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Fig. 1. Input colored point cloud of a given scene (left), partial view of an object and global descriptor computed from it (center) and recognized
objects in the given scene rendered with their estimated poses (right).

Abstract—This paper presents a global point cloud descriptor
to be used for efficient object recognition and pose estimation.
The proposed method is based on the estimation of a reference
frame for the whole point cloud that represents an object in-
stance, which is used for aligning it with the canonical coordinate
system. After that, a descriptor is computed for the aligned point
cloud based on how its 3D points are spatially distributed. Such
descriptor is also extended with color distribution throughout
the aligned point cloud. The global alignment transforms of
matched point clouds are used for computing object pose. The
proposed approach was evaluated with a publicly available
dataset, showing that it outperforms major state of the art global
descriptors regarding recognition rate and performance and that
it allows precise pose estimation.
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I. INTRODUCTION

Real-time object recognition and pose estimation has appli-
cations in many areas, such as augmented reality, robotics and
human-machine interaction. 3D point cloud processing can be
utilized to perform this task, presenting some advantages. One
of them is to offer a practical way of acquiring 3D models of
the objects to be detected. It is also possible to automatically
determine the real scale of candidate object instances, which
may not be possible when other data types are used (e.g.
only RGB images). Besides that, the fact that 3D point clouds
may provide both geometric (3D coordinates, surface normals,
edges from depth discontinuities, high curvature regions, etc.)
and photometric (colors, color gradients, edges from color
discontinuities, local discriminant features, etc.) information
contributes for obtaining superior results. In recent years,

RGB-D sensors have become low cost consumer devices
accessible to general users. Such sensors can be used to
generate colored 3D point clouds of a given scene surface
in real-time.

A common way to recognize and estimate the pose of
objects consists in matching feature descriptors extracted from
the input scene with previously obtained objects models. One
key advantage of this approach is scalability with respect
to the number of objects in the database, since descriptor
matching can be efficiently performed using approximate
nearest neighbor search strategies [1].

In this context, this paper presents a novel global descriptor
named Globally Aligned Spatial Distribution (GASD), which
was designed for efficient object recognition and pose es-
timation from point clouds. It is based on the concepts of
global reference frame and globally aligned shape and color
distributions. The proposed method allows object recognition
and pose estimation in a fast, accurate and robust manner.

The contributions of this work are: (1) a point cloud
descriptor based on global reference frame estimation and
globally aligned shape and color distributions that is suitable
for object recognition and pose estimation; (2) the use of the
global reference frame concept together with existing global
descriptors as a way to improve their results; (3) an evaluation
regarding object recognition rate and pose estimation accuracy;
(4) a performance evaluation of the proposed approach in
comparison with existing techniques.

This paper is organized as follows. Section II presents
works related to point cloud description. Section III describes



the GASD descriptor. Section IV details the results obtained
with the proposed method. Conclusions and future work are
discussed in Section V .

II. RELATED WORK

There are mainly two types of descriptors used for object
recognition from point clouds: local descriptors, which are
used to match localized features of the input point cloud
with corresponding features of the objects’ models; and global
descriptors, which aim to match whole objects or significant
parts of them that were previously segmented from the point
clouds.

Examples of local point cloud descriptors are Persis-
tent Feature Histograms (PFH) [2], Fast Point Feature His-
tograms (FPFH) [3], Signature of Histograms of OrienTations
(SHOT) [4], Color SHOT (CSHOT) [5], Binary Appearance
and Shape Elements (BASE) [6] and Binary Robust Appear-
ance and Normals Descriptor (BRAND) [7]. However, in order
to achieve real-time results, it is important to extract in an
efficient way a not too large set of local point cloud features
that present a high level of repeatability and discriminative
power. Existing techniques that perform this task, such as
Local Surface Patches (LSP) [8] and Intrinsic Shape Signatures
(ISS) [9], still do not reach this goal. A recent evaluation of
local 3D feature detection methods available in [10] points out
that none of the evaluated detectors was capable of handling a
typical 3D point cloud generated by a low cost RGB-D sensor
in less than 1 second. In addition, in the evaluation of local
3D feature descriptors described in [11], it was verified that
the evaluated descriptors present weak results with data from
low cost sensors, suggesting as alternative that research should
be directed towards the design of local descriptors that are
suitable for data with low resolution and high noise level.

