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Abstract—Simulations present many advantages over other
training methodologies since they reduce time and cost spent by
professionals, offering less risk to the patients. Besides, studies
show that the amount of realism seen in the simulators is
positively correlated to the engaging of students in learning.
Current simulations in virtual surgery use three-dimensional
representations of organs without any internal structure. For
some applications, however, there is a need to represent also
the organs internal anatomical structures, such as blood vessels.
We present, in this paper, a technique that allows arbitrarily
oriented cuts through objects, particularly anatomical structures,
reconstructing the mesh surface in the cutting zone. In the
process, all internal structures participate in the final rendering
of the generated surface. As a case study, we selected a human
liver model with vessels and present the internal visualization of
the liver in real time for arbitrary cutting planes. Our work has
applications, for instance, in improving current state-of-the-art
surgery simulators for training of students and medical doctors.

Keywords-surgical simulators, solid textures, visualization sys-
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I. INTRODUCTION

Simulation is a safe way to educate and improve the skills
of undergraduate students in Medicine. It allows students to
learn and repeat procedures several times, which is impossible
to do with real patients. Replacing real people’s or animal’s
organs by virtual models addresses ethical, religious and
legal issues, improving the skills of future Medical Doctors.
Besides, researchers confirm that virtual surgery training sys-
tems provide several benefits when incorporated in medical
education [1]. For many applications in Computer Graphics
geometric representations using only the surface of objects
is enough. However, there are some applications that require
the visualization and possibly interaction with the interior
of objects. Surgical operations such as hepatectomy [2] for
instance, require cutting the liver in distinct regions depending
on each patient. Furthermore, simulators involving these kind
of organs [3] [4] [5] have focused their work on other aspects
of the simulation.

Current solid texturing techniques generate seamless tex-
tures inside objects. However, they cannot deal with cases
when there are other objects inside the surface geometry, such
as blood vessels inside the liver. In this sense, we improve the
solid texturing approaches in order to deal with those objects.

This work relates to a M.Sc. dissertation.

Contributions: This paper proposes a new technique that
allows plane-oriented cuts in anatomical structures, not only
reconstructing the surface’s texture in the cutting zone but
also taking into account its internal structures. Our approach
considers the geometric objects as a whole, composed by
surface and inside, and reconstructs the mesh in the cutting
zone. In Fig. 1 we show an example of result from our
solution. Next generation surgical simulators can benefit from
this approach in order to improve realism, and, therefore, skills
development.

Fig. 1. Result from our technique. A liver with a cut showing the arteries as
empty shapes (a) and the same result from a diferent perspective in wireframe
(b). Information about this result as cut 1 in Table II.

II. RELATED WORK

The idea of solid texturing or 3D texturing was introduced
in 1985 [6] [7] and has evolved much since. Solid textures are
defined as a process in which a texture generating function
is evaluated directly on IR3. This function defines a volume,
and the object looks as if it was carved from this volume.
A survey published by Pietroni and colleagues [8] presents a
detailed review of several techniques for solid texturing and
texture synthesis. From the original papers, Ghazanfarpour
and colleagues [9] [10] extended the idea using spectral
analysis and texture synthesis applied to 2D orthogonal views
[11]. Another method adapted a texture synthesis process
called optimization-based with histogram matching, globally
minimizing its energy function [12]. In the following year,
a procedure introduced a new technique to synthesize solid
textures restraining them to a voxel subset, forcing spatial
determinism [13]. Recently, a new approach tried to deal
particularly with regular and semi-regular patterns [14].
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Cutler et al. [15] presented a scripting language in order
to define internal layers for objects. Two years later, Owada
and colleagues [16] proposed a new method that consists in
specifying the interior of an object by using a browsing and
modeling interface, controlled by the user. Pietroni et al. [17]
used a few images representing cross sections of an object in
order to render any point inside it. Takayama’s research [18]
extended the concept of lapped textures [19] to solid textures,
covering the whole object’s volume instead of only its surface.
In the same year, a new system called volume painter [20]
projected volumes from sketches defined by the user. In 2010,
a new concept called diffusion surfaces [21] was able to render
structures that have a smooth color variation in its internal
structures, like fruits and vegetables.

From the review above, we can see that the current state-
of-the-art on solid texturing does not deal with objects with
internal structures. Our technique considers internal structures
and allows visually and geometrically consistent arbitrary cuts
on the objects, extending, in this way, the state-of-the-art in
solid texturing.

III. OUR TECHNIQUE

This section presents our technique for dealing with arbi-
trary cuts in objects with internal structures, with possible
application in surgery simulation. Overall, our algorithm re-
ceives two 3D meshes and a set of three images as input. The
two meshes represent respectively an object’s surface and the
content in its interior. The three images are orthogonal samples
of the 3D internal texture of the object.

