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Fig. 1. By querying a user-selected segment of flamingo’s head (green), our method is capable of retrieving regions (blue) which are most similar to the
query region in a large dataset of different 3D models.

Abstract—This paper presents a novel 3D partial shape re-
trieval algorithm based on time-series analysis. Given a piece of
a 3D shape, the proposed method encodes the shape descriptor
given by the Heat Kernel Signature (HKS) as a time-series, where
the time is considered an ordered sequence of vertices provided
by the Fiedler vector. Finally, a similarity metric is created using
a well-known tool in time-series analysis called Cross Recurrence
Plot (CRP). The good performance of our method is also attested
in a large collection of shape models.
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I. INTRODUCTION

Partial similarity measures among different documents are
ubiquitous tools in computer science. The main idea here is
to find parts in documents — say text, images — that looks
similar. It is easy to identify similarities when comparing
words inside a text, or images inside a video, for example.
However, this problem becomes more complicated when deal-
ing 3D objects. In this scenario, it is necessary to clearly define
what is a partial similarity and what is a 3D model part. For
our context, we are interested in finding sub-regions of the
shapes that are similar under some structure extracted from
their surfaces. Assuming that an object can be decomposed as
a collection of semantic regions or partial shapes, the partial
shape similarity compares how similar two different regions
are.

This paper introduces a novel partial similarity measure
for 3D objects represented by triangular meshes. Firstly, our
method computes a local shape descriptor based on the Heat

Kernel Signature (HKS) for each vertex of the mesh. Then,
a spectral segmentation is applied on the mesh and the HKS
in each partial shape is compactly encoded into a time-series.
The similarity distance between two partial shapes is obtained
by comparing their correspondent time-series using Cross
Recurrence Plot (CRP). This strategy allows to detect and
quantify all relevant partial shapes of the mesh through a single
matrix. Fig. 1 shows our method in action, given a region on
a flamingo model (green) as query shape, the most similar
regions are retrieved (blue) from a 3D model collection.

Contributions. In summary, the main contributions of the
paper are:
• This paper introduces the concept of representing a local

shape descriptor of a partial shape as a time-series;
• Our method enables the comparison of multiple partial

shapes using a single CRP matrix. While these matrices
are widely explored in time-series analysis, to the best
of the author’s knowledge it is the first time that CRP is
applied in 3D shape retrieval;

• The proposed method does not require semantic mesh
segmentation nor pointwise correspondence between the
partial shapes.

Paper outline. The paper is organized as follows: Sec. II
presents a brief review of techniques for partial shape retrieval
of 3D shapes existing in the literature. The main concepts
used in the proposed method, namely the Fiedler vector, HKS,
and CRP, are introduced in Sec. III, Sec. IV, and Sec. V,
respectively. The method is described in Sec. VI. Results are
shown and discussed in Sec. VII. We conclude in Sec. VIII.



II. RELATED WORK

There are many papers about shape similarity and retrieval
of 3D shapes [1], [2] in computer vision and computer
graphics literature. In order to better contextualize our method
and highlight its properties, we focus on the existing methods
for a partial similarity of non-rigid 3D shapes.

Bronstein et al. [3] formalized the perceptual intuition
of partial shape similarity using similarity metric based on
Gromov-Hausdorff distance. This approach was first intro-
duced by Mémoli et al. [4], based on distances between two
metric spaces theory applied to point clouds. Although this
method can give good results, the high computational cost [2]
makes this approach impracticable.

Ovsjanikov et al. [5] proposed heat kernel maps approach to
finding an isometric matching in one single shape and among
a pair of shapes. This method works by fixing a point and
iteratively searching over all other points looking for the best
match. It differs from the method we present in the sense
of quantities of matches they can find since our method can
show all possible candidate regions. Sun et al. [6] use a
similar paradigm, by introducing HKS as isometry invariant
features. The HKS descriptor has the advantage of simplicity
over heat kernel while being informative and keeping isometric
invariance.

Bag-of-words approach is borrowed from text and image
analysis for non-rigid shape retrieval [7], which uses geo-
metric words based on multiscale HKS. The loss of spatial
information is compensated by using a pair of words to build
the shape dictionary. Lavoué [8] has shown some results on
partial retrieval by using this approach. All of the works above
use the features themselves to compare two different shapes
and take into account the spatial relationship between them.

