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Abstract—In this work, we extend a novel seed-based seg-
mentation algorithm, which provides global optimum solutions
according to a graph-cut measure, subject to high-level boundary
constraints: The simultaneously handling of boundary polarity
and connectivity constraints. The proposed method incorporates
the connectivity constraint in the Oriented Image Foresting
Transform (OIFT), ensuring the generation of connected ob-
jects, but such that the connection between its internal seeds
is guaranteed to have a user-controllable minimum width. In
other frameworks, such as the min-cut/max-flow algorithm, the
connectivity constraint is known to lead to NP-hard problems.
In contrast, our method conserves the low complexity of the
OIFT algorithm. In the experiments, we show improved results
for the segmentation of thin and elongated objects, for the same
amount of user interaction. Our dataset of natural images with
true segmentation is publicly available to the community.
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I. INTRODUCTION

Image segmentation is one of the most fundamental and
challenging problems in image processing and computer vi-
sion. In this work, we focus on seed-based methods for
interactive image segmentation [1], [2], [3], [4], [5], where
the user provides a partial labeling by drawing scribbles on
the image (seed pixels). A graph derived from the image is
then partitioned among the different labeled seeds according
to some energy formulation, which can be roughly described
in a unified manner according to a common framework,
sometimes referred to as, Generalized Graph Cut (GGC) [6],
[7]. Within this framework, there are two important classes
of energy formulations, the ε1- and ε∞-minimization prob-
lems [6], the former including the min-cut/max-flow algo-
rithm [2], whereas the latter class encompasses methods, such
as watersheds [5], fuzzy connectedness [4], and image foresting
transform (IFT) [8].

Global properties such as shape constraints and boundary
polarity, are potentially useful high-level priors for object
segmentation, allowing the customization of the segmentation
to a given target object [9]. The Connectedness is an important
global topology property, which can be used as a high-level
prior for object segmentation. The seed-based methods can
be classified into three groups, according to their level of
Connectedness:

1) In the first group, we have methods that do not guarantee
any level of connectedness (Figures 1a-b). In the graph
cut (GC) community, this is usually referred to as the
disconnection problem of GC, when the source and sink
nodes are connected to all image pixels [2].

2) In the second group, we have methods that guarantee
that object’s pixels are connected to some internal seed.
However, note that the object could be composed by
several disconnected components, as long as we have
some object’s seeds in each component (Figure 1c). The
majority of methods belong to this class, including fuzzy
connectedness and watershed from markers [4], [5].

3) In the third group, we have methods that guarantee
that the segmented object forms a single connected
component in the image domain [10], [11], [12], [9].
This is especially important when the target is a single
object (Figure 1d).

In this work, we use the term connectivity constraint to
indicate methods from the third group. The ε1-minimization
among all objects satisfying the connectivity constraint was
proved to be NP-Hard [10], [11]. Vicente et al. [10] propose
a heuristic algorithm, named DijkstraGC, which merges the
Dijkstra algorithm and graph cut. DijkstraGC is still slow,
since it requires many calls to the maxflow algorithm. Other
method, named Topology cuts, by Zeng et al. [11] also finds
only an approximate solution to incorporate topology priors
in the min-cut/max-flow algorithm. Nowozin and Lampert
adopted a different approach solving a related optimization
problem, which forces the output labeling to be connected in
the framework of recent maximum a posteriori (MAP)-MRF
linear program (LP) relaxations [12], [9].

More recently, Mansilla et al. [13] introduced the con-
nectivity constraint in the ε∞-minimization problem of the
GGC framework, motivated by the recent advances that have
been made in this class, such as the introduction of shape
constraints [14], [15] and boundary polarity [16], [17]. Their
algorithm, named Connected Oriented Image Foresting Trans-
form (COIFT) [13], provides global optimum solutions to
the ε∞-minimization problem, subject to high-level boundary
constraints (polarity and connectivity constraints), conserving
the low complexity of the IFT algorithm. Nevertheless, it
provides undesirable results with only thin connections in
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Fig. 1. (a) Input image with user selected seeds. (b) Segmentation by Graph cut showing the disconnection problem of an object region that is not marked
by any seed on the right. (c) Segmentation by IFT resulting in disconnected components that are all marked by some object seed. (d) Segmentation by the
proposed method producing a single connected component.

several cases, mitigating its potential positive effects (see the
third column of Figure 2). In this work, we extend COIFT in
order to guarantee an optimal solution to the ε∞-minimization
problem (which will be presented here in its equivalent dual
form as a maximization problem), under the constraint that the
connection between its internal seeds must have a minimum
selected width. The width parameter can be controlled by the
user to best fit to the object properties (Figure 2). We also
discuss how to improve the handling of ties in COIFT energy
formulation.

