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Abstract—We have developed an automated system for the
diagnosis of intestinal parasites from optical microscopy images.
Each exam produces about 2,000 images with hundreds of objects
in each image for classification as one out of the 15 most
common species of parasites or impurity. As the number of exams
increases, a dataset with unlabeled samples for classification
grows in size. Impurities are numerous and diverse, with similar
features to several species of parasites. Some species are also
difficult to be differentiated. In this context, datasets are large
and unbalanced, making the identification of the best samples
for expert supervision crucial for the design of an effective
classifier. We have addressed the problem by proposing a new
paradigm for active learning, in which the dataset can be a
priori reduced and/or organized to make that process realistic
(efficient) for user interaction and yet more effective. We have also
proposed several active learning methods under this paradigm
and evaluated them for the diagnosis of intestinal parasites and
other applications. Data reduction and/or organization avoid to
reprocess the large dataset at each learning iteration, enabling
to halt sample selection after a desired number of samples per
iteration, which yields interactive response times. The proposed
methods were validated in comparison with state-of-the-art
approaches. Experiments included three datasets with parasites
and/or impurities. One with 1,944 parasites (without impurities)
and another with almost 6,000 labeled objects were used to
develop the methods. A more realistic one, with over 140,000
unlabeled objects, unbalanced classes, absence of classes, and
considerably higher number of impurities, was used for final
validation by an expert in Parasitology.

Keywords-Active learning; pattern recognition; automated
diagnosis of intestinal parasites; microscopy image analysis;
optimum-path forest classifiers.

I. INTRODUCTION

Nowadays, large datasets are easily found in a wide range of

real-world applications, due to the advances in data acquisition

and storage. Their fully annotation considerably facilitates

information organization, retrieval, and prediction, but it is

infeasible for human beings [1]. The task can be accomplished

by an effective pattern classifier, but expert interaction is still

needed to construct a training set with labeled samples. For the

sake of effectiveness in the construction of the training set, the

under-developing classifier can assist in the identification of

the best samples for expert supervision. Such samples should

represent all classes and, in this context, uncertain (informa-

tive) samples can provide a fine adjustment by helping the

classifier to discriminate among classes with similar properties.

1This work relates to a Ph.D. thesis

Active learning methods have been proposed to address the

problem [2], [3]. However, for the sake of efficiency, they

should reduce as much as possible the response time between

user interactions, the training set size, and the number of

learning iterations. These aspects seem to not have caught

much attention in the literature until the present work.

Traditional techniques for active learning usually follow

as general strategy the classification and organization of the

entire dataset at every iteration in order to select and present

a limited number of labeled samples for expert supervision

(Figure 1a). This strategy is not suitable to be applied to large

datasets, making the response time not interactive. The present

paper is related to the Ph.D. Thesis [4], which addressed the

problem by proposing a novel active learning paradigm based

on a priori data reduction and/or organization, so that the

classifier can identify the best samples considerably faster,

at interactive times for real applications (Figure 1b). We

have also proposed some active learning techniques, evaluated

them on several datasets with respect to other approaches,

and validated the most suitable one for a real application:

the automated diagnosis of human intestinal parasites — a

problem that we have investigated for over 10 years.

II. MATERIALS

Image acquisition, segmentation, and feature description

were not the focus of this project as they had been previously

developed by our group [5], [6]. Our work started from the

unlabeled large dataset that results from this process.

For the image database construction, fecal samples were

collected from endemic areas of the state of São Paulo: uni-

versity hospitals at the University of Campinas (UNICAMP)

and at the São Paulo State University (UNESP), as well as

the Ouro Verde Hospital in Campinas. They were processed

at the Visual Computing Laboratory in Biomedical and Health

at the Institute of Computing, UNICAMP.

After fecal sample processing, microscope slides were pre-

pared for automatic image acquisition by using a computer-

controlled system with microscope, digital camera, focus

drive, and motorized stage. Each slide can produce hundreds

of objects, obtained by image segmentation, from about 2,000

images of 4M pixels each. Image segmentation was performed

by a method based on the image foresting transform [7].