Recently, Tabia et al. [9] introduced a different approach
by computing covariance matrices of features and comparing
those matrices to find similarities between a pair of shapes.
Our method uses a similar approach by not comparing the
raw features but using an auxiliary matrix structure to find
similarities between query and target shapes.

III. FIEDLER VECTOR

Fiedler vector provides an approximate solution for the
Minimum Linear Arrangement (MLA) problem proposed by
Harper [10]. MLA is a NP-hard problem and it tries to find
permutations π : V → {1, 2, ..., n}, where V is the set of
vertices of a triangle mesh M and n = |V|, which minimizes
the sum of all neighboring pairs of vertices. In other words,
the MLA problem sorts the vertices of V on a positive integer
line minimizing the cost function:∑

∀(i,j)∈E

wi,j |π(i)− π(j)| ,

where E denotes the set of edges ofM and wi,j is the weight
associated to each edge (i, j) ∈ E .

In order to obtain the Fiedler vector, we compute the
spectrum of the discrete Laplace-Beltrami operator (LBO) [11]

for a mesh surface. The LBO matrix is defined as

L = D−1A ,

where the diagonal matrix D = diag(d1, d2, . . . , dn) is known
as lumped mass matrix and the stiffness matrix A = U−W,
where the weighted adjacency matrix W is given by:

W =

{
wi,j (i, j) ∈ E
0 otherwise

and the diagonal matrix U = diag (u1, u2, . . . , un) with

ui =
∑
j∈Ni

wi,j ,

where Ni is the set of 1-ring neighbor vertices of the vertex i.
The trivial choice for values for the weights and mass

is the unitary constant, i.e., wi,j = 1 and di = 1.
Setting this value, the discrete LBO relies only on the
connectivity information of the graph. Although this prop-
erty is well studied in graph theory [12], it does not
give any geometric information of the discrete surface.
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One way to introduce the geometric informa-
tion was proposed by Pinkall and Polthier [13],
using cotangent weights:

wi,j =
cot(αij) + cot(βij)

2
,

where αij and βij are the opposite angles of
edge (i, j). In addition to the weight values,
the mass values are computed using an approx-
imation proposed by Meyer et al. [14]:

di =
ai
3
,

where ai represents the area of all triangles incident at vertex i.
Computing the spectrum of the LBO matrix L, it is possible

to find mesh connectivity information. Since L is symmetric
semi-positive definite, its eigenvalues are:

0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

The Fiedler vector is given by the eigenvector associated with
the first nonzero eigenvalue.

The Fiedler vector gives the minimum variation possible
in a mesh. Fig. 2 shows a toy example of vertices sorted
using the Fiedler vector, the vertices are sorted according to
the entries of the Fiedler vector. This property is isometry
invariant, then similar regions have the same arrangement.
In order to simulate a time-series, we consider as “time” the
consistent sorting produced by the Fiedler vector.

(a) Input mesh. (b) Sorted vertices.

Fig. 2. Vertex sorting using Fiedler vector.



IV. HEAT KERNEL SIGNATURE

In this section, we briefly introduce the concept of Heat
Kernel Signature (HKS) [6], which is the basic mechanism
used by our method to characterize three-dimensional shapes.

Let S be a compact manifold without boundary. The heat
diffusion over S at time t for some initial heat distribution
f : S → R+ is given by

∆Su(x, t) = −∂u
∂t

(x, t) and lim
t→0

u(x, t) = f ,

where ∆S is the LBO of S. The heat operator Ht : L2 → L2,
where L2 is the space of all squared integrable functions on
S, is given by the solution of the heat equation at time t, that
is,

(Htf)(x) = u(x, t) = (e−t∆Sf)(x) .

For any S one can show [15] that the heat kernel is a function
kt(x,y) : R+ × S × S → R such that, for all f ∈ L2, t > 0,
and x,y ∈ S,

(Htf)(x) =

∫
S
kt(x,y)f(y)dy .