Final Result

B. Texturing the Object

Final Result

A. Remeshing the Objects

Fig. 2. Overview of our technique.

For any given cutting plane, our technique returns a consis-
tent geometry – object’s surface plus interior – and a texture
to be mapped on the region defined by the cut. We generate
the final solid texture by an interpolation function applied at
each point on the cutting plane. If the plane intersects with
the internal structure, the triangles in the overlap area are
defined as holes and thus are not rendered. Figure 2 presents
the pipeline of our technique with the two primary processes
labeled: A-Remeshing the Objects, detailed in Section III-A;
and B-Texturing the Object, detailed in Section III-B.

A. Remeshing the Objects

This section describes the sequence of steps for remeshing
the input objects, surface and interior, according to the cutting
plane. Our algorithm works for any triangular mesh, even
concave and with disconnected parts. At the end of process A,
each object is sectioned at the intersection of the model with
the cutting plane, the surface model is retriangulated, and the
internal parts are flagged as holes.

1) Cutting the Models: The first step consists of sectioning
the object’s triangles according to the cutting plane. Depending
on the spatial location of the vertices with respect to the plane,
defined by the λ value, different solutions are applied. We
calculate λ by applying the coordinates of each triangle vertex
on the equation of the cutting plane, producing the possible
cases seen in Figure 3.

Case 1 Case 2

Case 3 Case 4

Before the cut After the cut Before the cut After the cut

λ≤0 λ>0

λ=0

λ≤0 λ>0

λ=0
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λ≤0 λ>0 λ≤0 λ>0 λ≤0 λ>0 λ≤0 λ>0

λ=0 λ=0

λ=0 λ=0 λ=0 λ=0

Fig. 3. Possible cases of cuts applied to each triangle of the mesh in 2D
view.

For all cases, the three vertices of each triangle are tested. In
case 1, if λ of all vertices satisfy λ ≤ 0, they remain the same
because they are in the side of the object that remains. In Case
2, if λ of all vertices satisfies λ > 0, the triangle is removed
from the object, since it is on the side which will be eliminated.
In Case 3, if only one of the three λ values satisfies λ ≤ 0, then
the remaining two vertices are repositioned to the intersection
point of the plane with the triangle. In the last case, if two
λ satisfy λ ≤ 0, the remaining vertex is moved to one of the
intersection points and another triangle is created connecting
the two intersection points with the generated triangle. At the
end of this step, the results are consistent new meshes taking
into account the cutting plane, as shown in Figure 4.

2) Segmentation in Topologically Connected Sets: The re-
sult of the previous step is the two original objects modified
by the cut. Now we need to group sets of vertices into topo-
logically connected sets, called segments. This step classifies
in separate groups all the connected vertices on the cutting
plane and allows our solution to work with geometries where
a cut will split the original object into two disjoint parts. The
key idea is to make a depth search along the vertices which
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Fig. 4. Example of a sphere model before (a) and after (b) the cut.

were cut in the previous step, searching for the neighboring
ones under the same conditions until the first vertex is reached
again, forming a topologically connected set and its respective
order. Figure 5 shows an example where two connected sets
are detected.

a b

Fig. 5. Example of a torus mesh before (a) and after (b) being cut by a
plane. In (b) two distinct connected sets can be observed.

3) Transforming the vertices to 2D: All the vertices in the
cut area already segmented in connected sets are defined in
world coordinates. In order to apply two-dimensional algo-
rithms in the next steps, these vertices are transformed to a
new basis determined by u, v and n, with n being the cutting
plane’s normal vector.

4) Computing the Holes for each Segment: The triangula-
tion algorithm, presented in the next step, needs information
about which parts are of the surface object and which parts are
of the interior of the object, to triangulate only the parts which
are part of the object’s surface. We need therefore to identify
these parts by finding a point inside each segment. We call h
a 2D point located inside a two-dimensional segment which
will not be triangulated (a hole). We compute h by calculating
the average of the first two ordered intersection points found
between a line connecting one of the diagonals from the hole’s
bounding box and the intersected edges (Figure 6).

After, we apply a point-in-polygon algorithm to check if h
is inside the hole. Otherwise, we repeat the process with the
remaining diagonal, as seen in Figure 7.

5) Triangulation: Once we have all the segments and holes
identified, we can compute a triangulation of the segments;
holes are not triangulated. We use the Triangle library pre-
sented by Shewchuk [22] to triangulate the vertices that define
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Fig. 6. Examples of holes. h marks the point inside the hole. It is computed
as the average of the two intersection points with one of the diagonals.
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Fig. 7. A case when the average of the intersection points is outside the
hole (a). In this case we use the other diagonal to compute h (b).

a segment. This library correctly creates a set of triangles
leaving the holes without triangles. Figure 8 shows an example
for two disconnected segments, one of them containing a hole,
marked in gray in the figure.

