
Deformation of Graphic Objects in GPU
Luciana Patricia das Virgens Silva

Departamento de Ciência da Computação
Universidade Federal da Bahia, UFBA

Salvador, Brasil
Email: lucianapvs@gmail.com

Vinı́cius Moreira Mello
Departamento de Matemática

Universidade Federal da Bahia, UFBA
Salvador, Brasil

Email: vinicius.mello@ufba.br

(a) Original (b) Bend (c) Taper (d) Twist

Fig. 1: Our method of inverse-ray deformation applied to the volume VisibleHuman. The first figure shows the original volume
without deformation while the three following figures show the volume with the bend, taper and twist deformations respectively.
The dataset used in this example is the conversion of the original file in PVM format to RAW format. The original data set
used in this example can be found in [1].

Abstract—This paper proposes a method for deformation
of graphic objects that incorporates vector field integration
to the ray-casting algorithm in order to allow locally defined
deformations.1

Keywords-deformation; vector field; ray-casting

I. INTRODUCTION

Geometric modeling can be seen as a subfield of Computer
Graphics that encompasses the creation, representation and
manipulation of graphic objects on the computer. This area
virtually affects all areas of Computer Graphics and thus, in
the formulation of solutions to problems related to modeling of
graphic objects, it is necessary to take into consideration var-
ious factors such as the most suitable mathematical model for
the problem, and the data structures and methods that would
be better used to implement the solution on the computer.

A major goal of modeling an object or phenomenon is
to allow a better understanding of the structure thereof. To
achieve a better understanding sometimes it is not enough just
to represent the object’s form, it is also necessary to represent
specific behaviours of the same when subject to manipulation.

This manipulations are called deformations and the graphic
objects subjected to this process are called deformable objects.
In the process of deformation, an object undergoes geometric

1This work relates to a M.Sc. dissertation

Fig. 2: Barr’s traditional deformation methods applied to a
mesh of triangles. The first figure shows the non deformed
mesh of triangles and the following three the mesh with the
bend, taper and twist deformations, respectively.

and topological changes that will modify its shape. Such trans-
formations are being increasingly studied and used in the area
of Computer Graphics, especially in movies, animations and
games with the aim of producing transitions in the appearance
of characters.

Contributions: This paper proposes a method for de-
formation of graphic objects that incorporates vector field
integration to the ray-casting algorithm in order to allow
locally defined deformations. The vector fields applied in this
technique are based on the deformation methods proposed by
Barr [2]. In addition, we developed a volume rendering tool
to implement this deformation technique in GPU.

mailto:lucianapvs@gmail.com
mailto:vinicius.mello@ufba.br


A. Related Work

Barr [2] introduced deformations through methods that
perform operations to twist, bend or taper an object around
a central axis (x, y or z), as we can see in the examples
shown in Fig. 2. Thus, operations involving the movement
of many control points could now be carried out with the
change of a single parameter. Barr proposed two kinds of
deformations: global deformation, where the warping function
is explicitly known, and the local deformation, where a field of
local transformations (jacobian matrices) must be integrated in
order to obtain the global transformation. Note that he uses a
matrix field, while we use the simpler concept of vector field.
Since the pioneering work of Barr, many others methods for
deformation were proposed. An extensive survey can be seen
in [3].

II. DEFORMATION OF GRAPHIC OBJECTS

As previously stated deformation methods are widely used
in various areas of Computer Graphics. There are several ways
of specifying a deformation. The choice of method influences
both the user interface and the deformation algorithm used.

A. Deformation Based On Vector Fields

The idea of deformation based on vector fields consists in
construct a C1 continuous vector field ~v and obtain the new
positions of every vertex p of the shape by applying a path
line integration of ~v starting from p. This approach does not
generate self-intersections, what is a great advantage. More-
over, if the vector field is divergence-free, the deformation
preserves volume. The paper [4] is a nice example of this
strategy, nevertheless it applies the deformation to a triangle
mesh, while we apply the deformation to volumetric objects.

B. Inverse-ray Deformation

Generally when applying deformations in graphic objects,
new objects must be created from the original to represent the
deformed one. This new object is then rendered and displayed
to the user, as we see in Fig. 3.