The heat kernel can be understood as the amount of heat dissi-
pated from a heat source point x to another point y at a given
time t. The heat kernel has the following eigendecomposition
for compact S:

kt(x,y) =

∞∑
i=0

e−λitφi(x)φi(y) ,

where λi is the i-th eigenvalue and φi the corresponding
eigenfunction of the LBO.

Heat kernel has interesting properties that make it a suitable
geometry tool for many applications [5], [6], [16], e.g., it is
isometry-invariant and insensitive to noise, and provides multi-
scale information.

The HKS, proposed by Sun et al. [6], is a shape descriptor
based on heat kernel defined as

HKSt(x) = ht(x,x) =
∑
i≥0

e−λitφi(x)2 .

In the discrete scenario, i.e., when a manifold S is rep-
resented by a mesh M, the HKS for a mesh vertex v is
written in terms of the eigenvalues and eigenvectors of the
LBO matrix L:

HKSt(v) =

n∑
i=1

e−λitφi(v)2 . (1)

In particular, we compute the discrete LBO by using cotangent
weights as discussed in Sec. III. Note that the HKS is a
function of time t. Thus, for each vertex v, we consider time
instants (t1, t2, . . . , tm) and evaluate Eq. (1) for each ti. The
resulting m-dimensional vector is taken as the HKS of v.

In our tests, we used a logarithmic scale with 50 time in-
stants in the range [tmin, tmax]. We adopted tmin = 0.3×10−2

and tmax = 1.5 for all meshes (corresponding to the means of
the minimum and maximum eigenvalues of LBO, respectively,
for the entire test database). Longer time intervals have not
changed the results significantly in our experiments.

V. CROSS RECURRENCE PLOT

Recurrence Plot (RP) is a technique which enables the
analysis of nonlinear and nonstationary data in a dynami-
cal system. In order to display and compare characteristic
structures (e.g., similarities and alignments) between two
dynamical systems, RP was extended into Cross Recurrence
Plot (CRP) [17]. In other words, CRP provides a matrix that
shows all equivalent states which occur simultaneously in two
time-series at different times.

Consider a dynamical system modeled by d variables at
instant of time t, if the set of variables are sufficient to
describe future configurations of the system, they are called
state variables. The vector formed by coupling these variables
belongs to a d-dimensional space called phase space, which
contains all the possible states of the system. The evolution of
the state variables in time forms an orbit in phase space that
characterizes the system and can be displayed for a visual anal-
ysis [17], [18]. In particular, we represent the matrix provided
by HKS as multidimensional time-series hij = HKStj (xi) for
i = 1, . . . , nv and j = 1, . . . , nt, where nv is the number of
sampling points (vertices) and nt is the number of time steps.

Unfortunately, in real applications, neither all state variables
are known nor can be measured. Thus, it is not possible
to completely describe the phase space only from measured
observations. Therefore, according to Takens’ embedding the-
orem [19], the phase space from a multidimensional time-
series can be reconstructed using an embedding dimension m
and a time delay τ :

x = {xi} with i = 1, . . . , nw − (m− 1)τ ,

where nw is the number of windows (samples) and

xi = (x1,i, x1,i+τ , . . . , x1,i+(m−1)τ , . . . ,

x2,i, x2,i+τ , . . . , x2,i+(m−1)τ , . . . ,

xd,i, xd,i+τ , . . . , xd,i+(m−1)τ ) .

Moreover, theorem states that the reconstructed phase space x
from an unknown phase space embedded in Rd preserves
the topological structures of the original phase space, if
m ≥ 2d+1. The choice of the parameters m and τ are usually
estimated by the methods False Nearest Neighbours and
Mutual Information, respectively [20]. Using these methods,
the suited parameters for our application are m = 5 and τ = 2.