In Section II, we review IFT and OIFT. COIFT is then
presented with the proposed extension in Section III. In Sec-
tion IV, we evaluate the COIFT extension, which subsumes the
original COIFT [13] as a particular case, and our conclusions
are stated in Section V.

II. IMAGE GRAPH CONCEPTS

A multi-dimensional and multi-spectral image Î is a pair
⟨I, I⃗⟩, where I ⊂ Zn is the image domain and I⃗(t) assigns a
set of m scalars Ii(t), i = 1,2, . . . ,m, to each pixel t ∈ I. The
subindex i is removed when m = 1.

An image can be interpreted as a weighted digraph G =

⟨V,A, ω⟩, whose nodes V are the image pixels in its image
domain I ⊂ Zn, and whose arcs are the ordered pixel pairs
⟨s, t⟩ ∈ A. For example, one can take A to consist of all pairs
of ordered pixels ⟨s, t⟩ in the Cartesian product I × I such
that d(s, t) ≤ ρ and s ≠ t, where d(s, t) denotes the Euclidean
distance and ρ is a specified constant (e.g., 4-neighborhood,
when ρ = 1, and 8-neighborhood, when ρ =

√

2, in case of
2D images). The digraph G is symmetric if for any of its arcs
⟨s, t⟩ ∈ A, the pair ⟨t, s⟩ is also an arc of G. Each arc ⟨s, t⟩ ∈ A
has a weight ω(⟨s, t⟩), such as a dissimilarity measure between
pixels s and t (e.g., ω(⟨s, t⟩) = ∣I(t) − I(s)∣) for a single
channel image with values given by I(t).

The transpose GT = ⟨V,AT , ωT ⟩ of a weighted digraph
G = ⟨V,A, ω⟩ is the unique weighted digraph on the same
set of vertices V with all of the arcs reversed compared to
the orientation of the corresponding arcs in G (i.e., for any
of its arcs ⟨s, t⟩ ∈ A

T , the pair ⟨t, s⟩ is an arc of G, and
ωT (⟨s, t⟩) = ω(⟨t, s⟩)).

For a given image graph G = ⟨V,A, ω⟩, a path
π = ⟨t1, t2, . . . , tn⟩ is a sequence of adjacent pixels (i.e.,
⟨ti, ti+1⟩ ∈ A, i = 1,2, . . . , n − 1) with no repeated ver-

tices (ti ≠ tj for i ≠ j). Other greek letters, such as
τ , can also be used to denote different paths. A path
πt = ⟨t1, t2, . . . , tn = t⟩ is a path with terminus at a pixel
t. When we want to explicitly indicate the origin of the
path, the notation πs;t = ⟨t1 = s, t2, . . . , tn = t⟩ may also be
used, where s stands for the origin and t for the destination
node. More generally, we can use πS;t = ⟨t1, t2, . . . , tn = t⟩
to indicate a path with origin restricted to a set S (i.e., t1 ∈ S).
A path is trivial when πt = ⟨t⟩. A path πt = πs ⋅⟨s, t⟩ indicates
the extension of a path πs by an arc ⟨s, t⟩.

A predecessor map is a function P that assigns to each pixel
t in V either some other adjacent pixel in V , or a distinctive
marker nil not in V — in which case t is said to be a root
of the map. A spanning forest is a predecessor map which
contains no cycles — i.e., one which takes every pixel to nil
in a finite number of iterations. For any pixel t ∈ V , a spanning
forest P defines a path πPt recursively as ⟨t⟩ if P (t) = nil,
and πPs ⋅ ⟨s, t⟩ if P (t) = s ≠ nil.

A. Image Foresting Transform (IFT)

A connectivity function computes a value f(πt) for any
path πt, usually based on arc weights. A path πt is optimum
if f(πt) ≤ f(τt) for any other path τt in G. By taking to each
pixel t ∈ V one optimum path with terminus at t, we obtain
the optimum-path value V fopt(t), which is uniquely defined by
V fopt(t) = min∀πt in G{f(πt)}. The image foresting transform
(IFT) [8] takes an image graph G = ⟨V,A, ω⟩, and a path-
cost function f ; and assigns one optimum path to every pixel
t ∈ V such that an optimum-path forest P is obtained — i.e.,
a spanning forest where all paths πPt for t ∈ V are optimum.
However, f must be smooth [8], otherwise, the paths may not
be optimum.