Fig. 3: Normal process of deformation of an object. First it
is necessary to create the deformed object (middle) from the
original (left) and only then run the ray casting (right).

But in the approach of inverse-ray deformation, the step of
creating a new object can be eliminated since the deformation
is applied to the rays released during the ray casting thereby
making the process more efficient. Fig. 4 shows this process.

The original paper of Barr already proposed this technique.
Hence, the present work can be seen as a implementation

of Barr’s deformation through vector fields and applied to
volumetric objects using ray-casting algorithm combined with
the inverse-ray technique.

Fig. 4: Inverse-ray deformation technique. The deformation is
applied directly on the ray in the opposite direction of the
deformation movement to give a impression that the object is
the one being deformed.

III. INFINITESIMAL DEFORMATION OF GRAPHIC OBJECTS

The theory of the infinitesimal deformation or small defor-
mation theory can be regarded as a mathematical approach
which describes the deformation of a solid body where the
displacement of material particles are assumed to be infinites-
imally small. Based on this theory we propose a deformation
of graphical objects where the position of each point can be
specified at each moment according to the vector field being
used.

A. Vector Fields

We can define a vector field as a function that associates a
single vector ~v(p) to each point p on plane or space. Thus,
we have the following definition:

Definition 1. Let A be a set in Rn. A vector field on A is
an application ~v : A ⊂ Rn → Rn. A vector field is C1 if its
coordinate functions are continuously differentiable.

B. Local Deformation With Vector Fields

In this technique we combine ray casting with vector fields
to create deformations in graphic objects. We define that
the rays cast into the object will follow paths or streams
delimited by predefined vector fields. These vector fields are
adaptations of the methods proposed by Barr and that were
shown previously. To construct this adaptations we use what
we called basic vector fields. Those basic fields represent
simple movements such as rotation, contraction and expansion.

All global transformations can be achieved by local trans-
formations consisting of multiplying the basic vector fields by
a function that depends on the height. Thus the function will
change the speed of the fields according to the height (value of
z). In Fig. 5 we can see that when we multiply the expansion
vector field by the function h(z) = z ∗ k, the speed of the
vector field increases the extent to which the height increases
and when the height decreases the speed does the same but it
happens in such a fashion that the vector field starts to contract.

The twist vector field is achieved in a similar manner, as
we see in Fig. 6, but in this case we use a rotation field. When
we multiply the rotation field by the function h(z) = z ∗ k,



Fig. 5: By multiplying the expansion vector field ~v(x, y, z) = (x, y, 0), shown in the left image, by the function h(z) = z ∗ k
(middle image) we get the taper vector field that we can see in the right image.

Fig. 6: Basic rotation vector field ~v(x, y, z) = (−y, x, 0) (left image) multiplied by the function h(z) = z ∗ k (middle image)
results in the twist vector field shown in the right image.

the speed of the vector fields increases and decreases in such
a way that the vector field spins in two different directions
depending on the height.

To construct the bend field, we use a rotation vector field
around the x-axis given by ~v(x, y, z) = (0,−z, y). The
function used in this field can be either of the following:

h(z) = arctan(10 ∗ z)/(π/2)
or

h(z) = sign(z)

This function changes the speed of the vector field so that
the field looks like it is leaning to its center thus given the
impression of a bending, shown in Fig. 7.

With the vector fields already defined, we start describing
the process of local deformation. The basic idea is to trans-
form each point infinitesimally taking into consideration the
following equation:

step(p) = p+ dt · ~v(p),

In it we assume that dt is very small (infinitesimal) and the
process will be iterated an n number of times so that dt = t/n.
At the end of this process the point is taken to the position
It(p). We called the function It the flow associated with the
field ~v. To deform a mesh of triangle, for example, we simply
apply the flow It to every vertex of the mesh.

