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Abstract—Image segmentation, such as to extract an object
from a background, is very useful for medical and biological
image analysis. In this work, we propose new methods for
interactive segmentation of multidimensional images, based on
the Image Foresting Transform (IFT), by exploiting for the first
time non-smooth connectivity functions (NSCF) with a strong
theoretical background. The new algorithms provide global
optimum solutions according to an energy function of graph cut,
subject to high-level boundary constraints (polarity and shape),
or consist in a sequence of paths’ optimization in residual graphs.

Our experimental results indicate substantial improvements in
accuracy in relation to other state-of-the-art methods, byallowing
the customization of the segmentation to a given target object.

Keywords-graph cut; image foresting transform; oriented
image foresting transform; non-smooth connectivity function;
geodesic star convexity;

I. I NTRODUCTION

Image segmentation is one of the most fundamental and
challenging problems in image processing and computer vi-
sion [2]. In medical image analysis, accurate segmentation
results commonly require the user intervention because of
the presence of structures with ill-defined borders, intensity
non-standardness among images, field inhomogeneity, noise,
artifacts, partial volume effects, and their interplay [3]. The
high-level, application-domain-specific knowledge of theuser
is also often required in the digital matting of natural scenes,
because of their heterogeneous nature [4]. These problems
motivated the development of several methods for semi-
automatic segmentation [5], [6], [7], aiming to minimize the
user involvement and time required without compromising
accuracy and precision.

One important class of interactive image segmentation
comprises seed-based methods, which have been developed
based on different theories, supposedly not related, leading
to different frameworks, such aswatershed from markers[7],
random walks[8], fuzzy connectedness[9], graph cuts [6],
distance cut[4], image foresting transform(IFT) [10], and
grow cut [11]. The study of the relations among different
frameworks, including theoretical and empirical comparisons,
has a vast literature [12], [13], [14]. However, these methods
in most studies are restricted to undirected graphs, and the
most time-efficient methods, including the IFT, present a lack

* This work relates to the M.Sc. dissertation [1].

of boundary regularization constraints. Moreover, the quality
of their segmentation results with minimal user intervention,
strongly depends on an adequate estimate of the weights
assigned to the graph’s arcs [15].

The main contribution of this work is a theoretical de-
velopment to support the usage ofnon-smooth connectivity
functions (NSCF) in the IFT, opening new perspectives in the
research of image processing using graphs, since NSCF were,
until now, avoided in the literature. More specifically, we prove
that some NSCF can lead to optimum results according to
a graph-cut measure on a digraph [16], [17] or consist in a
sequence of paths’ optimization in residual graphs. We have
as main results:

1) The customization of the segmentation by IFT to match
the global and local features of a target object:(a)
The design of more adaptive and flexible connectivity
functions, which allow better handling of images with
strong inhomogeneity by using dynamic weights.(b)
The orientation of the object’s intensity transitions, i.e.,
bright to dark or the opposite (boundary polarity), and
(c) shape constraints to regularize the segmentation
boundary (geodesic star convexity constraint).

2) The development of an interactive segmentation tool
within the software, calledBrain Image Analyzer(BIA),
to support research in neurology involving volumetric
magnetic resonance images of a 3T scanner from the
FAPESP-CInApCe.

3) Four conference papers were published in international
events of high regard [17], [18], [19], [20], and one
journal paper was published in theIEEE Transactions
on Image Processing(impact factor: 3.111) [16].

For the sake of completeness in presentation, Section II
includes the relevant previous work of image segmentation
by IFT. In Sections III, IV, V and VI, we present the main
contributions covered in the master’s dissertation [1]: The
classification of NSCF, the use of adaptive weights via NSCF,
the boundary polarity through digraphs, and the elimination
of false delineations by shape constraints. Our conclusions are
stated in Section VII.

II. I MAGE FORESTINGTRANSFORM (IFT)

An image 2D/3D can be interpreted as a weighted digraph
G = 〈V = I, ξ, ω〉 whose nodesV are the image pixels in its
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image domainI ⊂ Z
N , and whose arcs are the ordered pixel

pairs (s, t) ∈ ξ (e.g., 4-neighborhood, or 8-neighborhood, in
case of 2D images, and 6-neighbors in 3D). The digraphG is
symmetric if for any of its arcs(s, t), the pair(t, s) is also an
arc ofG. We have an undirected graph whenω(s, t) = ω(t, s)
in a symmetric graphG. We use(s, t) ∈ ξ or t ∈ ξ(s) to
indicate thatt is adjacent tos. Each arc(s, t) ∈ ξ may have
a weightω(s, t) ≥ 0, such as a dissimilarity measure between
pixelss andt (e.g.,ω(s, t) = |I(t)−I(s)| for a single channel
image with values given byI(t)).