The cost of a trivial path πt = ⟨t⟩ is usually based on a
seed set S , and the cost for non-trivial paths follow a path-
extension rule. The function f /∥ Smax is one example of smooth
function [8], which will be important in COIFT. Note that
f /∥ Smax processes anti-parallel arcs ⟨t, s⟩ along the path, which
requires a symmetric digraph.

f /∥ Smax(⟨t⟩) = {
−1 if t ∈ S
+∞ otherwise

f /∥ Smax(πs ⋅ ⟨s, t⟩) = max{f /∥ Smax(πs), ω(⟨t, s⟩)} (1)



Algorithm 1 computes a path-cost map V , which converges
to V fopt if f is a smooth function [8]. It is also optimized in
handling infinite costs, by storing in Q only the nodes with
finite-cost path, assuming that V fopt(t) < +∞ for all t ∈ V .

Algorithm 1. – IFT ALGORITHM

INPUT: Image graph G = ⟨V,A, ω⟩, and function f .
OUTPUT: Optimum-path forest P and the path-cost map V .
AUXILIARY: Priority queue Q, variable tmp, and set F .

1. For each t ∈ V , do
2. Set P (t)← nil, V (t)← f(⟨t⟩) and F ← ∅.
3. If V (t) ≠ +∞, then insert t in Q.
4. While Q ≠ ∅, do
5. Remove s from Q such that V (s) is minimum.
6. Add s to F .
7. For each pixel t such that ⟨s, t⟩ ∈ A and t ∉ F , do
8. Compute tmp← f(πPs ⋅ ⟨s, t⟩).
9. If tmp < V (t), then
10. If V (t) ≠ +∞, then remove t from Q.
11. Set P (t)← s, V (t)← tmp.
12. Insert t in Q.

B. Oriented Image Foresting Transform (OIFT)

Let G be a strongly connected and symmetric digraph,
where the weights ω(⟨s, t⟩) are a combination of an undirected
dissimilarity measure δ(⟨s, t⟩) between neighboring pixels s
and t, multiplied by an orientation factor, as follows:

ω(⟨s, t⟩) =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

δ(⟨s, t⟩) × (1 + α) if I(s) > I(t)
δ(⟨s, t⟩) × (1 − α) if I(s) < I(t)
δ(⟨s, t⟩) otherwise

(2)

where α ∈ [−1,1]. Different procedures can be adopted for
δ(⟨s, t⟩), as discussed in [18], [19], such as the absolute
value of the difference of image intensities (i.e., δ(⟨s, t⟩) =

∣I(s)− I(t)∣). Note that we usually have ω(⟨s, t⟩) ≠ ω(⟨t, s⟩)
when α ≠ 0. For colored images, a reference map should be
considered for I(t) in Eq. 2, or α must be set to zero [17].

OIFT is build upon the IFT framework by considering the
following path function in a symmetric digraph:

f♂
(⟨t⟩) = {

−1 if t ∈ S1 ∪ S0
+∞ otherwise

f♂
(πr;s ⋅ ⟨s, t⟩) = {

ω(⟨s, t⟩) if r ∈ S1
ω(⟨t, s⟩) otherwise (3)

where S1 and S0 denote, respectively, the set of seeds selected
inside and outside the object to be segmented.

The segmented object OP by OIFT is defined from the
forest P computed by Algorithm 1, with f♂, by taking as
object pixels the set of pixels that were conquered by paths
rooted in S1, i.e., OP = {t ∈ V ∣ πPt = τS1;t}. For α > 0, the
segmentation by OIFT favors transitions from bright to dark
pixels, and α < 0 favors the opposite orientation.

The function f♂ is a non-smooth connectivity function,
as described in [17]. The optimality of OP by OIFT is
supported by an energy criterion of cut in graphs involving arcs

from object to background pixels C(OP ) (outer-cut boundary),
according to Theorem 1 from [16], [17].