6) Removal of External Triangles: In this step, we remove
all the triangles that are outside the original segments by
calculating the barycenter of each one followed by a point-in-
polygon technique, as shown in Figure 8. Since we decided to
compute the triangulation algorithm only once due to its cost
instead of for each segment separately, this simple procedure
correctly eliminates all triangles which are not part of the
mesh.

a b c

Fig. 8. A set of vertices grouped in two segments with a hole in the second
one (hatched) (a). Respective triangulation of the set in red lines before (b)
and after (c) the removal of external triangles.

7) Mapping back to 3D: Since the next step, texturing,
requires the points in world coordinates, we transform the
computed triangles back to world coordinates. This is the last
step in remeshing the original objects according to the cutting
plane, resulting in a new cut object, triangulated at the defined
plane.



B. Texturing the Object

This section describes the steps comprising the process B
of Figure 2, Texturing the Object. At the end of this process,
we will render the cutting plane taking into account the
holes and proper texturing. We use a simple solid texturing
technique based on the interpolation of images. We interpolate
three images representing each of the object’s orthogonal
planes in order to obtain internal information from different
perspectives. Although this solution can be used on its own as
a texturing technique, we will explain it as a continuation of
the previous section. Given the triangles on the plane already
computed and three images defining the object’s internal tex-
ture, we apply a function that interpolates the images, returning
a color for each point according to its spatial location.

1) Color Sampling: Let I be an image formed by a matrix
Iw · Ih of pixels, each pixel accessed by Ii,j with i as rows
and j as columns. The three input images denoted by Ik, k ∈
{1, 2, 3} are set in the orthogonal planes z = 0, y = 0 and
x = 0, respectively. Also, they are centered at the origin of the
surface object and limited according to the object’s bounding
box defined by max = (maxx,maxy,maxz) and min =
(minx,miny,minz).

Our color sampling technique can compute a color for
any point inside this domain although we are only interested
in the cutting plane’s triangles. Figure 9 shows a graphical
representation of the images on the three-dimensional space.

a b

Fig. 9. Color sampling for a point p from three images arranged in the 3D
space (a) and their respective color contributions ck (b).

Let ck, k ∈ {1, 2, 3} be the color related to a given pixel
for each of the input images Ik and p a point defined inside
the object’s bounding box. The positions Iki and Ikj of each
pixel corresponding to each of the images associated with the
point p can be calculated as:

I1i,j =

{⌊
(maxy − py)

(maxy −miny)
·I1h

⌉
,

⌊
(maxx − px)

(maxx −minx)
·I1w

⌉}

I2i,j =

{⌊
(maxx − px)

(maxx −minx)
·I2h

⌉
,

⌊
(maxz − pz)

(maxz −minz)
·I2w

⌉}

I3i,j =

{⌊
(maxy − py)

(maxy −miny)
·I3h

⌉
,

⌊
(maxz − pz)

(maxz −minz)
·I3w

⌉}

Therefore, each one of the colors associated with the point
p can be computed as ck = Iki,j

.
2) Calculating the Weight Factors: In this step, we inter-

polate the three colors computed in the previous step in order
to generate a unique color for the point p. This interpolation is
based on the distance between p and the images, where each
ck has an associated weight factor when computing the final
color.

Let f be a weight factor corresponding to a contribution
percentage of an image I on a point p. We calculate the
auxiliary factors fq as:

fq = 1−
∣∣∣∣1− (maxq − pq)

maxq−minq

2

∣∣∣∣,
where q indicates the axes z, y and x, respectively.
Given the factors fk related to the images Ik, as in Figure

9, then:

fk =
fq

fx + fy + fz

3) Rendering by Texture Mapping: This step has two parts:
the first is how to obtain the final color of a point p and the
second is how to render the triangles on the cut plane using
texture mapping.

We generate the final color c for a given point p as:

c =
∑

k=1,2,3

ckfk (1)

In order to obtain the final texture for the triangles that
define the cutting plane, we use a two-dimensional regular
grid on the plane to sample the texture and create a texture
map. We set this grid with n lines and m columns on the two-
dimensional bounding box defined according to the triangles
to be rendered in the plane space.

We compute the colors of these points with equation (1),
assigning these colors directly onto a new image I . Further,
we define this image as a texture and normalized (u, v)
coordinates for the vertices on the plane. Finally, we map the
created texture on the triangles and render the image. This
process is illustrated in Figure 10.