For a given image graphG, a pathπt = 〈t1, t2, . . . , tn = t〉
is a sequence of adjacent pixels with terminus at a pixelt.
A path is trivial when πt = 〈t〉. A path πt = πs · 〈s, t〉
indicates the extension of a pathπs by an arc(s, t). The
notation πs t = 〈t1 = s, t2, . . . , tn = t〉 may also be used,
wheres stands for the origin andt for the destination node.
A predecessor mapis a functionP that assigns to each pixel
t in V either some other adjacent pixel inV, or a distinctive
markernil not in V — in which caset is said to be aroot
of the map. Aspanning forestis a predecessor map which
contains no cycles — i.e., one which takes every pixel tonil

in a finite number of iterations. For any pixelt ∈ V, a spanning
forestP defines a pathπP

t recursively as〈t〉 if P (t) = nil,
andπP

s · 〈s, t〉 if P (t) = s 6= nil.

A connectivity functioncomputes a valuef(πt) for any
pathπt, usually based on arc weights. A pathπt is optimum
if f(πt) ≤ f(τt) for any other pathτt in G. By taking to
each pixelt ∈ V one optimum path with terminust, we
obtain the optimum-path valueV (t), which is uniquely defined
by V (t) = min∀πt in G{f(πt)}. A path πtn = 〈t1, t2, . . . , tn〉
is complete optimumif all paths πti = 〈t1, t2, . . . , ti〉, i =
1, 2, . . . , n are optimum paths. The IFT takes an image graph
G, and a path-cost functionf ; and assigns one optimum path
πt to every pixelt ∈ V such that anoptimum-path forestP is
obtained — i.e., a spanning forest where all paths are optimum.
However,f must besmooth(Definition 1), otherwise, the paths
may not be optimum [10].

Definition 1 (Smooth path-cost function). A path-cost function
f is smoothif for any pixel t ∈ I, there is an optimum path
πt, which either is trivial, or has the formπs · 〈s, t〉 where

(C1) f(πs) ≤ f(πt),
(C2) πs is optimum, and
(C3) for any optimum pathπ′

s ending ats, f(π′
s · 〈s, t〉) =

f(πt).

We consider image segmentation from two seed sets,So

andSb (So ∩ Sb = ∅), containing pixels selected inside and
outside the object, respectively. The search for optimum paths
is constrained to start inS = So∪Sb. The image is partitioned
into two optimum-path forests — one rooted at the internal
seeds, defining the object, and the other rooted at the external
seeds, representing the background. A label,L(t) = 1 for all
t ∈ So and L(t) = 0 for all t ∈ Sb, is propagated to all
unlabeled pixels during the computation [10].

III. IFT WITH NON-SMOOTH CONNECTIVITY FUNCTIONS

Clearly, from Definition 1, we have that a connectivity
function is not smooth if it doesn’t satisfy at least one of
the conditions C1, C2 or C3. For examplef∑ |△I| violates
C2 and C3:

f∑ |△I|(〈t〉) =

{

0, if t ∈ S,
+∞, otherwise.

(1)

f∑ |△I|(πr s · 〈s, t〉) = f∑ |△I|(πr s) + |I(t)− I(r)|

In [20], we formally classified several non-smooth functions
(Figure 1) according to the conditions C1, C2 and C3 (Defi-
nition 1), and C4 (Definition 2).

Definition 2 (Condition C4). A path-value functionf satisfies
the condition C4, if for any nodes ∈ I the following condition
is verified∀t ∈ ξ(s):

• For any pathsπs and π′
s ending ats, if f(πs) = f(π′

s),
then we havef(πs · 〈s, t〉) = f(π′

s · 〈s, t〉).

Fig. 1. Schematic representation of the relations between smooth and non-
smooth connectivity functions:C1, C2, C3, andC4 are sets of connectivity
functions that satisfy these respective conditions for a general graph.

IV. A DAPTIVE WEIGHTS VIA NSCF

Methods based on IFT [10] have been successfully used in
the segmentation of 1.5 Tesla MR datasets [21], [22]. However,
inhomogeneity effects are stronger in higher magnetic fields,
and it is extremely important to define the optimal solution
for these images. NSCFs are more adaptive to cope with the
problems of field inhomogeneity, which are common in MR
images of 3 Tesla [23].

