
order to prepare our classification model to face nodules as
small as possible and to not work with nodules most likely to
be malignant, we used the threshold diameter 3-10mm.

Due to the nodule diameter threshold used (3-10mm), our
database provided a number of benign nodules much greater
than malignant ones, which was expected because of the higher
chances of small nodules to be benign [5], [7], [13]. However,
in order to perform a fair classification, we balanced the
number of benign and malignant cases, as presented in Table
I.

D. Feature Extraction

The process of image feature extraction consists on re-
moving of numeric values that represent the image visual
content (images descriptors) through the implementation of
algorithms [19]. After extraction of image descriptors, the
features are stored in a feature vector. In this work, we used
two categories of image features: 3D Texture Features and 3D
Margin Sharpness Features.

Texture feature became particularly important due to its
capacity to reflect details contained within a lesion in an image
[6]. The variation of texture patterns of nodules provide strong
indicators of its nature malignant or benign. For example, the
presence of fat or calcification are strong indicators of a benign
tumor and result in an irregular distribution of texture. On the
other hand malignant nodules have uniform texture produced
by the presence of necrosis [20], [21].

A margin sharpness feature is important to differentiate
lesions in terms of potential malignancy because cancer tumors
grow into neighboring tissues [22]. According to Xu et al.
[23], a sharper margin will have a more abrupt transition and
may have a higher difference of intensities outside and inside

the lesion, whereas a blurred margin will have a smoother
transition and may have a smaller intensity difference.

1) 3D Texture Features: We used Gray Level Co-
occurrence Matrix (GLCM) to obtain texture attributes. GLCM
is a technique to extract information from second-order statis-
tical texture. It obtain, from a single image, the occurrence
probability of a pixel pair with intensity i, j and spacing
between the pixels of ∆x and ∆y in the dimensions x and y,
respectively, given a distance d and orientation θ [24].

A 3D texture analysis applied to the calculation of GLCM
in an image volume extends the probability of pairs of voxels
to the Z-axis. Second-order statistics are applied to the GLCM
producing the texture attributes. Haralick et al. [25] suggested
the texture features used in this work, which are listed below:

energy =
∑
i,j

C2(i, j), (1)

entropy = −
∑
i,j

C(i, j) logC(i, j), (2)

inverse difference moment =
∑
i,j

C(i, j)

1 + (i− j)2
, (3)

inertia =
∑
i,j

(i− j)2C(i, j), (4)

variance =
∑
i,j

(i− µ)2C(i, j), (5)

shade =
∑
i,j

(i+ j − µx − µy)3C(i, j), (6)

promenance =
∑
i,j

(i+ j − µx − µy)4C(i, j), (7)

correlation = −
∑
i,j

(i− µx)(j − µy)
√
σxσy

C(i, j), (8)

homogeneity =
∑
i,j

C(i, j)

(1 + |i− j|)
, (9)

where C(i, j) are the elements from the GLCM, µx and µy

are the mean, σx and σy are the standard deviation, obtained
by the following equations:

µx =
∑
i

iCx(i), (10)

µy =
∑
j

jCy(j), (11)

σx =
∑
i

(i− µx)2 ·
∑
j

C(i, j), (12)

σy =
∑
j

(j − µy)2 ·
∑
i

C(i, j), (13)

Cx(i) =
∑
j

C(i, j), (14)

Cy(j) =
∑
i

C(i, j). (15)



The TF vector was obtained by calculating the nine at-
tributes (Equations 1-9) applied to the co-occurrence matrices
performed in orientations 0◦, 45◦, 90◦ and 135◦, and distance
of 1 voxel. In this case, each nodule was associated with a
36-dimension vector of TF.

2) 3D Margin Sharpness: A 3D margin sharpness analysis
was also implemented in this work to characterize pulmonary
nodules. The implementation was partially proposed by Xu et
al. [23], in which the authors draw perpendicular lines over
the borders on all nodule slices. The implementation is as
follows: twenty control points were automatically selected on
the marked lesion edge, starting by the first point marked
by the specialist (Fig. 3(a)). If the boundary has p pixels,
than a control point is marked every p

20 pixels. Normal lines
were drawn at each of the 20 control points across the nodule
boundary (Fig. 3(b)). A mask was created to eliminate the line
segments that cross the lung wall because, otherwise, it will
introduce pixel information that does not belong to the nodule
or lung tissues. The mask was generated by applying a thresh-
old algorithm along with morphological dilation operation in
the original CT image (Fig. 3(c)). After excluding normal line
segments that do not belong to the lung by means of the
lung mask application (Fig. 3(d)), pixel intensities from the
remaining line segments from all nodule images were recorded
in a single sorted array. Then a data statistical analysis was
performed by extracting statistical attributes from the pixel
intensities sorted array. The MSF vector was composed by
the statistical features listed in Equations 16-27, in which x is
the pixel intensities array of size n, x1 is the intensity value
of a pixel outside the nodule and xn is the intensity value of
a pixel inside the nodule.

