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Abstract—Image simplification has been proved useful in
several image processing applications as an additional step for
more complex tasks, such as segmentation and feature extraction.
In this work, we explore a graph-based simplification method
that guarantees a well-behaved suppression of the image extrema
(maxima/minima) by taking into account both information of
distance and contrast, as well as some interesting aspects of
the scale-space theory. By highlighting some new properties
of the method, we define a local update of the graph which
implies in an interesting bypass in the whole algorithm structure
which, originally, is very time-consuming. Finally, we illustrate
how to combine this simplification process with well-known
morphological tools to approach problems related mainly with
multi-scale image segmentation and homogenization.

Keywords-image simplification; scale-space; mathematical mor-
phology; regional extrema;

I. INTRODUCTION

The area of image processing and analysis includes a large
amount of applications ranging from the lowest level tasks
(e.g. extremum points detection) to the more specialized ones,
such as segmentation and classification, requiring the deletion
of unnecessary details of the input images. In such a case, it is
common to apply a pre-processing step to the original image
before any further consideration. Often, this step aims not only
to filter out noisy components, for instance, but also to simplify
the image through the elimination of non-significant details,
while keeping the information necessary to the achievement
of the desired outcome.
Image simplification is commonly referred to as a pre-
processing step and, in particular, Mathematical Morphol-
ogy [1],[2],[3],[4] introduces interesting low-level simplifica-
tion filters exhibiting well-known properties [5]. The typical
filtering by opening and closing [2] and their combination
as alternate sequential filters are commonly used to elim-
inate undesirable components of an image while preserv-
ing its main content. The multi-scale approach based on
the scale-space theory [6] defines a multi-level processing
(from finer to coarser scales) related to different represen-
tations of the original signal. In such a case, the simpli-
fication should be well-behaved in the sense that, given
a certain feature of interest (e.g., the zero-crossing of a
function), one seeks to track its representation along the
different scales. This multi-level transformation should satisfy

some properties of monotonicity, continuity, fidelity and
euclidean invariance [6]. The monotonicity concept guar-
antees the non-inclusion of new interest features at different
scales; the continuity states that a continuous path should
be defined by the remaining features along these scales; the
fidelity ensures that the signal tends to its original form as
the scale tends to zero, and, finally, the euclidean invariance
asserts that translation and rotation transformations result in
translated and rotated signals.
Morphologically, the leveling approach in [7],[8] defines a
reconstruction-based simplification without changes in the
final contours w.r.t the original image. Another example
of morphological simplification is the dynamic measure [9]
which selects components of an image according to the notion
of extinction values (e.g., area or volume) [10]. This procedure
is closely related to the measure of persistence of a signal
and is used to eliminate image components regarded as non-
significant. Another method based on scale-dependent non-flat
structuring function is discussed in [11], where a toogle-like
transformation simplifies an image in a self-dual way.
Recently, the work in [12] introduced a non-self-dual simpli-
fication method taking into account the relationship between
image extrema. More specifically, it considers the distance
and contrast between the various regional maxima (minima)
and define a total order relation closely linked to the degree
of simplification one wants to impose. As we will see later,
this multi-level process establishes a non-decreasing and well-
behaved activity from which the least significant extrema
merge successively with the most significant ones, in a given
neighborhood.
In this work, we explore this graph-inspired simplification
process aiming at improvements in terms of algorithm and
applications. We highlight some new properties concerned
with the local update of the graph configuration that yields,
among others, a huge speed-up in execution time. We also
propose new means to combine this algorithm with different
morphological tools and explore the homogenization aspect
led by the well-behaved merging of our features of interest
(the image extrema). An overview of our work can be seen in
Fig. 1 and Fig. 3. As it will become clear later, in Fig. 1, we
show some tuples of the aforementioned order relation. These
tuples were used here to define a meaningful segmentation of