In order to give a theoretical foundation to support the
usage of NSCF, we theoretically proved that the IFT with
any non-smooth functionf ∈ (C1 ∩ C4) \ C2 is, in fact,
equivalent to the result of a sequence of optimizations, each
of them involving a maximal set of elements, in a well-
structured way [20]. This proof was supported by the following
proposition:

Proposition 1. Consider a functionf ∈ (C1 ∩ C4) \ C2.
For a given image graphG = 〈V, ξ, ω〉, and set of seedsS,
let O be the set of all pixelst ∈ V, such that there exists
a complete-optimum pathπt for f . In any spanning forestP
computed inG by the IFT algorithm forf , all the pathsτPt
with t ∈ O are optimum paths.
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Fig. 2. Results using a robot user for segmenting the 3D braindataset.

In our experiments, we used 10 T1-weighted 3D images of
male and female adults with normal brains. The image dataset
included the head and, at least, a small portion of the neck. Our
experimental result, using a robot user1 for segmenting the
brain dataset, indicates that substantial improvements can be
obtained by NSCFs in the 3D segmentation of MR images of
3 Tesla, with strong inhomogeneity effects, when compared to
smooth connectivity functions. That is because NSCFs permit
a more adaptive configuration of the arc weights.

Figure 2 shows the experimental curves, whereIRFC [9]
andPWq=2 [14] represent different algorithms related to the
smooth functionfmax, and we usedω(s, t) = G(s) + G(t),
whereG(s) is the magnitude of Sobel gradient at a voxel
s. Clearly, f lex∑

|△I| presented the best accuracy. Figure 3
shows one example for user-selected markers. These re-
sults emphasize the importance of non-smooth connectivity
functions. The non-smooth connectivity functionf lex∑

|△I| is
a variation of f∑ |△I| (Eq. 1), in order to guarantee that
f lex∑

|△I| ∈ (C1 ∩C4) \ C2 [20]. The functionf lex∑
|△I| gives

pairs of values that should be compared according to the
lexicographical order. The first component is the non-smooth
functionf∑ |△I| (Eq. 1), and the second is the priority level of
the seed/root for that path. The lower its value the higher isits
priority. In interactive segmentation, we give lower priority for
new inserted seeds, since they are used mainly for corrective
actions, so that we can keep their effects more locally. The
same process was done forf lex

max |△I| ∈ (C1 ∩ C4) \ C2

andf lex
l ∈ (C1 ∩C4) \C2, in relation tofmax |△I| andfl,

respectively [20].

V. BOUNDARY POLARITY VIA NSCF

In order to resolve between very similar nearby bound-
ary segments, in [16], [17] we successfully incorporated
the boundary polarity constraint in the IFT using NSCF in
digraphs, resulting in a novel method calledOriented Image
Foresting Transform (OIFT).

In the case of digraphs, there are two different types
of cut for each object boundary: an inner-cut bound-
ary composed by arcs that point toward object pixels

1Method introduced in [24], to simulate user interaction of interactive
segmentation.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Brain segmentation results for the same user-selected markers by
(a-c) fmax, and (d-f)f lex∑

|△I|
.

Ci(L) = {(s, t) ∈ ξ | L(s) = 0, L(t) = 1}, and an outer-
cut boundary with arcs from object to background
pixels Co(L) = {(s, t) ∈ ξ | L(s) = 1, L(t) = 0}. Conse-
quently, we consider two different types of energy,Ei (Eq. 2)
andEo (Eq.3).

Ei(L,G) = min
(s,t) ∈ Ci(L)

ω(s, t) (2)

Eo(L,G) = min
(s,t) ∈ Co(L)

ω(s, t) (3)

We use a digraph, whereω(s, t) is a combination of a
regular undirected dissimilarity measureψ(s, t), multiplied
by an orientation factor (i.e.,ω(s, t) = ψ(s, t) × (1 + α)
if I(s) > I(t) and ω(s, t) = ψ(s, t) × (1 − α) otherwise).
Several different procedures can be adopted forψ(s, t), such
as the absolute value of the difference of image intensities(i.e.,
ψ(s, t) = |I(t) − I(s)|). Note that we haveω(s, t) 6= ω(t, s)
whenα > 0.