Since global approaches generate less descriptors than local
ones, descriptor matching is often faster and less memory
resources are commonly needed. Regarding existing global
point cloud descriptors, the Viewpoint Feature Histogram
(VFH) [12] is composed of a viewpoint component and a
surface shape component. The viewpoint component consists
in a histogram of the angles between each point normal and
the central viewpoint direction. The surface shape component
is given by a histogram of relative pan, tilt and yaw angles
between each point normal and the object centroid normal.
While VFH is truly global, computing a single descriptor
for an entire object instance, there are other descriptors that
are considered semi-global, since they may compute a few
descriptors using clusters extracted from the whole object
surface. This is the case of the Clustered VFH (CVFH)
descriptor [13], where a smooth region growing algorithm is
used for extracting stable clusters from the point cloud. CVFH
has the same viewpoint and surface shape components of VFH,
but centroid position and normal are computed from each
cluster instead of the entire object. It also has an additional
shape distribution component that consists in a histogram of
normalized distances between each cloud point and the clus-
ter’s centroid. The Oriented, Unique and Repeatable CVFH

(OUR-CVFH) descriptor [14] shares the same viewpoint and
surface shape components of CVFH, but the shape distribution
component is replaced by 8 histograms of distances between
points and centroid, one for each octant of a reference frame.
The computation of such reference frame for the extracted
cluster is done using the Semi-Global Unique Reference Frame
(SGURF) technique. In [15], OUR-CVFH was extended with
color information in the YUV space, also taking into account
the cluster’s reference frame. Finally, the Ensemble of Shape
Functions (ESF) [16] is a truly global descriptor obtained by
combining angle, point-distance and area shape functions to
the object point cloud.

However, as will be explained in the comparisons detailed
in Section IV, the GASD descriptor proposed in this paper
presents a better balance between performance and recognition
results than the aforementioned global descriptors.

III. GLOBALLY ALIGNED SPATIAL DISTRIBUTION

The proposed global description method takes as input a
3D point cloud that represents a partial view of a given object
(Fig. 1 center). The first step consists in estimating a reference
frame for the point cloud, which allows the computation of a
transform that aligns it to the canonical coordinate system,
making the descriptor pose invariant. After alignment, a shape
descriptor is computed for the point cloud based on the spatial
distribution of the 3D points. Color distribution along the
point cloud can also be taken into account for obtaining
a shape and color descriptor with a higher discriminative
power (Fig. 1 center). Object recognition is then performed
by matching query and train descriptors of partial views. The
pose of each recognized object is also computed from the
alignment transforms of matched query and train partial views
(Fig. 1 right). All these procedures are detailed in the following
subsections.

A. Reference Frame Estimation

The method employed for estimating a reference frame for
the object partial view is based on the normal and orientation
estimation step of the DARC technique described in [17].
However, DARC takes as input planar contours and aims to
rectify them, while the current approach handles free-form sur-
faces and intends to align them with the canonical coordinate
system for later description. The reference frame estimation
method also resembles the SGURF technique detailed in [14].
Nevertheless, SGURF extracts smooth point clusters from the
input partial view and estimates a reference frame for each
cluster, while the current approach estimates a single reference
frame for the entire point cloud that represents the partial view.
In addition, SGURF uses surface normal information, which
is not utilized by the current method.

The reference frame is estimated using a Principal Compo-
nent Analysis (PCA) approach. Given a set of 3D points Pi

that represents a partial view of an object, with i ∈ {1, ..., n},
the first step consists in computing their centroid by



Fig. 2. Reference frame estimated from a 3D point cloud that represents a
partial view of a given object: x axis (red), y axis (green) and z axis (blue).