The objects are single components, candidates to be classified

as impurity or one out of the 15 most common species of
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Fig. 1. Pipelines for active learning: (a) traditional paradigm and (b) proposed one.

protozoan cysts, helminth eggs, and larvae in Brazil. Their

descriptors include shape, color and texture features weighted

by optimization.

Therefore, the resulting datasets consist of images of those

objects and their descriptors. The first dataset (d1) contains

1,944 parasites (without impurities). The second dataset (d2)

has 5,948 samples, of which 1,944 are parasites and 4,004

are impurities. Both datasets were segmented by the system

and carefully labeled by an experienced parasitologist expert.

The third dataset (d3) consists of over 140,000 unlabeled

samples, unbalanced classes, absence of classes, and consid-

erably higher number of impurities, which better reflects the

circumstances present in an actual laboratory routine. The first

two datasets were used to develop the method and the third

one for final validation by an expert in Parasitology.

III. THESIS CONTRIBUTIONS

The contributions of the Ph.D. thesis [4] consist of the pro-

posal of a novel active learning paradigm and the development

of new active learning methods associated with this paradigm.

The proposed methods differ in the strategy used for data

reduction and/or organization and the strategy used to select

the best samples for expert supervision.

A. Data Reduction and Organization Paradigm

The main contribution of the thesis consists of a novel Data

Reduction and Organization Paradigm (DROP) [8] for active

learning, in order to select, more efficiently and effectively, a

considerably lower number of the most informative samples

to train a classifier under an expert’s supervision. The major

difference and advantage presented by the proposed paradigm

(Figure 1b) is that the non-annotated dataset undergoes a priori

reduction and/or organization, so that the selection does not

require it to be entirely reprocessed at each learning iteration,

unlike traditional active learning paradigms. As far as we

know, the developed active learning strategies are unique in

the sense that their data organization occurs only once (in a

unsupervised preprocessing phase).

The proposed active learning strategies iteratively seek to

select the most informative samples based on the synergy and

current knowledge of both expert and classifier. The classifier

actively participates in its learning process by classifying

and supporting the selection of samples. During the learning

process, one sample (at a time) on the ordered set is labeled by

the current classifier, and the sample is selected if it receives

the label that satisfies the given selection criterion. In general,

the learning set is organized in pairs of samples such that,

among the most difficult ones, the possibility of selecting

sample pairs from distinct classes for annotation will be higher

than pairs from the same class. Note that the classifier does not

label all samples in the dataset. Both phases, classification and

selection, are performed alternately until a desired number of

samples per iteration is reached. Once selected, these samples

are displayed to the expert for verification of the assigned

labels and correction of the misclassified ones. Samples with

expert-verified labels are then incorporated into the training

set. As the classifier improves throughout the iterations, the

expert’s effort is increasingly reduced. The expert can direct

the final classifier to annotate the remaining of the dataset

when an acceptable accuracy has been reached, i.e., whenever

the measured accuracy remains stable or reaches a sufficiently

high level for the given application. Different classifiers could

certainly be used, taking into account the time constraints of

both classifier and application, as proposed in [9].

In the proposed paradigm, non-annotated samples can also

be included in the training set to design a more effective

classifier by active semi-supervised learning [10].

B. Active Learning Strategies

DROP aims to select unlabeled samples from all classes

for expert annotation at the first learning iteration and then

the most informative (hardest) samples for classification at



Fig. 2. Examples of image samples in the datasets. (a) from each class of parasites. (b) from impurities.

the subsequent iterations. Being a paradigm, it can be imple-

mented with different strategies [11], [8], [10], [4], [12], [13],

[14] for the reduction, organization and selection processes.