The OIFT is build upon the IFT framework by considering
one of the following path functions in a symmetric digraph:

fS1,S2

max (〈t〉) =

{

−1 if t ∈ S1 ∪ S2

+∞ otherwise

fS1,S2

max (πr s · 〈s, t〉) =

{

Expr1 if r ∈ S1

Expr2 if r ∈ S2

(4)

Expr1 = max{fS1,S2

max (πr s), 2× ω(t, s) + 1}

Expr2 = max{fS1,S2

max (πr s), 2× ω(s, t)}

fS1,S2

ω (〈t〉) = fS1,S2

max (〈t〉)

fS1,S2

ω (πr s · 〈s, t〉) =

{

ω(t, s) if r ∈ S1

ω(s, t) if r ∈ S2

(5)

The segmentation usingfSo,Sb

max or fSo,Sb

ω favors transitions
from dark to bright pixels, andfSb,So

max or fSb,So

ω favors the
opposite orientation, according to Theorem 1. In the case
of multiple candidate segmentations with the same energy,
fS1,S2

ω produces a better handling of the tie zones than
fS1,S2

max [17].



Theorem 1 (Inner/outer-cut boundary optimality). For two
given sets of seedsSo andSb, any spanning forest computed
by the IFT algorithm for functionfSb,So

max or fSb,So

ω defines an
optimum cut that maximizesEo among all possible segmenta-
tion results satisfying the hard constraints. Any spanningforest
computed by the IFT algorithm for functionfSo,Sb

max or fSo,Sb

ω

defines an optimum cut that maximizesEi among all possible
segmentation results satisfying the hard constraints (seeds).

In our experiments, we used 20 real volumetric MR im-
ages of the foot in 3D. We computed the mean perfor-
mance curve (Dice coefficient) for the methods: Iterative
Relative Fuzzy Connectedness (IRFC), IFT withfmax [10]
(IFTmax

FIFO), Power Watershed (PWq=2), and OIFT us-
ing fSo,Sb

max (OIFTmax
inner), fSb,So

max (OIFTmax
outer), fSo,Sb

ω

(OIFTω
inner) andfSb,So

ω (OIFTω
outer) [17]. We used differ-

ent seed sets obtained by eroding and dilating the ground truth
(Figure 4). The experimental accuracy curves with the Sobel
gradient (Figure 5) show that whenever the object presents
transitions from dark to bright pixels, as it is the case withthe
bones talus and calcaneus,fSo,Sb

ω and fSo,Sb

max give the best
accuracy results. Note also thatfSb,So

max andfSb,So

ω present the
worst accuracy values, by specifying the wrong orientation.

(a) (b)

(c) (d)

Fig. 4. (a) Ground truth of the talus in an MR image of a foot. (b) Seed sets
obtained by eroding and dilating the ground truth. (c) Segmentation by IRFC.
(d) An improved result by exploiting the boundary polarity using f

So,Sb
max .

VI. SHAPE CONSTRAINTS VIA NSCF

Shape constraints, such as the star-convexity prior intro-
duced by Veksler [25], can limit the search space of possible
delineations to a smaller subset, thus eliminating false candi-
date boundaries. In this context, a pointp is said to be visible
to c via a setO if the line segment joiningp to c lies in the
set O. An objectO is star-convex with respect to centerc,
if every pointp ∈ O is visible to c via O (Figure 6). In the
case of multiple stars, a computationally tractable definition,
was proposed in [24], using aGeodesic Star Convexity(GSC)
constraint in the segmentation bymin-cut/max-flow.

In [18], we proposed an IFT extension that incorporates
the GSC constraint, favoring the segmentation of objects with
more regular shape, resulting in a novel method calledIFT
with Geodesic Star Convexity Constraints (GSC–IFT). In
this method, the set of star centers is taken as the set of
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Fig. 5. The mean accuracy curves (Dice) using the Sobel gradient for the
3D segmentation of: (a) talus, and (b) calcaneus.

(a) (b)

Fig. 6. For any pointp within the object and the star centerc, we have: (a)
a star-convex object and (b) a non-star-convex object.

internal seeds (So), and the line segments are the paths that
form a spanning forest rooted at the internal seeds. The forest
topology is controlled by a parameterβ. For lower values of
β (β ≈ 0.0), the method imposes more star regularization to
the boundary of the object (Figures 7 and 8), and for higher
values ofβ, it allows a better fit to the curved protrusions and
indentations of the boundary.