P =
1

n

n∑
i=1

Pi. (1)

The origin of the reference frame is given by P. Then a
covariance matrix C is computed from Pi and P as follows:

C =
1

n

n∑
i=1

(Pi −P)(Pi −P)T . (2)

After that, the eigenvalues λj and corresponding eigen-
vectors vj of C are obtained, with j ∈ {1, 2, 3}, such that
Cvj = λjvj. Considering that the eigenvalues are arranged
in ascending order, the eigenvector v1 associated with the
minimal eigenvalue is used as the z axis of the reference
frame. If the angle between v1 and the viewing direction is in
the [−90◦, 90◦] range, then v1 is negated. This ensures that
the z axis always points towards the viewer. The x axis of
the reference frame is the eigenvector v3 associated with the
maximal eigenvalue. The y axis is given by v2 = v1×v3. The
reference frame estimated for a given partial view is illustrated
in Fig. 2.

From the reference frame, it is possible to compute a trans-
form [R|t] that aligns it with the canonical coordinate system.
All the points Pi of the partial view are then transformed with
[R|t], which is defined as follows:

[
R t
0 1

]
=


v3

T −v3
TP

v2
T −v2

TP
v1

T −v1
TP

0 1

 . (3)

B. Shape Description

Once the point cloud is aligned using the reference frame, a
pose invariant global shape descriptor can be computed from
it. In the proposed approach, a single descriptor is computed
for the entire point cloud. It also does not rely on surface
normals, which allows a faster computation.

The descriptor is based on the distribution of the 3D points
in the cloud. The point cloud axis-aligned bounding cube
centered on the origin is divided into an ms×ms×ms regular

Fig. 3. Example grid with size ms = mc = 2 used for computing the
GASD descriptor for a given point cloud.

grid, as illustrated in Fig. 3 and Fig. 4. For each grid cell,
the number of points that belong to it is stored, forming a
histogram.

The contribution of each sample to the histogram is normal-
ized with respect to the total number of points in the cloud.
Optionally, trilinear interpolation may be used to distribute
the value of each sample into adjacent cells, in an attempt to
avoid boundary effects that may cause abrupt changes to the
histogram when a sample shifts from being within one cell to
another. The descriptor is then obtained by concatenating the
computed histograms.

C. Shape and Color Description

Color information can also be incorporated to the descriptor
in order to increase its discriminative power. The color com-
ponent of the descriptor is computed with an mc ×mc ×mc

grid similar to the one used for the shape component, but
a color histogram is generated for each cell based on the
colors of the points that belong to it. Point cloud color
is represented in the HSV space and the hue values are
accumulated in histograms with l bins. Similarly to shape
component computation, normalization with respect to number
of points is performed. Additionally, quadrilinear interpolation
of histograms samples may also be performed. The shape
and color components are concatenated, resulting in the final
descriptor.

D. Descriptor Matching and Pose Estimation

Query and train descriptors are matched using a nearest
neighbor search approach. After that, for each matched object
instance, a coarse pose is computed using the alignment trans-
forms obtained from the reference frames of the respective
query and train partial views. Given the transforms [Rq|tq]
and [Rt|tt] that align the query and train partial views,
respectively, the object coarse pose [Rc|tc] is obtained by[

Rc tc
0 1

]
=

[
Rq tq
0 1

]−1 [
Rt tt
0 1

]
. (4)



Fig. 4. Frontal view (left), side view (center) and top view (right) of an example grid with size ms = mc = 4 used to compute the GASD descriptor of a
given point cloud.

The coarse pose [Rc|tc] can then be refined using the
Iterative Closest Point (ICP) algorithm [18].