difference of two ends = xn − x1, (16)

sum of values =

n∑
i=1

xi, (17)

sum of squares =

n∑
i=1

x2i , (18)

sum of logs =

n∑
i=1

log xi, (19)

arithmetic mean (µ) =
1

n

n∑
i=1

xi, (20)

geometric mean = n

√√√√ n∏
i=1

xi, (21)

population variance =
1

n

n∑
i=1

(xi − µ)2, (22)

sample variance (υ) =
1

n− 1

n∑
i=1

(xi − µ)2, (23)

standard deviation (s) =
√
υ, (24)

kurtosis measure =

1

n

n∑
i=1

(xi − µ)4

s4
, (25)

skewness measure =

1

n

n∑
i=1

(xi − µ)3

s3
, (26)

second central measure =

1

n

n∑
i=1

(xi − µ)2

s2
. (27)

Therefore, each nodule is characterized as a 12-dimension
vector of MSF.

(a) Boundary con-
trol points.

(b) Normal line
segments.

(c) Cropped mask
obtained.

(d) Cropped final
output image.

Fig. 3. Output images from the 3D margin sharpness analysis.

3) Integration: Traina et al. asserts in [26] that texture
and shape features should be integrated to provide better dis-
crimination in the comparison process. Therefore, the texture
and margin sharpness attributes were concatenated in order
improve our classification model.

E. Feature Selection

A large number of features in a machine learning algorithm
can leading a higher likelihood of noise or irrelevant features,
hindering the learning process. This problem is known how
curse of dimensionality [27]. To avoid this problem and to
select the most relevant features on classification of small
pulmonary nodules we applied a selection feature technique
called Evolutionary Genetic Algorithm (EGA) [28] on TF,
MSF and on integration of this categories of features.

The EGA is based on genetic and evolutionary theory,
where the most environmentally adapted organisms are more
likely to have their features reproduced in a new generation.
Some of the advantages of genetic algorithms is the fact that
they perform simultaneous searches in various regions of the
solution space. This allows them to find various solutions, and
makes it a global search method.

In the context of our work, our population is made up
of individuals formed by binary vectors representing the
presence/absence of a given feature. The selected individuals
for reproduction were chosen using tournament criteria. In the
reproductive phase, the chosen operators were: crossover and
mutation, with applying probabilities to each individual 50%
and 5%, respectively. The crossover type applied was one-
point.

F. Classification

In order to build the classification model we used the k-
Nearest Neighbor (k-NN) [29], an Artificial Neural Network



(ANN) technique called Multilayer Perceptron (MLP) [30]
and Random Forest (RF) [31] machine learning algorithms.
These techniques have been applied in both detection and
classification of pulmonary nodules [32], [33], [34].

The classification model was evaluated with a 10-fold cross
validation with the 274 small nodules selected. Three sets of
features were separately used on each classifier: 3D Texture
Features (TF), 3D Margin Sharpness Features (MSF) and
Integration (I). For each set of features we evaluated also the
classification performance with the selected features.

For the k-NN, k varied in the odd natural interval [1,15].
Two euclidean distance and correlation similarity metrics were
used separately with each k value. With the MLP, we used 500
training cycles with 0.3 learning rate and 0.2 momentum, the
performance with one and two hidden layers were evaluated.
Ultimately, with the RF, we did tests with the generation of
50, 100, 150 and 200 trees, information gain was chosen
as selection criteria with maximal depth 30. Pruning and
prepruning were not applied. For each classifier, the best
results achieved using this methodology were considered for
comparison of the results.

III. RESULTS AND DISCUSSION

We used the Area Under the ROC Curve (AUC) [35]
to assess the performance of the classifiers on each set of
features. The Tables II, III and IV present the classification
results (mean ± standard deviation) over a 10-fold cross
validation of each machine learning algorithm without and
with feature selection (All Features and Selected Features on
the Tables, respectively).

The classification model using TF achieved highest average
AUC of 0.779 (σ = 0.087) with the k-NN algorithm using
the selected features (Table II). All the machine learning
algorithms had its performance improved using the selected
features from TF. In particular, the k-NN used only 17 features
from 36 TF.

The classification model using MSF obtained highest av-
erage AUC of 0.783 (σ = 0.077) with the k-NN algorithm
using the selected features (Table III). All the machine learning
algorithms had its performance improved using the selected
features from MSF. In particular, the k-NN used 7 features
from 12 MSF. So, the classification performance with TF and
MSF was quite similar (difference between areas of 0.004).