Generally, the adopted strategies are related to graph-based

clustering. After all, important information can be retrieved

from clustering. Samples located at the center of clusters (root

samples) are more likely to cover all classes and are good

candidates to be selected first for manual annotation. Samples

in the same cluster are likely to have the same label. Many of

them should not be selected, avoiding redundant samples in

order to accelerate active learning.

Cluster roots and boundary samples between distinct clus-

ters, which form a reduced learning set, allow us to select

the most informative samples earlier for training the classi-

fier. After applying our boundary reduction strategy [14], as

the Cluster-OPF-Rand instance, which performs a significant

downsizing (by up to fifth percent, in our experiments) of the

learning set, it is important to organize the remaining samples

in a prioritized way, so that the most informative ones are

more readily available for selection.

We proposed a Decreasing Boundary Edges (DBE) organi-

zation strategy [13], in order to effectively arrange the samples

of the reduced set. DBE organizes the reduced set based on

the decreasing weight order of its boundary edges. The idea

of prioritizing the largest edges formed by boundary samples

is justified by those samples being, more likely than not, of

different classes.

We also proposed a Minimum-Spanning Tree Boundary

Edges (MST-BE) organization strategy [8]. In order to increase

the possibility of selecting boundary samples from distinct

classes in the reduced set, the strategy interprets this set as a

complete graph weighted by the distance between samples in

the feature space, computes a Minimum Spanning Tree (MST)

on it, and organizes the MST edges by decreasing weight

order. The organization of the boundary set in decreasing order

of distance between samples on its MST assumes that samples

from the same class are usually the closest ones, and hence,

they will be placed at the end of the resulting (organized)

sample list, increasing the possibility of selecting samples from

distinct classes sooner. Given that boundary edges with lower

weights are more likely to be in the same class, MST-BE

allows us to prioritize samples connected by edges with higher

weights and classified in distinct classes during the selection

strategy for expert annotation/verification.

The MST-BE strategy presents a better organization, se-

lecting the more informative samples than the DBE strat-

egy. Therefore, MST-BE was employed in the Active Semi-

Supervised Learning (ASSL) [10], which is a novel integration

of semi-supervised learning (proposed by [15]) and a priori-

reduction and organization criteria (proposed by [8]) for active

learning.

In the real problem of diagnosis of parasites, impurities

are exceedingly abundant, form several clusters in the feature

space, and are quite similar to some species of parasites (see

Figure 2). Besides, there are unbalanced classes and absence

of some classes, resulting in a major challenge for existing

methods. In this context, under a scenario with the presence

of the fecal impurity class, the proposed strategies with a

reduction process was found to be considerably less effective.

The data reduction can discard crucial samples for the learning

process. In this case, it is important to exert care since some

parasite species and/or impurities may be out of the cluster

border.

Therefore, we also investigated a more robust solution for

when there is the presence of a diverse class (such as impuri-

ties in the diagnosis of parasites), which early on organizes the

data without discarding any of them. We proposed a new active

learning strategy, called Root Distance-Based Sampling (RDS)

[11] that pre-organizes the data and then properly balances

the selection of diverse and uncertain samples for training.

Data organization relies on clustering, followed by the sorting

of the samples within each cluster based on their distance

to their representative (root) sample. Selecting samples from

the ordered list of each cluster, gives us a greater diversity.

Selecting samples from each cluster according to the corre-

sponding ordered list so long as their classification does not
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Fig. 3. Screen shots of the user interface, as used by the parasitologist to verify the label of selected objects: (a) images with labels given by the classifier.
(b) images with labels corrected/confirmed by the parasitologist. Note that, Giardia duodenalis and some impurity components are difficult cases for class
discrimination, as indicated by red squares.