IV. RESULTS

The GASD descriptor was evaluated under an object recog-
nition and pose estimation scenario. The hardware used in
the evaluations was a laptop with an Intel Core i7-5500U @
2.40 GHz processor and 16 GB RAM. The publicly available
Challenge dataset 1 was used, which contains 35 objects and
176 scenes where one or more of these objects appear, with
a total of 434 objects instances. The colored point clouds
of the objects’ models and the scenes were obtained using
a Microsoft Kinect v1 RGB-D sensor. The dataset provides
ground truth poses for each object instance in the scenes. It
also makes available segmented and registered partial views
used to generate the objects models, which cover a loop
around each object with a 10◦ step. The train descriptors were
generated from these partial views.

In order to compute descriptors for objects instances in the
input scenes, candidate partial views were initially segmented
based on the efficient approach detailed in [19]. However,
in a few cases it was not possible to correctly segment the
object instance, and in such situations the method described
in [20] was employed, which is more robust but slower. GASD
was compared to the following shape descriptors: VFH [12],
CVFH [13], OUR-CVFH [14] and ESF [16]. Similarly to
GASD, the ESF descriptor does not rely on normal informa-
tion, which is used by VFH, CVFH and OUR-CVFH. For
the later methods, normals are estimated with the smoothed
depth changes approach presented in [21]. The descriptors
implementations available in the Point Cloud Library (PCL) 2

with their default parameters’ values were utilized in the tests.
The only change made was to force ESF to always use the
same seed for random number generation, in order to make
its results deterministic.

1https://repo.acin.tuwien.ac.at/tmp/permanent/ghv results/dataset index.
php

2http://www.pointclouds.org

For each descriptor type, it was chosen the distance metric to
be applied in the nearest neighbor search that gave best results.
L1 distance was used with GASD and VFH, L2 distance was
used with CVFH and OUR-CVFH and χ2 distance was used
with ESF.

A. Recognition Evaluation

First, different configurations of the GASD shape only
descriptor were evaluated. The shape grid size ms was set to
different values. In addition, two variants of the GASD shape
only descriptor were considered: with and without trilinear
interpolation (GASD-SI and GASD-S, respectively). In this
experiment, a correct recognition occurs when the nearest
neighbor of the query descriptor is a train descriptor that was
obtained from the ground truth object. As can be seen in Fig. 5,
the configuration that obtained best results was GASD-SI with
ms = 8, resulting in a descriptor with 8×8×8 = 512 elements.
It should also be noted that GASD-S with ms = 6 offers a
good tradeoff between descriptor length (6 × 6 × 6 = 216
elements) and recognition rate. These results can be explained
by the fact that, while a low number of histogram bins makes
the descriptor less discriminative, a high number may cause
the descriptor to be more sensitive to distortions.

In the next experiment, GASD-SI with ms = 8 was
compared to other shape descriptors by retrieving the k nearest
neighbors of each query descriptor. If any of the retrieved train
descriptors were computed from the ground truth object, then
it was considered to be correctly recognized. Different values
of k were tested, ranging from 1 to 15. CVFH and OUR-
CVFH may compute several descriptors for a single partial
view, therefore if at least one of them is associated with a train
descriptor from the correct object, then this is counted as a true
positive. Fig. 6 shows that the results obtained with GASD-SI
are better than the ones obtained with the other descriptors,
especially when using fewer nearest neighbors. This is an
interesting property, since it may lead to test fewer hypotheses
until the correct object is found, thus improving recognition
time. VFH-based methods presented low recognition rates,



Fig. 5. Evaluation of different shape grid sizes ms for the GASD shape only
descriptor with (GASD-SI) and without (GASD-S) trilinear interpolation.

Fig. 6. Recognition rate with respect to number of nearest neighbors of the
evaluated approaches with their default configurations.

which indicates that the use of normal information did not
bring enough distinctiveness in the evaluated scenario. In
the particular cases of CVFH and OUR-CVFH, these results
can also be explained by the fact that the smooth clusters
extracted from the point cloud were not too much repeatable
and discriminative. In Fig. 7, it is shown that, in a given scene,
GASD-SI correctly recognizes all 4 objects, while ESF fails
to detect the meat can and detergent instances.