(a) σ = 24.5 (b) σ = 4.58 (c) σ = 1.67 (d) σ = 0.03

Fig. 1. Monotonic reduction of image extrema with final watershed segmentation.

the image represented mostly by its deepest regional minima.
Fig. 3 shows the bypass introduced here to approach the high
computational cost of the original algorithm. As we will see in
Section III, this bypass is given by a local update of the graph
and concerns the different scale parameters defined along the
successive simplifications.
The rest of this paper is organized as follows: Section II
presents an overview of the considered simplification algo-
rithm. Section III underlines new properties of this graph-
inspired approach and introduces some results leading to an
improvement of the algorithm in terms of execution time.
Application examples combining morphological tools with the
corresponding simplification process are given in Section IV.
Finally, some conclusions are drawn in Section V together
with future works on this matter.

II. BACKGROUND

The main concepts behind the simplification process explored
in this work consider the notion of scale-dependent erosion
and dilation, as stated in [13], [14] and further explored, for
example, in [11],[12]. These operations can be defined as
follows [13].

Definition 1 (Erosion). The erosion of the function f(x) with
the structuring function gσ(x), noted [εgσ (f)](x), is defined
by:

[εgσ (f)](x) = inft∈G∩D−x{f(x+ t)− gσ(t)} (1)

Definition 2 (Dilation). The dilation of the function f(x) with
the structuring function gσ(x), noted [δgσ (f)](x) is defined by:

[δgσ (f)](x) = supt∈G∩Ďx{f(x− t) + gσ(t)} (2)

where f : D ⊂ R2 → R is the image function, Dx is the
translate of D, Dx = {x+ t : t ∈ D}, and Ďx is the reflection
of D. Finally, gσ : Gσ ⊂ R2 → R is the scaled structuring
function. An example of such a function is given in [14] where
gσ(x) = − 1

2σx
2, and σ > 0 is the scale parameter.

The result of these operations depends on the origin of the
structuring function gσ . To avoid level shifting and horizontal
translation effects, respectively, one must consider [13]:

supx∈Gσ{g(x)} = 0 and g(0) = 0 (3)

It was also proved in [13] that the scale-space conditions
ensuring no changes in the original gray-scale and position of
the remaining extrema, as well as the non-introduction of new

extrema in the simplified signal, are also obtained from this
type of structuring function whose shape is concave downward
and monotonic decreasing along any radial direction from its
origin [13].
In this work, we use the non-flat pyramid-shaped structuring
function shown in Fig. 2 [11], and further discussed in
Section II-B .

-5

-1
0

-2

-3
-4

-5 -5

0 0
5

5

Fig. 2. Non-flat pyramid-shaped structuring function.

A. Extrema relationship

Let G = (V,E, f) be a connected labeled simple graph
representing a signal f : Z × Z → R. The set of edges
E ⊆ V ×V describes the connectedness of the signal over the
vertices V . This graph provides a structure for the function
f and is used to simplify this function by means of the
suppression of regional extrema. The following definitions
concern the scale parameter and the order relation which
guarantees a well-behaved transformation, in the sense that
no new extrema are introduced in the process [12].

Definition 3. Let G = (V,E) be a graph and let u, v ∈ V .
Let P (u, v) be the set of vertices along one of the paths of
shortest length between u and v. Then u and v are said to be
`’-separated by `′(u, v), with `′(u, v) = #(P (u, v)−{u, v}).

Definition 4. Let G = (V,E) be a graph and let EA ⊆ E
and EB ⊆ E be subsets from which the sets A and B are
built such that A contains all the vertices that form the edges
in EA, respectively for B, with A ∩ B = Ø. Then A and
B are said to be `-separated by `(A,B), with `(A,B) =
min{`′(u, v)|∀u ∈ A,∀v ∈ B}.

Definition 5. Given the same conditions as in Definition 4
then A and B are s-neighbors if `(A,B) = 1.