C(O) = {⟨s, t⟩ ∈ A ∣ s ∈ O and t ∉ O} (4)
E(O) = min

⟨s,t⟩∈C(O)
ω(⟨s, t⟩) (5)

Theorem 1 (Outer-cut optimality by OIFT). For two given sets
of seeds S1 and S0, let U(S1,S0) = {O ⊆ V ∣ S1 ⊆ O ⊆ V∖S0}

denote the universe of all possible objects satisfying the seed
constraints. Any spanning forest P computed by Algorithm 1
for function f♂ defines a segmented object OP that maximizes
E (Eq. 5) among all possible segmentation results in U . That
is, E(O

P
) =maxO∈U(S1,S0)E(O).

III. OIFT WITH CONNECTIVITY CONSTRAINTS

In [13], a new method that incorporates connectivity con-
straints has been proposed in the OIFT approach, named Con-
nected Oriented Image Foresting Transform (COIFT), which
avoids the generation of segmentations with disconnected
regions. In this section, we show that COIFT can be extended
by introducing a new parameter that controls the width of the
connectivity regions, making it more adaptable to different
objects (see Figure 2).

Let UC(S1,S0) be the set of all connected objects satisfying
the seed constraints, defined as UC(S1,S0) = {O ∈ U(S1,S0) ∣

G[O] is strongly connected}, where G[O] is the subgraph of
G induced by O. COIFT maximizes the energy E (Equation 5)
in a strongly connected and symmetric digraph G among all
connected objects in UC(S1,S0).

Let EA =maxO∈U(A,S0)E(O) denote the optimum energy
value using set A as internal seeds. According to the same
notation, E{t} denotes the optimum energy from a single
internal seed t, when S1 = {t}.

The COIFT prior is supported by the following propositions.

Proposition 1. Let EA∪B be the energy of a seed set A ∪B.
The optimum energy EA∪B among all objects in U(A∪B,S0),
satisfies EA∪B =min{EA,EB}.

Proposition 2. For a given strongly connected and symmetric
digraph G, and sets of seeds S1 and S0, such that S1 = {t}

we have that E{t} = V
f
/∥S0
max

opt (t).

Where V f
/∥S0
max

opt (t) is the cost of an optimum path by function
f /∥ S0
max (Eq. 1).

Proposition 1 has been proven in [13], and the proof of
Proposition 2 follows immediately from Lemma 1 in [20],
which shows it in its dual form.

Now, by extending COIFT we consider a disk with center
in t and adjacency radius γ, which represents the set of all
pixels within it, denoted by

V⊙(t, γ) = {x ∈ V ∣ ∣∣t − x∣∣ ≤ γ} (6)

where ∣∣t−x∣∣ represents the Euclidean distance between pixels
t and x. Note that x = t is also in V⊙(t, γ).

We also denote EV⊙(t,γ) as the optimum energy from S1 =
V⊙(t, γ), considering a disk V⊙(t, γ).



(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

(c1) (c2) (c3) (c4) (c5)

(d1) (d2) (d3) (d4) (d5)

(e1) (e2) (e3) (e4) (e5)

(f1) (f2) (f3) (f4) (f5)

Fig. 2. The first column represents the input images with user-selected markers. The second column, segmentations without connectivity constraints (OIFT
with α = 0.0). The third column, segmentations with COIFT (α = 0.0 and γ = 0.0). The fourth column, segmentations with COIFT (α = 0.0 and γ = 1.0).
The fifth column, segmentations with COIFT (α = 0.0 and γ = 2.0). The proposed results by COIFT guarantee connected objects.



Hence, COIFT comprises the following steps: 1) Compute
EV⊙(t,γ) for all t ∈ V . 2) Secondly, we must interconnect
disconnected seeds in S1, by computing paths passing through
pixels s with maximum energy EV⊙(t,γ), resulting in a new
connected set of internal seeds SC1 . 3) Execute the OIFT
method with f♂ from seed sets SC1 and S0, generating a final
connected result.

The main difference in relation to the original COIFT
resides in the Steps 1 and 2 where we have to compute
EV⊙(t,γ) instead of E{t} (see Figure 3).