(a) (b)

Fig. 4. Comparison between Cluster-OPF-Rand, DBE, and MST-BE methods using the OPF methodology (clustering and classification techniques) on the
Parasites dataset (d1). (a) Mean accuracy of the methods on unseen test sets. (b) Annotated images, as a percentage of the displayed samples, in each iteration.

match the class of the corresponding root, offered us the most

difficult (most uncertain) samples for classification. When this

condition is not satisfied, RDS selects uncertain samples by

their decreasing distance to the cluster’s root. Figure 3 shows

the images with the labels given by the classifier (Figure 3a)

and the same images with labels corrected/confirmed by the

expert (Figure 3b), respectively. It is possible to observe some

difficult cases for class discrimination.

IV. EXPERIMENTAL RESULTS

First, we evaluated the methods using two versions of the

labeled dataset, with and without impurities. The unlabeled

dataset with 141,059 samples was used only to validate the

best method by the parasitology specialist.

A. Main results of the developed methods

Initially, we present a comparison between the proposed

methods (Cluster-OPF-Rand, DBE, and MST-BE). To compare

the effectiveness of each method, we considered the accuracy

measured (on an unseen test set obtained from the dataset)

throughout the learning iterations as well as the percentage

of annotated images in each iteration, using the first (d1)

dataset without impurities. Figure 4 shows that these methods

were advances throughout this research towards an automatic

classification of human intestinal parasites.

MST-BE with both techniques based on optimum-path for-

est presented the best results in a scenario without impurities.

However, this is important to evaluate the robustness of the

method with respect to the presence of such diverse class.

Therefore, using the second dataset (d2) with impurities,

RDS’s performance (accuracy on an unseen test set) was



TABLE I
MEAN ACCURACIES ± STANDARD DEVIATIONS OF THE METHODS ON THE PARASITES DATASET (d2) WITH IMPURITIES.

OPF OPF Kmeans Kmeans OPF OPF Kmeans Kmeans

Methods MST-BE MST-BE MST-BE MST-BE RDS RDS RDS RDS Al- Rand

OPF SVM OPF SVM OPF SVM OPF SVM SVM OPF

accs 89.18% 85.96% 83.19% 81.40% 91.58% 90.27% 87.86% 84.90% 77.93% 74.07%
std dev 1.18± 1.72± 1.51± 1.83± 0.90± 1.79± 1.50± 1.53± 1.61± 2.10±

(a) (b)

Fig. 5. Results of the practical experiment performed by the parasitologist using OPF RDS OPF on the Parasites dataset (d3) with impurities: (a) Mean
accuracy of the method on unseen test sets. (b) Annotated images, as a percentage of the displayed samples, in each iteration.

validated against two baseline active learning methods: Al-

SVM [16], which selects samples from the entire learning

set at each iteration using an SVM classifier, and the most

competitive one, MST-BE [8]. We also compared RDS with

a random method in which samples were randomly selected

from the entire dataset. For clustering (used for data organi-

zation), we evaluated the OPF and kmeans techniques. For

classification (used for training sample selection), we used the

SVM and OPF classifiers.

In order to facilitate the comparison among methods, when

applicable, they were labeled as a triple, consisting of the

clustering method, active learning method, and classification

method, separated by an underscore character. The methods

were denoted as Kmeans RDS OPF, OPF RDS OPF,

Kmeans RDS SVM, OPF RDS SVM, Kmeans MST-

BE OPF, OPF MST-BE OPF, Kmeans MST-BE SVM,

OPF MST-BE SVM, and Al-SVM.

Table I shows the results of the comparisons among the

methods for the case of the dataset (d2) with impurities. The

active learning methods (RDS and MST-BE) are superior to

Al-SVM and Rand OPF methods, for both OPF and kmeans

clustering techniques, as well as for both OPF and SVM

classifiers. However, RDS outperformed MST-BE. In general,

the RDS method (using both OPF clustering [17] and classifier

[18]) had the best performance (achieving higher accuracies

and decreasing the number of annotated images earlier, as

well as presenting shorter learning times) in the presence of

impurities. Therefore, we selected OPF RDS OPF method for

evaluation by the specialist on the chosen realistic dataset d3
(see Section IV-B).

