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Abstract—This project brings a ludic new approach to the
presentation of non-Euclidean geometries by adapting classic
games to these geometries. In addition, rethinks the gameplay
possibilities enabled by the use of non-Euclidean geometries in
a game’s design. Finally, it is presented a form of encapsulation
that provides a simple adaptation between these geometries.
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I. INTRODUCTION

The Euclidean geometry presents itself in virtually all
aspects of our lives. From our way of perceiving the world
and its distances to the form in which we represent a fictitious
video game world. As such, it is consolidated in our society.
However, the Euclidean geometry is but a fraction of a much
larger set of geometries, with every single one of them as con-
sistent as each other. The presentation of these non-Euclidean
geometries is commonly done in a theoretical, hence abstract,
manner. As new meanings are given to classic concepts, such
as a circle or a straight line, new challenges are exposed, and
it becomes vital to find an approach more suitable to introduce
these concepts.

Since the conception of the first video game, its visual
representation has always been done mainly in the fashion
of the Euclidean geometry. Albeit, for a while now, the
use of this specific geometry has been occurring not due
to technical constraints, but due to a simple “convention”.
From the most elementary visual representation in a game
to the most complex one, they all require a certain degree of
abstraction in order to fully comprehend what’s represented,
[1]. This is true for any given geometry depicted in a game,
both Euclidean and non-Euclidean.

Video games are know for their overwhelming capacity of
introducing new concepts by engaging its players to immerse
in the game’s “alternative reality”. The engagement generated
by games is such that we can perceive phenomena such as the
“gamefication”, utilized in the most diversified manners. In
this context, the employment of video games as a casual and
intuitive form of introducing a new, non-Euclidean, geometric
model becomes increasingly promising.

Arguably, the best way to present a new concept is to
contrast it to a familiar one. Thus, this work aims to use classic

and well known games - such as Atari, Inc.’s Asteroids - to
highlight the differences between distinct geometries. By using
an interactive environment, not only will the player be able to
experience the new reality provided by a different geometry,
but also he will be challenged by the new behavior of the
game’s original challenges, which shall occur in accordance
to the new geometry in use.

Contributions: This paper proposes an encapsulation
method to dissociate the game development from the geomet-
ric space in which it will be represented. This method is able
to render the encapsulated game in both Euclidean and non-
Euclidean geometries, showcasing all the inner concepts in-
volved in these geometries. Thus, demonstrating some unique
gameplay possibilities that emerge through the use of a non-
Euclidean space on a “classical Euclidean game dynamic”.
Finally, the aforementioned encapsulation will be presented as
a novel way of converting a given 2D game between distinct
geometric models, controlling its geometry through the use
of shaders, in the GPU. By developing a simple method to
transition between geometric spaces, included in the game’s
encapsulation process, our approach delivers a straightforward
generic way to deal with multiple geometries simultaneously,
without any of their specific constrictions.

A. Related work

As far as commercial games go, HyperRogue might be the
most popular game to break free from the Euclidean standard.
As its website description states, its “strange, non-Euclidean
world” uses a hyperbolic plane to represent the space in
which the game takes place [2]. HyperRogue’s world screen
representation happens through the use of a Poincaré disk,
although the Minkowski hyperboloid model is used for internal
calculations [3].

With a distinct approach, Jeff Weeks notable work has
more of an educational focus. In [4], it features a selection
of hyperbolic games, addressing the hyperbolic geometry in
a straightforward manner. While there is a variety of distinct
games, all of them using hyperbolic geometry, the final result
is almost “too academic”. I.e., it’s very hard, or even unfeasi-
ble, to play some of the games as they are treated more like a
brute conversion to the hyperbolic context and less like a game,
which should have its playability as a priority. Therefore,
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the main difference between the work presented in [4] and
the work presented in this paper is that our objective goes
beyond a mere visualization in an additional geometry. The
goal here is to achieve a new representation of the game for
each different geometry while remaining engaging, stimulating
and challenging to the player; as any relevant game should be
[5].

With a comparable but rather distinct work, [6] introduced
the concept of metric neutrality. This work was based on
a projective geometry approach and was able to achieve a
“metric-neutral” visualization system, capable of supporting
interaction and immersion for Euclidean, Hyperbolic and
Elliptic metrics. [6] goes further into explaining why even
outdated GPU’s are able to handle the necessary isometries
of the projective models of the non-Euclidean geometries, and
hence how they were capable to integrate real-time rendering
into a “metric-neutral” visualization system.