A reconstructed phase space will commonly have an em-
bedding dimension greater than three, then it will not be
possible to directly visualize when a state in the phase space is
almost recurrent. CRP solves these problems encoding the m-
dimensional phase space into a binarized distance matrix R,
whose each entry ri,j is 1 if the orbit of state i is close
to state j and 0 otherwise. Mathematically, comparing the
similarity between two orbits (time-series) x and y is given by

ri,j = Θ (εxi − sim(xi,yj)) Θ
(
εyj − sim(xi,yj)

)
,



Fig. 3. Overview of our pipeline.

where Θ is the Heaviside function, sim is the cosine similarity
measure

sim(x,y) =
x · y

‖x‖2‖y‖2
and εxi and εyi are the binarization thresholds. The values of εxi
and εyi can be either fixed or adaptive, so that a percentage of
nearest neighbors are considered recurrences [17], [21]. In our
experiments, we used a fixed value εxi = εyi = 0.45 × 10−2,
this value is an average of the maximum values reached in
each CRP matrix and presented good results in most of the
cases tested.

Many techniques were developed for the automatic evalua-
tion of CRPs. These techniques are called Recurrence Quan-
tification Analysis and, in general, they work by measuring
the length of the diagonals formed in the CRP matrices. In
our method, we will use the metric Smax, which measures
the maximum length of the diagonals in the CRP, considering
possible time shifts in the orbit (which results in curved
lines) [21]. Smax can be computed as the maximum value
of the matrix S, defined by: s1,j = s2,j = si,1 = si,2 = 1 and

si,j =

{
max{si−1,j−1, si−2,j−1, si−1,j−2}+ 1 ri,j = 1

0 ri,j = 0.

Summarizing, the bigger the Smax value, bigger is the
matrix diagonal, and by consequence, the recurrence segments
are more similar to each other.

VI. METHOD

In this section, we explain the pipeline of our method of
finding similarities between 3D shapes. The method encom-
passes the steps shown in Fig. 3 and, basically, is divided
into three parts: treatment of query object; database model
processing; and comparison of the query with all shapes
individually. A query mesh is extracted from a model that
may or may not be present in the given dataset. For that
model, our method performs a computation of Fiedler vector,
that is used to sort the vertices like a time-series, and extracts
the HKS feature for all mesh vertices. More precisely, we
build a time series from a mesh, where each “observation”,
corresponding to a vertex of the mesh, has a value and a time-
stamp. The value of the observation corresponds to the HKS
of that vertex (note that, it is a vector due to each vertex

has 50 distinct HKS entries) and the time-stamp is the vertex
position in the Fiedler vector.

After rearranging the vertices, the user can select a segment
that will be used as the actual query. Only the vertices that
belong to the selected region are compared to database models.
Selecting only a segment for future comparison prevents over
computation of CRP matrix.

A. Dataset segmentation

For all models present in the dataset, the following steps are
performed: given a shape M, we divide feature extraction in
segmentation step and describing step. For the segmentation
step, we apply consensus segmentation [22] to a shape, so
it is possible to divide the mesh in ns segments, where mi

represents the segment i in the shape, i = 1, 2, ..., ns. It is
important to observe that consensus segmentation can create
more segments than necessary as it resolves the segmentation
problem by electing the most stable segmentation to defor-
mations. For instance, Fig. 4 shows the direct result given by
Rodola’s algorithm [22] in the left. This over-segmentation is
not desired by our method, since we want only to separate
significant parts, like legs, arms, or antennae. To adjust the
result to our approach, we implemented a modification that
merges the segments that have only one neighbor segment,
ending with a bigger part. This merging process continues until
more than one neighbor segment are found, or all segments
are merged. In the snake example, our modification starts at
the tail end (or head) and merges with the next segment to tail
(green and pink segments) and goes recursively until the stop
criterion are reached.

Fig. 4. Segmentation of a 3D model: the original result produced by [23]
(left) and the modified result (right).



Fig. 5. Example of a segmented mesh and resulting sorted vertices. Each
color codes a region of mesh in the sorted feature vector. The y-axis represents
the feature value; the x-axis, vertices.

For the describing step, the heat kernel signature, kt(x, x), is
computed for every segment, for all points in the segment over
logarithm time interval t ∈ [tmin, tmax]. Then, the points are
sorted by connectivity and then rearranged to become a bigger
vector that describes the entire shape, as illustrated in Fig. 5.
Note in the figure that each different segment presents different
behaviors in the series, as the color scheme in the mesh
represent the same regions in the graphic plot. The sorting is
necessary to simulate time dependency between every vertex
feature.