Fig. 4 illustrates these definitions, where the two regional
minima X and Y , in the solid rectangles, are `-separated by
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`(X,Y ) = 3. Now, suppose any function z (e.g., the watershed
transform) producing the sets A and B from X and Y (the
closed dashed curves), such that X ⊆ A and Y ⊆ B with
`(z(X), z(Y )) = `(A,B) = 1. Note that vertices outside sets
A and B (nodes labeled 5, 6, 7) constitute the water divisors
of function z [15], [16]. This function plays an important role
in the simplification process, since it defines, based on sets A
and B, where two minima (maxima) are s-neighbors, thus
reducing the amount of connections generated among extrema.

The proposed relation taking into account both contrast and
separation between image extrema can be obtained as fol-
lows [12]. Let X and Y be, as before, two extrema of a
signal f (both minima or maxima), and u ∈ X , v ∈ Y . Also,
consider a function z so that the sets given by z(X,Y ) are
s-neighbors. Then, the following equation defines the height
(scale) of the structuring function used in the simplification
process.

σ(X,Y ) =
|f(u)− f(v)|
`(X,Y )

(4)

By considering Equation (4) for every pair of s-neighbor sets,
one can obtain a meaningful collection of tuples associated
with the height, σ, and the separation, `, of a pair of extrema.
Now, let S = {(σ1, `1), . . . , (σn, `n)} represent the set of all
tuples obtained from these extrema. Then, a strict total order
relation R on S, between two tuples, can be defined as follows:

(σp, `p) ≺ (σo, `o)⇐⇒ σp > σo ∨ (σp = σo ∧ `p < `o) (5)

This relation guides the way the orderly simplification occurs
by successively suppressing the signal extrema, from the least
significant to the most relevant, as explained next.

B. Signal Simplification

The simplification process starts by choosing a tuple t =
(σt, `t) ∈ S. Here, the value σt is used to define the
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Fig. 4. Graph G of a signal f . X ,Y are regional minima in A,B as s-
neighbors.

corresponding structure function gt : Z × Z → R [12]. This
function, whose height is given by Equation (4), is connected
according to the graph of the original signal and its size
extends only to the neighbors of a vertex v. The structuring
function gt is defined by

gt(x) =

{
0 if x = 0
−σt otherwise

(6)

Note that gt respects sup(gt) = 0 and gt(0) = 0, as required
(Equation (3)). In terms of implementation, for a rectangular
8-connected grid, gt is an elementary 3×3 discretized pyramid,
as in Fig. 2, obeying the scale-space properties mentioned
earlier. Through this structuring function, the signal can be
simplified by either performing erosions (for regional minima)
or dilations (for regional maxima).
Finally, in order to impose restrictions over which extrema are
suppressed, at each scale σt, one needs to limit the simplifica-
tion solely to those regional minima, Rmin, (maxima, Rmax)
influenced by a t ∈ S. The operator τ , yielding the orderly
simplification of the regional minima, can be expressed as
follows:

f̂(x) =

{
f(x), if x ∈ Rmin(f)
∞, otherwise

(7)



(a) Signal f (b) σ = 3.0 ` = 3 (c) σ = 2.0 ` = 2 (d) σ = 1.0 ` = 3

Fig. 5. A signal f followed by the merging of its regional minima according to the tuples t in R.

τ(f, t) = inf

(
ε
(
f̂ , gt

)`t
, f

)
(8)

By duality, the simplification of the regional maxima is given
by:

f̆(x) =

{
f(x), if x ∈ Rmax(f)
−∞, otherwise

(9)

τ(f, t) = sup

(
δ
(
f̆ , gt

)`t
, f

)
, (10)

where `t in tuple t indicates the number of erosions/dilations
performed with the elementary structuring function gt de-
scribed in the Equation (6). This number of iterations is
concerned with the following result in [12]

Proposition 1. if a tuple t ∈ S is seleted, then at most `t
erosions (dilations) with the structuring function gt are needed
to suppress a minimum (maximum) using τ(f, t)