B. Technique overview

By the turn of 19th century, the mathematical community
already had a very good understanding of two-dimensional
abstract spaces. In particular, the topology and geometry of
closed 2-manifolds were completely characterized by the clas-
sification theorem of surfaces and the uniformization theorem.
The general uniformization theorem states that any connected
metrizable surface is a quotient of the: i) elliptical plane; ii)
Euclidean plane; iii) hyperbolic plane, by a free action of
a discrete isometry group. In other words, there are three
fundamental geometries in two-dimensions: Elliptical; flat
(Euclidean); and Hyperbolic. These are homogeneous spaces
with respectively positive, null (zero), and negative curvatures.

In order to render multiple geometries without directly
affecting the game’s behavior, the implementation of fun-
damental features, such as collision detection or movement
control, is handled upon the use of a generic geometric model
for internal metrics and updates. The definition of which
specific geometry is used in the internal calculations and
rendering is given by the curvature κ. Hence, every functional
aspect of the game is associated with the geometry model
in use as the geometry is defined, without ever needing to
implement a specific behavior for each geometric model.

Like the internal controls, the game’s rendering is geometry
independent. This is assured directly through shaders, in a
WebGL environment. Once the active geometry is designated,
there’s a distinct vertex and fragment shader responsible for
rendering the game according to the selected geometric model,
as seen in Fig. 1.

An interesting feature, present in a few classic games -
such as Asteroids - is the absence of a limit defined by the
screen’s edges, i.e., when an object passes through an edge
it doesn’t collide, but rather reappear in the opposite edge
of the screen. In a mathematical perspective, one can say
that the edges have been glued together [7]. To achieve this
behavior, a 2-dimensional flat torus is used as an orientable
surface for the game representation in the Euclidean space, as

(a) Euclidean. (b) Elliptic. (c) Hyperbolic.

Fig. 1. The Asteroids game, rendered in each geometric model.

seen in Fig. 3(a). This can also be observed for non-Euclidean
geometric spaces, as seen in Fig. 3.

(a) Image reproduced
from [7].

(b) Image reproduced
from [8].

Fig. 2. Torus and double torus.

(a) Glued Euclidean. (b) Glued Elliptic. (c) Glued Hyperbolic.

Fig. 3. The space continuity is demonstrated for each geometry in use.

Regarding the representation of the hyperbolic space, the
connected sum of two tori is used (lower part of Fig. 2(b)).
Still, before the surface can be reproduced in the screen,
it must be flattened. Thus, a hyperbolic octagon was used
to represent the game in the hyperbolic space (upper part
of Fig. 2(b)). The hyperbolic octagon is exhibited inside a
Poincaré disk, a two-dimensional space defined as the disk
x ∈ R2 : |x| < 1. It’s worth to note that the octagon’s limits,
generated by a 2-torus, were manipulated so that its edges
stayed diametrically opposed to their pairs, as shown in
Fig. 1(c), and not in its usual form, upper part of Fig. 2(b).

Finally, the elliptic space uses a representation of the elliptic
plane, a disk visually similar to the Poincaré disk, but with a
distinct behavior, Fig. 1(b).



II. TECHNICAL BACKGROUND

To any given surface, there’s an unique Euler number, χ,
containing essential information about the surface’s global
topology [7]. The Gauss-Bonnet formula presents the relation
between the surface’s Euler number, its area and its curvature.
A surface can admit only a single homogeneous geometry. So,
a curvature κ, of a surface’s homogeneous geometry, must
have the same sign as the Euler number assigned to that
surface [7]. Thus, a surface of area A, Euler number χ and
constant Gaussian curvature κ, as demonstrated in [7], has the
Gauss-Bonnet formula defined as κA = 2πχ; where κ = −1,
0 or +1, according to the following classification:
• Hyperbolic space: negative curvature.
• Euclidean space: zero curvature.
• Elliptic space: positive curvature. The spherical space is

a particular case of this space.
The geometric approach presented by [9] to the time inte-

gration problem served as a starting point to the development
of the mechanical model employed in this project, which is
capable of correctly representing distinct geometries. In [9],
the author specifies a method that ensures a good statistical
predictability while working with time integrators.

Geometric mechanics, such as the Lagrangian or the Hamil-
tonian, consider the mechanics from a variational standpoint,
going beyond the Newtonian notion of composition of forces
over a body, F = ma. The Lagragian mechanics considers
the state variable q as the position and q̇ as the velocity to
establish the Lagrangian function L(q, q̇) = K(q̇) − U(q);
which is defined as the kinetic energy K minus the potential
energy U .