B. Results of the best approach for the diagnosis of parasites

In this section, we present the results of the OPF RDS OPF

method. A 10-fold cross-validation was calculated in the

training set to predict the accuracy per iteration and guide the

expert when to stop the learning process. To evaluate the final

accuracy, a random subset of the remaining unlabeled objects

was selected and automatically annotated by the final classifier.

These objects were evaluated by the expert, who indicated the

classification errors to compute the final acuracy.

Figure 5 shows the 10-fold cross-validation average accu-

racy and the percentage of annotated images in each iteration.

We can see that the predicted accuracy started high and

decreased when new species were detected by the expert, until

it stabilized within a small range. After 408 iterations (24

images per iteration), the expert verified 9,792 objects (6.9% of

the dataset) and corrected the label of 3,796 objects (38.7% of

the selected objects). The expert decided to stop the learning

process when the mean accuracy by cross-validation on the

labeled samples stabilized between 87% and 88%.

In order to evaluate the real accuracy of the final classifier,

we created a random subset with 6% of the remaining unla-

beled samples (7,870 objects). The classifier achieved 87.2%

of accuracy on the random subset, matching the accuracy

predicted during the training phase. This is a remarkable

result, considering the low sensitivity rates from the traditional

diagnosis procedure, based on visual analysis (48.3% up to

75.9%) [5], as well as taking into account that the expert

verified only 6.9% of 141,059 objects.

Table II shows the mean accuracies per class. The classifi-

cation performance for Entamoeba histolytica/E. dispar cysts



TABLE II
MEAN ACCURACIES FOR EACH CLASS, USING OPF RDS OPF IN A

REALISTIC SCENARIO (DATASET d3).

Species Accuracies

Entamoeba histolytica / E. dispar 60.16%
Giardia duodenalis 72.83%

Entamoeba coli 86.75%
Endolimax nana 84.82%

Iodameba bütschlii 47.50%
Blastocystis hominis 79.03%
Ascaris lumbricoides 94.40%

Enterobius vermicularis 91.43%
Ancylostomatidae 92.24%

Strongyloides stercoralis 91.96%
Trichuris trichiura 95.15%
Hymenolepis nana 93.95%

Hymenolepis diminuta 95.97%
Taenia spp. 96.48%

Schistosoma mansoni 91.38%
Impurities 80.36%

and Iodameba bütschlii cysts is likely to improve whenever we

are able to increase the number of samples from these classes.

V. CONCLUSION

In this research, we proposed original solutions to deal with

a real application, the automated diagnosis of intestinal para-

sites. The methods were published in international conferences

[10], [12], [13], [14] and top-tier international journals [11],

[9], [8].

The major contribution of the Ph.D. thesis [4] was a novel

active learning paradigm that affords interactive response time

and verification of a considerably smaller part of the dataset,

allowing its application to large datasets. We also proposed

active learning strategies that were extensively evaluated with

different types of unsupervised and supervised classifiers as

well as with baseline learning strategies and using datasets

from distinct application domains, of different sizes, and with

feature spaces of various dimensions and classes, such as:

image segmentation, forest cover type, handwritten digits,

faces, cowhide, and image annotation from the real application

of diagnosis of parasites.

The experiments performed on these datasets show that the

proposed strategies outperform the baseline ones, requiring

only a few iterations to identify samples from all classes and

achieve high accuracy with less expert involvement. Moreover,

the most suitable strategy for a real application — the auto-

mated diagnosis of human intestinal parasites — was evaluated

and validated by an experienced expert in parasitology using

a realistic scenario. We have demonstrated the good perfor-

mance of our strategy, reaching average accuracies (about

90%) higher than those (between 48.3% and 75.9%) currently

practiced in public and private clinical laboratories, which use

conventional parasitological techniques and visual analysis of

slides. This is a remarkable result, specially when we take into

account that the expert verified only 6.9% of 141,059 samples.

We believe that our solution is a very relevant contribution to

the area of clinical parasitology.
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