Fig. 5 illustrates this simplification process, where the
original signal in Fig. 5(a) has five regional minima. Fig. 5(b)-
(d) show the resulting simplifications where a less significant
minima merges successively with a more significant, according
to the order of the tuples in R. These different configurations
are obtained by Equation (8) which uses erosion when dealing
with regional minima. Thus, based on (4), the tuple t = (3.0, 3),
for example, is defined for the two right-most regional minima
where, according to (6), the structuring function is given by
the one-dimensional discrete function g = [−3, 0,−3]. From
Proposition 1 above, ` = 3 is the number of erosions necessary
for the merging of the two right-most extrema, independently
of the signal values between them.

III. NEW THEORETICAL RESULTS

Fig. 3 depicts the main steps of the algorithm described by
Equations (8) and (10) above. First, a graph G expressing the
neighborhood connectedness of the regional maxima (minima)
is defined. Further, the set S = {(σ1, l1), . . . (σn, ln)} of tuples
is defined and an order relation R is obtained for the current
simplification step represented, for instance, by the highest
tuples generating very few simplification activity.
Since we reiterate this whole process, from the least to the
most significant extrema, the main drawback of this algorithm
is its high computational cost given by the graph construction
and tuples sorting.
The new results discussed next explore the graph-inspired
implementation of the method together with its monotonicity

and continuity properties. In our case, these features ensure
that no new extrema are created and that the remaining extrema
are not displaced along the different scales. As explained
elsewhere, these results will allow the bypassed connection
defined by a local update of the graph, as illustrated in Fig. 3.
The next proposition considers the local update of the graph
after a least significant extremum merges with one of its neigh-
bors (the most significant in the connected neighborhood). This
update defines the new tuples between the remaining vertices
and can generate more than one path for a pair of different
nodes. In such a case, the order relation R defines the tuple
exhibiting the shortest distance between these nodes.
Let X , Y , W be three regional minima (maxima) of a discrete
signal. Also, let s ∈ X , u ∈ Y and v ∈ W be any point
of these extrema belonging to two shortest paths P (s, v) and
P (u, v), as illustrated in Fig. 6. From Definition 3, we have
that P (s, v) is the set of vertices along one of the shortest paths
between s and v of length `′(s, v) = #(P (s, v)− {s, v}).

X
Y

WP(s,u)
  v

   s

 u

P(u,v)

Fig. 6. Shortest paths between regional extrema.

Proposition 2. If s ∈ X , u ∈ Y and v ∈W are nodes in the
regional extrema X , Y and W , where {s, u} and {u, v} are
`′−separated respectively by `′(s, u) and `′(u, v), and u is a
node in the least significant extremum Y , then the separation
between the remaining extrema, containing s and v, is given
by `′(s, v) = `′(s, u) + `′(u, v) + 1.

Proof:

From Definition 3, we have that:

`′(s, v) = #( P (s, v)− {s, v} )

`′(s, v) = #P (s, v)−#{s, v}, (11)

where #P (s, v) can be given simply by

#P (s, v) = #P (s, u) + #P (u, v)−#{u}, (12)

since node u was considered twice.



Now, replacing Equation (12) into (11) yields:

`′(s, v) = #P (s, u) + #P (u, v)−#{u} −#{s, v}
`′(s, v) = #( P (s, u)− {s, u} ) + #{s, u} +

#( P (u, v)− {u, v} ) + #{u, v}−
#{u} −#{s, v}

`′(s, v) = `′(s, u) + `′(u, v) + #{s, u} +

#{u, v} −#{u} −#{s, v}
`′(s, v) = `′(s, u) + `′(u, v) + 1 (13)

Proposition 3 gives the new `−separation between the re-
maining extrema X and W , which are now connected in the
graph after the suppression of Y as a regional extremum. This
proposition can be easily extended to any number of more
significant extrema connected to Y which, in turn, will merge
with the most relevant one (according to the current tuple
t ∈ S).