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Graph representation with segmentations results by: (a)
OIFT. (b) COIFT (γ = 0), the riverbed path interconnecting the
seeds and the values of E

{t} for each region are shown in red. (c-f)
COIFT with γ = 1.0. In (c-d), we can observe how the energy of
the disks is computed for the pixels a, b and c, i.e., E

V⊙(a,γ) =
min{E

{a1},E{a2},E{a3},E{a4},E{a}} = min{3,5,4,5,5} = 3,
E
V⊙(b,γ) =min{E

{b1},E{b2},E{b3},E{b4},E{b}} =min{3,3,3,3,3} =
3 and E

V⊙(c,γ) = min{E
{c1},E{c2},E{c3},E{c4},E{c}} =

min{4,4,4,4,4} = 4. The colored regions in (e) represent the final
energy regions E

V⊙(t,γ) for all t ∈ V . (f) The riverbed path interconnecting
the seeds.

Consider V⊙(t, γ) = {x1, x2, ..., xm}, where m is the
number of pixels within the disk V⊙(t, γ), including t. From
Proposition 1 we can conclude that

EV⊙(t,γ) = min
x∈V⊙(t,γ)

{E{x}}

and by Proposition 2, we also have that

EV⊙(t,γ) = min
x∈V⊙(t,γ)

{V f
/∥S0
max

opt (x)}

Consequently, the first step of COIFT can be accomplished
by computing the erosion of V f

/∥S0
max

opt with erosion radius γ. We

first compute V f
/∥S0
max

opt for all t ∈ V , which requires one execution
of Algorithm 1 with f /∥ S0

max , using only the external seeds in S0
and then compute the erosion of the cost map V f

/∥S0
max

opt (t).
In the second step, we interconnect disconnected seeds in S1

through pixels t centered in disks V⊙(t, γ) with higher energy
values EV⊙(t,γ), in order to get the best connected result with
the given width parameter γ according to Proposition 1. We
consider a particular case of the cost function employed by
the Riverbed method [21].

friver(⟨t⟩) = {
−1 if t = s∗

+∞ otherwise
friver(πs ⋅ ⟨s, t⟩) = K −EV⊙(t,γ) (7)

where K =maxt∈V EV⊙(t,γ) and s∗ is a given starting point.
A riverbed path τr;t (computed by Algorithm 1 using

friver) from pixel r = s∗ to t, always traverses a sequence
of intermediary pixels ti, for which the maximum value of
K −EV⊙(ti,γ) along any part of it is minimized among other
possible alternative routes [21]. Consequently, a riverbed path
by friver always seeks higher levels of EV⊙(ti,γ) as desired
(Figure 3). We select an arbitrary node in S1 to use as s∗, and
then compute one IFT with friver generating a forest P . For
all t ∈ S1, such that t ≠ s∗, we select all pixels ti in the path
πPt , including the pixels in their disks V⊙(ti, γ) (Figure 3f),
to compose a new connected set of internal seeds SC1 .

In the last step, we simply compute the OIFT method with
f♂ from seed sets SC1 and S0, generating a final result, which
is guaranteed to be a connected object.

A. Handling ties in the energy formulation

Whenever the segmentation by OIFT is already resulting in
a single connected component, we would expect that COIFT
produces the same result. However, in cases where there are
multiple solutions with the same optimum energy values,
COIFT could select an alternative connection path by riverbed,
leading to a different segmentation, as illustrated in Figure 4.
In order to guarantee the same output in these cases, we change
the riverbed function to favor the selection of connection paths
that pass through the OIFT segmentation, by assigning the
lowest cost to pixels in the OIFT result.

B. Connectivity Constraints for background seeds

The connectivity constraint can also be applied for the
background seeds to guarantee connected backgrounds. In
order to accomplish this goal, we need to invert the roles
played by the internal and external seeds and apply COIFT in
the transpose graph GT , as illustrated in Figure 5. Note that
in this case we guarantee segmented objects without holes.

IV. EXPERIMENTS

We compared COIFT against other methods with competi-
tive running times (OIFT [16], ORFC+GC [20], [22]), to show



(a) (b)

(c) (d)

(e) (f)

Fig. 4. (a) Schematic representation of a synthetic image with internal (red
markers) and external (blue markers) seeds. (b) OIFT result. (c) COIFT result.
The values of E

{t} for each region are shown. (d) Additional external seeds
are selected. (e) Updated result by COIFT. Note that even with more external
seeds COIFT still does not give the same solution of OIFT, which has a single
connected component. (f) COIFT result considering the modified riverbed
function that favors pixels in OIFT. Note that the results in (c), (e) and (f)
have the same energy (i.e., E = 2). For COIFT results, the riverbed path
interconnecting the internal seeds is shown in red.

how ε∞-minimization (or equivalently E(O)-maximization)
based methods can benefit from the use of connectivity con-
straints. In order to stress the methods, we only considered the
image-based weight assignment from [19] for δ(s, t) in Equa-
tion 2, without any prior intensity distribution model, aiming
a higher challenge. The experiments were conducted using a
robot user, as proposed by Gulshan et al. [23], to simulate user
interaction by placing brush strokes automatically to iteratively
perform the segmentation task.