It is interesting to note that the same process can be
performed in the opposite direction to the field, in other words,
in the direction of the field −~v, originating the flow I−t. Now
suppose we want to deform an implicit object O : f(q) = 0.
The deformed object is given by a set of points that satisfies a
certain equation O′ : g(p) = 0. To know whether a point p in
fact belongs to O′, we have to determine if p is the image of
some point q in O by the flow It, that is, p = It(q). But since
to reverse the flow we just need to walk in opposite direction
of the field, I−1t = I−t,, we have that q = I−t(p), and

g(p) = f(q) = f(I−t(p)).

For each step performed along the ray, a new loop will be
added to know where the point will be taken by the deforma-
tion. This new loop is shown in the following algorithm.

Algorithm 1: Calculating I−t(p)

1 while(t >= dt){
2 p = p + dt * -~v(p)
3 t = t - dt
4 }
5 return p

To apply local illumination we need to calculate the gradient
of the functions. One way to achieve this is using tricubic
interpolation. Moreover, with the introduction of the deforma-



Fig. 7: A basic vector field representing a rotation around the x axis ~v(x, y, z) = (0,−z, y) (left image) multiplied by the
function h(z) = arctan(10 ∗ z)/(π/2) (middle image) creates the twist vector field (right image).

tion, it is also necessary to correct the gradient through an
accumulation process described in Algorithm 2.

Algorithm 2: Accumulation process

1 D = id
2 while(t >= dt){
3 D = (Id + dt * -D~v(p)) * D
4 p = p + dt * -~v(p)
5 t = t - dt
6 }
7 return p, D

The math used to calculate the integration of the ray when
walking in the field is given as follows: the point q is obtained
by iterating the function step n times, that is,

q = stepn(p),

with n · dt = t. But

stepn(p) = step(stepn−1(p)).

Differentiating and using the chain rule, it follows that

Dstepn(p) = Dstep(stepn−1(p)) ·Dstepn−1(p).

On the other hand, as

step(p) = p+ dt · ~v(p),

we have that

Dstep(p) = Id+ dt ·D~v(p).

Therefore

Dstepn(p) = (Id+ dt ·D~v(stepn−1(p))) ·Dstepn−1(p),

hence the Algorithm 2.
Finally, a curiosity. As step(p) can be described as

step(p) = (Id(·) + t

n
· ~v(·))(p),

it follows that

q = stepn(p) = (Id(·) + t

n
· ~v(·))n(p),

which reminds the definition of exponential thus, at least
formally,

q ≈ et·~v(·)(p).

IV. VOLREND

Volrend is the tool created to implement this new technique
and it is shown in Fig. 8.

A. Structure
This tool was based on Voreen [5], a open source volume

rendering engine, and developed using the concept of dataflow
networks. In summary, these networks are formed by modular
units, also known as processors, which encapsulate the render-
ing algorithms and data processing. These units have input and
output ports whereby the data will be exchanged with other
units. Each door has a specific type. The connection between
output and input ports will constitute the flow of data between
the processors.

Fig. 9: Volrend’s dataflow network. We chose this type of
architecture because it provides more flexibility when creating
and adding new components to the program.

Currently the dataflow network in this tool is composed of
7 processors (Fig. 9) and each one is responsable for a specific
task. The processors were developed in Lua.



Fig. 8: The main display of Volrend. On the right side of the screen we see the canvas that shows the current rendering. On
the upper left corner we see the configuration panel of the transfer function and under it are the menus used to configure the
properties of the processors. Each menu is specific to a processor.

In Volrend’s network, the first processor to run is the
ProxyCube. This processor creates the textures that represent
the entry and exit points of the ray. The Volume processor is
responsible for loading the volume that will be rendered in
the application. It displays a menu where the user can, for
example, choose between the volumes already listed on the
application or load a volume from an external source.

The TransferFunction processor takes the data entered by
the user to create the transfer function. Next we have the
Deformation processor that displays a menu to allow the user
to set the deformation parameters. The DVRShader processor
is one of the most important in the dataflow network. It triggers
the execution of the shaders that are responsible for the process
of volume rendering and deformation. It also shows a menu
that allows the user to set the resolution of the image to be
shown.

The last two processors, Background and Canvas, are re-
sponsible for the setting of the background colors and for show
the results of the rendering on the screen, respectively.