Proposition 3. If X , Y and W are regional extremum vertices
`-separated by `(X,Y ) and `(Y,W ), and Y is the least
significant extremum in the neighborhood, then the update of
the `-separation between X and W , after Y merges with one
of them, is given by `(X,W ) = `(X,Y ) + `(Y,W ) + 1

Proof:
From Definition 4, we have that:

`(X,W ) = min{`′(s, v)|∀s ∈ X,∀v ∈W}

and from Proposition 2:

`(X,W ) = min{`′(s, u) + `′(u, v) + 1}
`(X,W ) = min{`′(s, u)}+min{`′(u, v)}+ 1

`(X,W ) = `(X,Y ) + `(Y,W ) + 1 (14)

Now, let us consider the case illustrated in Fig. 7 where a
given tuple leads the merging, at the same time, of a set
of least significant extrema with another vertice in their
neighborhood. For the sake of simplicity, we consider in
the following proposition the merging of only two extrema
(labeled Q and Y ). The given result can be easily extended
to any number of nodes.

Let X , Y and Q be the regional minima (maxima) of a signal
f . Also, let s ∈ X , k ∈ Q and u ∈ Y be any point of these
extrema, belonging to one of the shortest path between them.

 u

    s

  k
X Q

Y

Fig. 7. Simultaneous simplification of two extrema.

Proposition 4. If t(X,Q) and t(X,Y ) are the tuples formed,
respectively, by the connected regions {X,Q} and {X,Y },
then the least significant regional extrema Q and Y merge
simultaneously with X iff σ(X,Q) = σ(X,Y ), `(X,Q) =
`(X,Q) and f(k) = f(u).

Proof:
From the tuples definition above, we have:

t(X,Q) = t( σ(X,Q), `(X,Q) ) (15)
t(X,Y ) = t( σ(X,Y ), `(X,Y ) ), (16)

Based on the order R in (5), a simultaneous merging
of Q and Y with another extremum, X , leads to:

t(X,Q) = t(X,Y ), (17)

which obviously implies:

σ(X,Q) = σ(X,Y ) (18)
`(X,Q) = `(X,Y ) (19)

Now, by considering s ∈ X , k ∈ Q and u ∈ Y ,
where X , Q and Y are regional minima (maxima),
then by the Equations (4) and (18):

| f(s)− f(k) |
`(X,Q)

=
| f(s)− f(u) |

`(X,Y )
(20)

Since the two regional extrema Q and Y merge with
a more significant extremum X , then the following
relations hold for regional minima (dually for re-
gional maxima):

f(s) < f(k) (21)
f(s) < f(u) (22)

Finally, substituting Equations (21) and (22) into
(20):

f(s)− f(k)

`(X,Q)
=
f(s)− f(u)

`(X,Y )

f(k)− f(s) = f(u)− f(s)

f(k) = f(u) (23)

The local update of graph G locally connecting the set of
s-neighbors regional extrema occurs as soon as a certain
extremum merges with one its more relevant neighbors. This
merging also implies the update of the remaining tuples
concerned with the new configuration of the neighborhood.
The following example illustrates how to approach this update.
Let Q, X , Y and M be four regional minima (maxima) of a
signal f . Also, let s ∈ X , u ∈ Y , v ∈ Q and k ∈ M be
points of the corresponding extrema, as before. Fig. 9 gives
an example of these points where Y is supposed to merge with
one of its more significant neighbors.
If we consider, in this example, that X is the most significant
neighbor of Y , followed by the regional extremum M , then
the new scale, relating X with M , after the merging, is given



(a) Image original
min = 814 max = 824

(b) σ = 59.0
min = 718 max = 630

(c) σ = 10.9
min = 610 max = 492

(d) σ = 6.4
min = 560 max = 385

(e) σ = 5.1
min = 407 max = 217

Fig. 8. Successive simplifications obtained from morphological reconstruction of the original image, using the extrema defined at each scale as markers. min
and max indicates, respectivelly, the number of reamining regional minima and maxima at each iteration.
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Fig. 9. Relationship update.

by the following function (according to Equation (4) and
Propositions 2, 3 and 4).