IV. RESULTS AND DISCUSSION

We used OpenGL for the graphics API and the tests ran
on an Intel Core i7-4770 CPU 3.40 GHz with 16GB RAM,
Windows 8 64 bits and NVIDIA GeForce GTX 770 for
graphics. We choose a liver model with blood vessels as a
case study to test our solution. We constructed the models
from CT images of the SLIVER07 project [23]. We used the
Training data - part 1 pack containing about 300 images from
the abdominal region already with binary masks to segment
the liver, and resolution 5122 . Then we used MeVisLab [24]
to obtain the geometric models (Figures 11-a and 11-b) as
detailed in Table I.

We used the textures for the liver from Xue and colleagues
[25] where they addressed texture synthesis for surgery simu-
lators and the texture for the vessels from Elhelw et al. [26].
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Fig. 10. Rendering and texture mapping process. Given a triangulation and
the points on the grid in the plane space (a), the points are represented in
the world space (b). Then, the colors are calculated, producing a new texture
image (c) that is mapped on the triangles to be rendered (d).

Model Vertices Triangles
Liver 3350 6673

Vessels 11216 22662

TABLE I
DETAILS OF THE INPUT MODELS.

We used the same image for the three textures to represent
the inner liver. Ideally, three different images should be used.
These results can be seen in Figure 11-c. The textured models
superimposed are illustrated in Figure 11-d.

Fig. 11. Overview of the models and textures for the case study. Liver (a)
and vessels models (b). Textures for the liver and for the vessels and internal
images (c). Textured liver and vessels superimposed (d).

Next we show several results from the inputs, as a set of
cuts generated by our system. Table 2 presents information
related to these cuts, including the number of intersection
surface points (IP), number of triangles on the plane (TP),
plane texture grid resolution (GR) and execution time (ET) in

milliseconds.

Cut IP TP GR ET
1 667 657 256 136.21
2 182 178 256 41.32
3 586 600 256 120.8
4 569 569 256 118.02
5 618 647 256 143.25
6 476 498 256 93.86
7 269 273 256 55.58
8 479 492 32 37.73
9 479 492 64 40.42
10 479 492 128 51.06
11 479 492 256 92.49
12 479 492 512 255.65
13 479 492 1024 905.47

TABLE II
INFORMATION ABOUT THE NUMBER OF INTERSECTION POINTS (IP),

NUMBER OF TRIANGLES ON PLANE (TP), TEXTURE GRID RESOLUTION
(GR) AND EXECUTION TIME (ET) IN MILLISECONDS FOR EACH CUT.

The cuts are organized into different groups to illustrate our
technique for various goals. The first cut is shown with full
texture (Figure 1-a) and in wireframe (Figure 1-b) to illustrate
a plane containing several intersections with vessels.

Cuts 2 to 7 (Figure 12) present six cuts maintaining the same
cutting direction. As the grid resolution remains constant, its
related execution time increases according to the number of
triangles intersecting with the vessels.

Fig. 12. Cuts 2 (a), 3 (b), 4 (c), 5 (d), 6 (e) and 7 (f) presenting six different
cuts maintaining the same direction and grid resolution.

Cuts 8 to 13, shown in Figure 13, use the same cutting plane
but with increasing resolution of the grid, zoomed in on the
right of each cut. In this sequence, we also see an increase
in the rendering time, due to the increasing resolutions of the
grid. Also, we can barely see differences in the final rendering
with resolutions above 256.

For a video illustrating our technique in action, please
visit https://vimeo.com/128415963. This video was captured
directly from the screen.

https://vimeo.com/128415963


Fig. 13. Cuts 8 (a), 9 (b), 10 (c), 11 (d), 12 (e) and 13 (f) showing the same
cutting plane for different grid resolutions.

V. CONCLUSION

We presented a technique for cuts in objects with internal
structures with possible application on surgery simulators. In
general, research related to surgical simulators does not deal
with internal structures of organs, lacking information that
could increase visual realism.

After this paper, a number of new avenues can be explored.
First, other image combinations can be tested besides the
trilinear approach we presented here. Then, validation studies
should be planned to, using photographs of real objects, assess
the outcome produced by the different texturing interpolations.
For the cutting, we aim to extend our approach to support
arbitrary cutting surfaces, such as those defined by implicit
equations or 3D meshes, instead of a single planar surface.
Further, as those improvements will require higher computa-
tion power, we intend to explore parallel implementations on
the GPU before integrating our solution into an operational
surgery simulator.

VI. PUBLICATIONS

A summary of this dissertation was accepted for publication
as a full paper at WSCG 2015 conference.
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