Thereafter, in [19] we proposed the novel method called
OIFT with Geodesic Star Convexity (GSC–OIFT), which
incorporate Gulshan’s geodesic star convexity prior in the
OIFT approach for interactive image segmentation, in order
to simultaneously handle boundary polarity and shape con-
straints (Theorem 2). This method permits the customization
of the segmentation by IFT to better match the features of
a particular target object (Figure 9). We constrain the search
for optimum result, that maximize the graph-cut measuresEi

(Eq. 2) orEo (Eq. 3), only to segmentations that satisfy the
geodesic star convexity constraint. We compute a geodesic
forest Psum for fsum [10] by the regular IFT algorithm,
using onlySo as seeds, for the given digraphG, obtaining
two sets of arcsξi

Psum
= {(s, t) ∈ ξ | s = Psum(t)} and

ξo
Psum

= {(s, t) ∈ ξ | t = Psum(s)}. The GSC constraint is
violated whenCi(L) ∩ ξi

Psum
6= ∅ or Co(L) ∩ ξo

Psum
6= ∅



(a) (b)

(c) (d)

Fig. 7. Example of 3D skull stripping from user-selected markers. (a-b)
Segmentation result by IFT withfmax. (c-d) An improved result is obtained
by exploiting the Geodesic Star Convexity (GSC–IFT withβ = 0.1).

(a) (b) (c)

Fig. 8. (a) Input image with user-selected markers. (b) Segmentation result
by IFT with fmax. (c) Segmentation result by GSC–IFT (β = 0.1).

(Figure 10).

Theorem 2 (Inner/outer-cut boundary optimality). For a given
image graphG = 〈V, ξ, ω〉, consider a modified weighted
graph G′ = 〈V, ξ, ω′〉, with weightsω′(s, t) = −∞ for all
(s, t) ∈ ξo

Psum
, and ω′(s, t) = ω(s, t) otherwise. For two

given sets of seedsSo and Sb, the segmentation computed
over G′ by the IFT algorithm for functionfSb,So

max defines
an optimum cut in the original graphG, that maximizes
Eo(L,G) among all possible segmentation results satisfying
the shape constraints by the geodesic star convexity, and
the seed constraints. Similarly, the segmentation computed
by the IFT algorithm for functionfSo,Sb

max , over a modified
graph G′ = 〈V , ξ, ω′〉; with weightsω′(s, t) = −∞ for all
(s, t) ∈ ξi

Psum
, and ω′(s, t) = ω(s, t) otherwise; defines an

optimum cut in the original graphG, that maximizesEi(L,G)
among all possible segmentation results satisfying the shape
constraints by the geodesic star convexity.

In our experiments, we used 40 image slices of 10 thoracic
CT studies to segment the liver. Figure 11a shows the mean
accuracy curves for all the images assuming different seed sets
obtained by eroding and dilating the ground truth. Note that
for higher values ofβ, GSC–OIFT imposes less shape con-
straints, so that the accuracy tends to decrease (Figures 11b-
d). Figure 12 shows some results in the case of user-selected
markers.

VII. C ONCLUSION AND FUTURE WORKS

The proposed extension GSC–OIFT includes the IFT with
fmax, OIFT and GSC–IFT as particular cases, depending on
the configuration of its parametersα and β. Note that the
adaptive functions presented in Section IV can’t be reduced

(a) (b)

(c) (d) (e)

Fig. 9. (a) Synthetic image with selected markersSo andSb. The target
object has a regular shape with transitions from bright to dark in its border.
Segmentation results by: (b) IFT obtains a non-regular shape and wrong
orientation, (c)OIFTmax

outer obtains a non-regular shape, (d) GSC–IFT obtains
a wrong orientation and (e) GSC–OIFTmax

outer (simultaneously considering
boundary polarity and shape constraints) obtains a correctmatching with the
characteristics of the target object.

(a)

(b)

Fig. 10. The GSC constraint is violated when: (a) there is an arc (s, t) ∈
Ci(L) ∩ ξi

Psum
, or (b) there is an arc(s, t) ∈ Co(L) ∩ ξo

Psum
.

to a GSC–OIFT computation. As a result of the theoretical
foundation proposed in this work, four conference papers were
published in international events of high regard [17], [18],
[19], [20], and one journal paper was published in theIEEE
Transactions on Image Processing(impact factor: 3.111) [16].
This work has also allowed new achievements that were
recently published, such as [26] and [27].

As future work, we intend to combine the proposed meth-
ods with statistical models to automatically define seeds for
automatic segmentation.
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Fig. 11. The mean accuracy curves of all methods for the liversegmentation
for various values ofβ: (a) β = 0.0, (b) β = 0.2, (c) β = 0.5, and (d)
β = 0.7.

(a) (b)

(c) (d)

Fig. 12. Results for user-selected markers: (a) IRFC, (b) OIFT (fSb,So

max with
α = 0.5), (c) GSC–IFT (β = 0.7), and (d) GSC–OIFT (β = 0.7, α = 0.5).
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