F (X,Y,M) =
|f(s)− f(k)|

`(X,Y ) + `(Y,M) + 1
(24)

From Proposition 3, we also have

`(X,M) = `(X,Y ) + `(Y,M) + 1, (25)

and the new tuple corresponds to tn =
(F (X,Y,M), `(X,M)). The new relation between vertices
X and Q is obtained in the same way.

IV. RESULTS AND DISCUSSIONS

In this section, we compare the results of the simplification
method obtained through the new properties detailed in Sec-
tion III, and give some examples of the use of the operator τ
( Equations 8 and 10 ) combined with different morphological
tools. In these examples, a regular 8-connected grid graph is
considered and the function z is given by the well-known
watershed transform [16], [4].
Fig. 8 shows a set of simplified images obtained from morpho-
logical reconstructions [2]. In such a case, the marker functions
are represented by the input regional minima simplified with
the tuples disposed in descending order. Note the significant
reduction of the number of image extrema with level and
position preservation of the remaining contours.

In Fig. 10 we illustrate how the watershed transform [16] can
be combined with the simplification method to approach its
typical over-segmentation problem. In these both cases, we
use the regional minina obtained at each iteration as markers
for the watershed function. Note the monotonic reduction of
the over-segmented regions and the convergence of the method
to a more meaningful and treatable segmentation result.

(a) Chromosome image (b) σ = 26.5

(c) σ = 5.11 (d) σ = 0.9

Fig. 10. Example of a simplification combined with the watershed transform.

Fig. 11 shows the effect led by the homogenization of the
regions when merged in a well-behaved manner. Fig. 11e
depicts the contours of the homogenized image (Fig. 11d),
highlighting its better quality w.r.t methods such as Laplacian
and high-boost [17]. Finally, Fig. 12 gives some different ex-
amples of segmentation taking into account the simplification
method explored in this work.
The improvement of the computational time achieved by
considering the new properties described in Section III is



(a) Original (b) Laplacian con-
tours

(c) High boost con-
tours

(d) Homogenization (e) Homogenized
contours

Fig. 11. Image homogenization example.

(a) Electrophoresis (b) σ = 2.12

(c) Fish female cells (d) σ = 1.31

(e) Iris (f) σ = 0.08

(g) Signet ring cancer cells (h) σ = 0.77

Fig. 12. Other segmentation examples.

illustrated in Fig. 13, where the number of generated images
is proportional to the number of image extrema. All the
experiments were conducted using a system equipped with
Intel Core i7-3770K processors per node, running at 3.50
Ghz with RAM 31Gb. In this case, the test image is of size
358×481 pixels ( Fig. 8a ) and the varying number of extrema
was obtained by a simple blurring process.

V. CONCLUSION

In this paper, we dealt with a morphological simplification
taking into account the information of distance (separation)
and contrast between the extrema of a signal. We explored
scale-space properties, such as monotonicity and continuity,
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Fig. 13. Computational time comparison.

as well as the graph-based implementation, to introduce new
results concerned with the local update of a graph providing
structure to a given image. These results led to significant
improvements in terms of computational cost. Unlike the work
in [12], which discussed mainly theoretical aspects of the
original approach, we showed through some examples how
to combine the simplification step with well-known morpho-
logical tools in applications related to image segmentation and
homogenization.
Future works on this matter include, for example, the auto-
matic and adaptive learning of the considered tuples, aiming
at less supervised multi-scale tasks, and the investigation
of the use of these tuples in problems related to image
description and representation. Studies with different shapes
of the structuring functions and other scaled operations such
as erosion and dilations should also be of interest.
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