It was also evaluated the effect of computing VFH, CVFH
and ESF descriptors from the aligned point cloud with respect
to the estimated reference frame (VFH + RF, CVFH + RF
and ESF + RF, respectively). OUR-CVFH was not considered
in this test, since it already uses a reference frame and a
prior alignment did not bring any improvement. As depicted in
Fig. 8, using a reference frame improved the results of existing
descriptors, since very similar partial views are used for

computing matching descriptors. By comparing these results
with the ones in Fig. 6, it can be noted that the ESF + RF
variant obtained equal or slightly better recognition rates when
compared to GASD-SI for most values of k. However, as later
presented in Subsection IV-C, GASD-SI is much faster than
ESF + RF.

Different configurations of (GASD-S, ms = 6) extended
with color information were also tested, considering versions
with (GASD-SCI) and without (GASD-SC) interpolation and
different values of mc and l. The best configuration was
GASD-SC with mc = 4 and l = 12, as shown in Fig. 9,
resulting in a final descriptor that contains 216+4×4×4×12 =
984 elements. In the experiments conducted it was seen that
using even higher values of mc would increase recognition
rate, but this was not done in order to avoid a high increase
in descriptor dimensionality. It is worth noting that using
interpolation caused a decrease in recognition rate.

Fig. 10 compares the results obtained with the best config-
urations of GASD-SI and GASD-SC. It shows that exploiting
color information contributes to obtaining better recognition
rates. This is also illustrated in the example shown in Fig. 11:
while GASD-SI is not able to distinguish the two juice bottles
and the correct side of the soy milk box, this is properly done
by GASD-SC.

B. Pose Estimation Evaluation
In order to evaluate the pose estimation accuracy of the

proposed method, it was calculated the translation error of the
pose computed for each object that was correctly recognized
by GASD-SC when only the first nearest neighbor is consid-
ered. The coarse poses computed from the reference frames
alignment were compared to the refined poses obtained with
ICP. As can be seen in the error histogram shown in Fig. 12,
many of the coarse pose errors ranged from 18 to 21 mm,
while several fine pose errors ranged from 15 to 18 mm. The
mean and standard deviation in mm of coarse and fine pose
errors, respectively, were 19.24± 8.51 and 17.80± 7.50.

C. Runtime Analysis
Table I presents a performance evaluation of a non-

optimized version of the proposed approach in comparison
with the other descriptors. GASD-SI together with reference
frame estimation take on average 1.03 ms per object instance,
being the fastest alternative. GASD-SC + reference frame
estimation have a mean execution time of 1.39 ms per object
instance. All the other descriptors are slower, with ESF spend-
ing on average more than 30 ms per object instance, and both
CVFH and OUR-CVFH taking on average more than 120 ms
per object instance. Pose refinement with ICP is currently a
bottleneck, having a mean execution time of almost 120 ms
per object instance. Brute force nearest neighbor search for
descriptor matching is executed only once per scene, taking
on average between 1.5 and 4.5 ms.

D. Failure Cases
Since the GASD descriptor is scale invariant, in a few cases

it may confuse partial views with similar shape and color



Fig. 7. Object recognition and pose estimation example: input scene (left), results obtained using ESF (center) and GASD-SI (right).

Fig. 8. Recognition rate with respect to number of nearest neighbors of
existing descriptors with and without using reference frame alignment.

Fig. 9. Evaluation of different color grid sizes mc and number of hue
histogram bins l for the GASD shape and color descriptor with (GASD-SCI)
and without (GASD-SC) interpolation, using ms = 6.

Fig. 10. Recognition rate with respect to number of nearest neighbors of
GASD when only shape information is used (GASD-SI) and both shape and
color are employed (GASD-SC).