B. Shaders

As our goal is to run the deformation technique in the GPU
and enjoy the graphics capability of this device, we use the
high-level programming language for graphics cards OpenGL
Shading Language, also known as GLSL. With this language
we can create shaders that are pieces of code that run on the
GPU to manipulate the images before they are drawn on the

screen. While the interface of the program was developed in
Lua, all operations regarding the rendering and deformation
of the volume were developed in GLSL.

V. RESULTS AND DISCUSSION

To show the results of the application of this deformation
technique we use datasets that contain regular volume data
mainly coming from CT or MRI scanners. As mentioned
before, it is possible to choose the resolution of the image
displayed on Volrend. In Fig. 10 we can see the results with the
three resolutions available, 1282, 2562 and 5122. The greater
the resolution the better the image.

Fig. 11: Teapot used in the examples. Original data set can be
found in [6].

In the examples showed in Fig. 12 we apply the deforma-
tions to a CT scan of the SIGGRAPH 1989 teapot (Fig. 11).

It is also possible to define the region of the volume that it
will be directly affected by the deformation, as shown in Fig.



Fig. 10: Resolutions available on Volrend. Note that at lower resolutions (1282), shown in the left image, there are multiple
occurrences of subsampling problems and noise. In the middle image we see that these problems decrease as the resolution
increases to 2562 but we still notice some artifacts. With the 5122 resolution, shown on the right, the image is way better.

(a) Bend Deformation (b) Taper Deformation

(c) Twist Deformation

Fig. 12: Results achieved with the inverse-ray deformation method. We can see in (a), (b) and (c), different views of the
application of our deformations methods to bend, taper and twist the volume.

Fig. 13: In this example we show the taper deformation being applied in certain volume regions. The first figure is of the non
deformed volume. The second one shows that only the upper half of the volume is being deformed. The third figure is of the
volume with the deformation applied to 80% of its region. And the remaining figure shows the volume deformed in its totality.

13, by mutiplyng the deformation field by a field that is zero
outside the region.

VI. CONCLUSION

In this paper, we showed a new technique to deform graphic
objects using vector fields. We implement the deformation
directly on the process of ray casting. The vector fields used in
this method were adapted from the methods proposed by Barr.
Here we apply the deformation method for implicit objects but
this can also be used for parametric objects such as triangle
meshes.

REFERENCES

[1] “The volume library.” [Online]. Available: http://www9.informatik.
uni-erlangen.de/External/vollib/

[2] A. H. Barr, “Global and local deformations of solid primitives,” ACM
Computer Graphics, vol. 18, pp. 21–30, 1984.

[3] J. Gain and D. Bechmann, “A survey of spatial deformation
from a user-centered perspective,” ACM Trans. Graph., vol. 27,
no. 4, pp. 107:1–107:21, Nov. 2008. [Online]. Available: http:
//doi.acm.org/10.1145/1409625.1409629

[4] W. von Funck, H. Theisel, and H.-P. Seidel, “Vector field based shape
deformations,” ACM Trans. Graph., vol. 25, no. 3, pp. 1118–1125, Jul.
2006. [Online]. Available: http://doi.acm.org/10.1145/1141911.1142002

[5] “Voreen: Volume rendering engine.” [Online]. Available: http://www.
uni-muenster.de/Voreen/

[6] “Volvis datasets library.” [Online]. Available: http://www.volvis.org/

http://www9.informatik.uni-erlangen.de/External/vollib/
http://www9.informatik.uni-erlangen.de/External/vollib/
http://doi.acm.org/10.1145/1409625.1409629
http://doi.acm.org/10.1145/1409625.1409629
http://doi.acm.org/10.1145/1141911.1142002
http://www.uni-muenster.de/Voreen/
http://www.uni-muenster.de/Voreen/
http://www.volvis.org/

	Introduction
	Related Work

	Deformation of Graphic Objects
	Deformation Based On Vector Fields
	Inverse-ray Deformation

	Infinitesimal Deformation of Graphic Objects
	Vector Fields
	Local Deformation With Vector Fields

	Volrend
	Structure
	Shaders

	Results and Discussion
	Conclusion
	References