B. Comparisons

After extracting query’s and target shape’s feature, the
comparison between them is done using CRP matrix and Re-
currence Quantification Analysis metric Smax over binarized
matrix. It is important to note that the CRP matrix does not
consider the context of the parts nor the semantic behind
each mesh. To rank the best parts, we use the value given by
Smax: values increase as the diagonal size increases and we
consider the bigger diagonal represents bigger similar regions.
This criterion may lead to mistakes, but for the most tests,
satisfactory regions were found.

The first thing to note is the usage of descriptor vector
as sequence dependent vector. By doing so, we assure that
all shapes features are going to be rearranged equally, and
the feature vectors are comparable by using a time-series
descriptor, as CRP. Moreover, the HKS proposed by [6] is
isometry invariant and consequently, our method inherits this
property. The second thing is that CRP matrices can find
multiple similarities between the segment of interest and the
target shape. An example of CRP matrix can be seen in Fig. 6
in the left, where the query is a centaur arm, shown in green,
and the most similar regions (two regions were asked, in this
case) are the two arms in blue. In the matrix we highlight
those two regions that represent the arms, that have greatest
Smax values. Other candidate regions are shown with lighter
blue color in the matrix and no-matching regions are white.

VII. RESULTS AND DISCUSSION

Our code was implemented in MATLAB, making the com-
putation of the discrete LBO spectrum easier due to built-
in packages. Given the high computational cost of evaluating

Fig. 6. CRP example of a centaur arm used as query. The resulting top-two
regions are darker in the left matrix and correspond to the blue regions in
bottom centaur, while the lighter blue ones are possible candidates.

HKS for all test meshes, those descriptors were computed once
and stored on a disk for later access.

Our experiments were performed using object models
present on SHREC’11 non-rigid database [24]. This base
contains 600 models divided into 30 classes with 20 instances
each. Individual meshes contain about 9000 vertices randomly
sorted. Fig. 7 shows an example of the models with one
instance of each class. For each query, the user selected
interactively the region of interest, as described in Sec. VI.

Fig. 7. Example of models present in SHREC’11 database.



(b) Human arm query

(d) Armadillo leg query

(f) Alien arm query

Fig. 8. Queries (first column) and their respective first retrieved parts.

In our tests, we extracted some fragments from shapes in
order to find similar regions in the same shape and in other
objects in the database. The similarity is given in terms of
Smax: we consider higher Smax values as most similar parts.
In all experiments, we select a region from a target model,
extracted from the database, run CRP matrix over all other
3D models, extract Smax value from each matrix, and rank
the highest ones. Fig. 1 and Fig. 8 illustrate the problem of
finding similar regions in different objects. From a selected
region (green), our method finds the most similar regions in
the same mesh (blue parts). For the human arm query, the
results are visually humans, but the classes are different, as
the database separates “men” from “women”. In the armadillo
leg query, we asked the method to return the top two regions.

The required number of regions is given as input to the
method. Fig. 9 shows an example when we asked for the eight
most similar segments in an ant model.

As mentioned before in Sec. VI-B, the lack of semantical
information makes regions structurally similar be considered
false positives. In the example of Fig. 10, a human arm
selected as a query is mistakenly given as similar to a cat tail.

Fig. 9. Querying an ant leg, it is possible to find the most similar regions
in the same model.

Even though they have same structure — almost cylindrical
shape — the two parts are from different semantical classes.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a method to find similar
parts between shapes using Cross Recurrence Matrix with



(a) Query. (b) 6th most similar model.

Fig. 10. Example of limitation of our method: without semantic information,
the method find regions in other models that may not be visually similar.

Recurrence Quantity Analysis measures. Our goal is to find
models from a collection whose parts look similar to parts of
another (or even the same) model. The proposed methodology
performed well, producing good results in the accomplished
tests. We also showed that it is possible to recover multiple
regions with only one CRP, which resulted in a reduced
processing time for the queries.

The next challenge is to investigate the use of alternative
features besides HKS, as for example gaussian curvature or
other isometry-invariant features. We also want to extend the
proposed method to handle incomplete models, possibly with
boundary, as well as point-set surface models using mesh-free
differential operators [25].
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