TABLE I
MEAN AND STANDARD DEVIATION OF TIME SPENT BY EACH PROCEDURE

FOR PROCESSING A SINGLE OBJECT INSTANCE.

Procedure Time (ms)

Reference frame estimation 0.33± 0.23

Description

GASD-SI 0.70± 0.45
GASD-SC 1.06± 0.77
ESF 31.30± 4.96
OUR-CVFH 128.27± 111.00
CVFH 124.33± 108.39
VFH 3.86± 2.76

Pose refinement 119.27± 103.04

but significantly different sizes, as can be seen in Fig. 13.
However, such problem can be easily avoided by comparing
the bounding boxes of the aligned partial views.

Since the proposed descriptor is global, it is sensitive to
partial occlusions, which can harm the estimation of the
reference frame and the computation of histograms. Such issue
is illustrated by the example in Fig. 14, where a reference
frame could not be properly estimated for the blue detergent
bottle due to the partial occlusion suffered by it. This caused
the object instance to be confused with a bag box.

In some situations, especially when dealing with symmetric
objects, the proposed descriptor does not present enough dis-
tinctiveness for retrieving the correct training view. Therefore,



Fig. 11. Object recognition and pose estimation example: input scene (left), results obtained using GASD-SI (center) and GASD-SC (right).

Fig. 12. Histogram of translation errors for correctly recognized objects
using GASD-SC with and without ICP pose refinement.

Fig. 13. GASD confuses partial views of a soda can and a detergent bottle.

Fig. 14. GASD fails to recognize a partially occluded blue detergent bottle.

Fig. 15. Error in rotation estimation of the soda and soup cans by GASD.

Fig. 16. The shaving cream can, which has desaturated colors, is confused
with a juice bottle by GASD.

object rotation is not accurately computed, as can be noted in
the soda and soup cans depicted in Fig. 15.

In some cases, the proposed approach may fail to recognize
objects that have mainly desaturated colors, as illustrated in
Fig. 16. This is due to the fact that only the hue component
is used by GASD, and desaturated colors may have the same
hue value of other different colors.

When objects have similar shape and color distributions, the
proposed descriptor might sometimes not be able to distinguish
between them. This is the case with the two different kinds of
tomato soup in the example shown in Fig. 17.

Fig. 17. The proposed approach confuses the tomato soups.



V. CONCLUSION AND FUTURE WORK

It was presented GASD, which is an efficient approach for
global point cloud description that was successfully applied to
object recognition and pose estimation. The proposed method
exploits a reference frame estimated for the entire point cloud
for computing a globally aligned shape distribution that can
also be extended with color information. It was able to obtain
better recognition rates than some existing global descriptors
in a publicly available dataset. It was shown that the reference
frame can be used together with existing global descriptors for
improving their results and allows accurate pose estimation. In
addition, the average processing time taken by the proposed
technique for handling a single object instance was 1 or 2
orders of magnitude lower than most of the other evaluated
descriptors.

Current limitations of the proposed approach are: the pose
refinement step is very time consuming in comparison with
the other procedures; it is not robust to partial occlusions;
rotation estimation of symmetric objects can be imprecise in
some cases; objects with desaturated colors may be incorrectly
matched; and it may fail when handling objects with similar
shape and color distributions.

As future work, pose refinement speed may be improved
with a GPU implementation of ICP, such as in [22]. It will also
be investigated the performance and pose estimation accuracy
tradeoff of using color information in ICP, as done in [23]. In
order to cope with partial occlusions, one possible direction
would be to use GASD together with local features in a
hybrid manner. It will be studied how descriptor robustness
can be further increased, by for example evaluating the use
of different color channels/spaces and interpolation strategies
(such as the Gaussian interpolation used in [14]). Finally,
it is intended to incorporate the proposed descriptor into
a real-time scalable object recognition and pose estimation
pipeline, including steps such as point cloud acquisition and
segmentation.
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