The best results were achieved using TF and MSF integra-
tion and feature selection. The MLP algorithm obtained the
highest average AUC of 0.820 (σ = 0.053) (Table IV). The
MLP used 26 features (21 TF and 5 MSF) from 48 features.
The results with k-NN and RF algorithms using integration
with selected features outperformed the results showed on
Tables II and III and both of them used TF and MSF on
classification. This show that TF and MSF were both important
for our classification model for small pulmonary nodules. The
ROC curve showed on Fig. 4 confirms the superiority of MLP
algorithm compared to the others best results using TF and
MSF separately.

Comparing our work with Reeves AP et al. [3], we had a
positive difference between the areas under the ROC curves of
0,048. [3] also took into account the diameter of the nodules to
train and classify the machine learning algorithms. However, it
is import to say that the image datasets used were different and
the best result was achieved by a different machine learning
algorithm, the SVM. Nevertheless, comparing our result with
Dhara et al. [14], we obtained a negative difference between
the areas under the ROC curves of 0,130, this can be explained
because the authors used a more diverse set of 2D and 3D
shape, margin and texture features. However, [14] did not take
into account the diameter of the nodules, which eliminates
some challenges that we faced by working with small nodules.

TABLE II
SMALL NODULE CLASSIFICATION USING 3D TEXTURE FEATURES

AUC
All Features Selected Features

k-NN 0.675± 0.076 0.779± 0.087
MLP 0.736± 0.141 0.747± 0.086
RF 0.732± 0.094 0.758± 0.072

TABLE III
SMALL NODULE CLASSIFICATION USING 3D MARGIN SHARPNESS

FEATURES

AUC
All Features Selected Features

k-NN 0.719± 0.091 0.783± 0.077
MLP 0.718± 0.057 0.758± 0.071
RF 0.705± 0.060 0.749± 0.100

TABLE IV
SMALL NODULE CLASSIFICATION USING INTEGRATION

AUC
All Features Selected Features

k-NN 0.712± 0.063 0.804± 0.065
MLP 0.722± 0.087 0.820± 0.053
RF 0.771± 0.085 0.797± 0.086

A. Challenges

The small diameter of nodules that we are using (3-10mm),
bring us a major challenge in classification stage due to
the small amount of information (pixels) of the nodules.
According to Reeves et al. [3], nodules of small size have
less image information in CT images than large nodules due
to the number of fixed-size image pixel elements (pixels) that
they span. For example, a 2mm nodule spans in the order of 8
pixels, a 3mm nodule 27 pixels, a 4mm nodule 64 pixels and
a 5mm nodule 620 pixels; further, for all these cases, a large
majority of these pixels are partial pixels; that is, they consist
of a mixture of the nodule tissue and the surrounding lung
tissue. It is important to say that texture and margin sharpness
features use internal information of the nodule.

Using the diameter threshold between 3-10mm our database
has only 14 nodules with malignancy 5 against 123 with



malignancy 4. It was just this total number used in our
study, as can be seen in Table I. Remember that nodules
with malignancy 5 indicate high probability to be malignant,
this way, it is possible to assume that these nodules have
more characteristics of a malignant nodule that nodules with
malignancy 4. Therefore, as the learning process on malignant
nodules by the classifier is practically performed on the
nodules with malignancy 4, due to the discrepancy amount of
nodules compared with malignancy 5, this process is impaired,
consequently hindering the classification process.

k-NN with TF = 0.779
k-NN with MSF = 0.783
MLP with I = 0.820

Fig. 4. Comparison of ROC curve among the best results of classification
models using TF, MSF and I.

IV. CONCLUSION

In function of the results obtained, with the machine learn-
ing algorithm and features used, the best classification model
for small pulmonary nodules must use the MLP algorithm with
texture and margin sharpness features integrated and adopt
the following set of features: sum of logs, arithmetic mean,
geometric mean, population variance, standard deviation, en-
ergy 0◦, inertia (0◦, 45◦ and 135◦), homogeneity (0◦, 45◦ and
135◦), correlation (0◦ and 45◦), shade (0◦, 45◦ and 135◦),
promenance (0◦, 90◦ and 135◦), variance (0◦ and 90◦), idm
(0◦, 45◦ and 90◦) and entropy 45◦.

The classification model using TF and MSF separately have
a similar performance in the classifications of small pulmonary
nodules using k-NN, MLP and RF machine learning algo-
rithms. The k-NN algorithm achieved the best performance in
both scenarios.

Our classification model for small pulmonary nodules still
has underperforming compared to state of the art. In order
to improve our model, as future work we plan to use more
machine learning algorithms and to include in our set of
features the lung parenchyma surrounding the nodule, that
in the work Dilger et al. [10] it proved quite promising to
include information that increases amount of data available,
which attacks just our challenge of the number of pixels that
a small nodule has. Advances in this area are important since

the early nodules classification is challenging the expert, but
critical to patient survival.
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