In our experiments we used two image datasets, one com-
posed by natural images and the other by MRT1 images. In
the first experiment, we used 50 public images of birds 1

(Figure 6). The ground truth for these images was generated by
manual segmentation and it is publicly available to the com-

1 These images are released under Creative Commons CC0 into the public
domain, available at the web site https://pixabay.com/.

(a) (b)

(c) (d)

(e) (f)

Fig. 5. (a) Input image with user-selected markers. (b) Segmentation without
connectivity constraints (OIFT with α = 0.0). (c) Inverted markers of the
image (a). (d) Segmentation with COIFT (α = 0.0 and γ = 0.0). (e)
Segmentation with COIFT (α = 0.0 and γ = 1.0). (f) Segmentation with
COIFT (α = 0.0 and γ = 2.0). The proposed results by COIFT guarantee
connected backgrounds.

munity 2. Figure 6 shows segmentation results by OIFT [16]
and COIFT with different radius values γ for the same user-
selected markers, making clear the advantages of COIFT. Note
that the dataset contains objects with thin and elongated parts.
In Figure 7 we show the mean error curves using a robot user
for segmenting the bird dataset. For each segmentation, the
error was computed as the mean distance of the ground truth
boundary from the delineated boundary. ORFC+GC [20], [22]
did not perform well in this dataset because it was not able to
segment some thin and elongated parts of the objects.

In the second experiment, we used 44 MRT1-images of
phantoms (available at the BrainWeb site 3) to segment the
cortical gray matter (Figure 8). Figure 9 shows the mean
error curves for all the images using a robot user for the
segmentation of the cortical gray matter. Note that COIFT
has the lowest error among all approaches for γ = 2.0.

V. CONCLUSION

In this work, we extended COIFT to support a user-
controllable minimum width of the connectivity constraint. It
includes the method by Mansilla et al. [13] as a particular

2URL: http://vision.ime.usp.br/∼lucyacm/datasets/birds.html.
3URL: http://www.bic.mni.mcgill.ca/brainweb/

https://pixabay.com/
http://vision.ime.usp.br/~lucyacm/datasets/birds.html
http://www.bic.mni.mcgill.ca/brainweb/
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(b1) (b2) (b3) (b4) (b5)

(c1) (c2) (c3) (c4) (c5)
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Fig. 6. Segmentation of different birds: The first column represents the input images with user-selected markers. The second column, segmentations without
connectivity constraints (OIFT with α = 0.0). The third column, segmentations with COIFT (α = 0.0 and γ = 0.0). The fourth column, segmentations with
COIFT (α = 0.0 and γ = 1.0). The fifth column, segmentations with COIFT (α = 0.0 and γ = 2.0). The proposed results by COIFT guarantee connected
objects.

(a) (b) (c) (d) (e)

Fig. 8. Segmentation of the cortical gray matter: (a) The input image with user-selected markers. (b) Segmentation without connectivity constraints (OIFT
with α = 0.0). (c) Segmentation by COIFT with α = 0.0 and γ = 0.0. (d) Segmentation by COIFT with α = 0.0 and γ = 1.0. (e) Segmentation by COIFT
with α = 0.0 and γ = 2.0. The proposed results by COIFT guarantee connected objects.
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Fig. 7. The mean error curve (boundary error) using a robot user for
segmenting the bird dataset.
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Fig. 9. The mean error curve (boundary error) using a robot user for the
segmentation of the cortical gray matter.

case when γ = 0.0. We also improved the handling of ties
in COIFT energy formulation and discussed its application
to avoid objects with holes, by applying the connectivity
constraint for the background seeds.

The new method, successfully incorporates connectivity
constraints on OIFT, preserving its low time complexity
O(N = ∣V ∣) (whenQ is implemented using bucket sorting [8]),
since it requires only four executions of Algorithm 1.

Connectivity constraints are especially helpful on 3D appli-
cations involving connected objects with thin parts, such as a
vascular network. As future work, we intend to test COIFT in
a full automatic segmentation framework.
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