The main formulation difference between the Hamiltonian
and the Lagragian mechanics is the utilization of the phase
space for describing dynamics [9]. Hamiltonian mechanics
can determine the state of a dynamical system through a pair
(q, p), where q is the state variable and p is the momentum.
In an one-dimensional system, the phase plane is formed by
the position q in one axis and the momentum p = mq̇, or the
velocity q̇, in the other axis. Obviously, higher dimensional
systems will require an additional axis corresponding to each
additional position component qi and its matching velocity q̇i,
or momentum pi. The work of [9] goes further to explain all
the process of obtaining the following discrete Euler-Lagrange
equation:

D1Ld(qj , qj+1) +D2Ld(qj−1, qj) = 0, (1)

but, to this paper understanding, it suffices to acknowledge
that for two consecutive positions, qj and qj+1, the equation
1 defines the next position, qj+2. This is the variational
integrator proposed by [9].

The equation 1 can be rewritten in a position-momentum
form:

p = −D1Ld(q, q
′), p′ = D2Ld(q, q

′), (2)

where q′ and p′ represent the following position and mo-
mentum relative to q and p. Thus, knowing (q, p), q′ can be

obtained by the equation 2(left). By substituting the obtained
values in the equation 2(right), the momentum p′ is found;
and this specifies an update rule in phase space.

It’s worth mentioning that the aforesaid variational integra-
tor preserves the underlying geometry of the physical system
as well as it is guaranteed to preserve the system’s discrete
momenta [9]. Therefore, by using this integrator in a game, a
great physical and visual fidelity, with low computational cost,
can be achieved.

III. REGARDING A GEOMETRY INDEPENDENT MODEL

Non-Euclidean geometries utilize a set of metrics that go
beyond the Euclidean notion of distance by straight lines.
Hereafter, a set of geometry independent metrics will be
exhibited alongside with all the necessary rules to fully work
with a geometry independent model, as we desire.

A. Metrics

The concept of metric is delineated by the function of the
distance between two points, d(p1, p2). Such that, geometri-
cally, d is the shortest geodesic between the points p1 and p2.
The hyperbolic metric

ds2 =
dx2 + dy2

(1− x2 − y2)2
, (3)

serves only to hyperbolic geometry representations. Neverthe-
less, it represents an interesting starting point to our goal of
a generic metric system. Hence, by considering the surface’s
curvature κ, it’s possible to rearrange equation 3 as:

ds2 =
4(dx2 + dy2)

(1 + κ(x2 + y2))2
=

4dzdz

(1 + κ |z|2)2
. (4)

Given the equation:

arctanκ(z) =

∞∑
n=0

κnz2n+1

2n+ 1
, (5)

it’s fundamental to specify its behavior for each possible
geometric model, indicated by κ. Thus, by taking the hyper-
bolic, Euclidean and elliptic space into account, the following
behavior is defined:

=


arctanh(z), if κ = −1

z, if κ = 0

arctan(z), if κ = 1

. (6)

Thusly, the distance between two points, (z1, z2), is described
by the equation:

d(z1, z2) = 2 arctanκ

∣∣∣∣ z1 − z2

1 + κz1z2

∣∣∣∣ . (7)



B. Isometries

Basic geometric transformations too must be adapted to a
new form, compatible with the three previously considered
geometric models. Thus, as expected, the space curvature is
taken into account in some of the following isometries.

The translation (a→ 0), of a point z, is designated by the
function Ta(z) = z−a

1+κza .
The rotation makes use of the Euler’s formula - eiθ - and

is characterized by the function Rθ(z) = eiθz, in which e
represents the base of the natural logarithm; i, the imaginary
unit; θ, the rotation angle, and; z, the rotated point.

The reflection is not a direct isometry, but rather an inverse
isometry. It’s expressed in complex coordinates and its func-
tion is defined as R(z) = −z, reflecting through the imaginary
axis.

The mirroring (a ↔ 0) behaves differently from a simple
reflection as it isn’t limited to the reflection of a single point
a when mirroring it. Given a mirroring axis, the element
positioned in the location where a is being mirrored to will
also be mirrored to a’s initial position. Thus, the mirroring
equation is defined as M(z) = a2a−z

|a|21+κaz
.

The perpendicular bisector (0a) can be found through the
following equation:

κ |a|2 (x2 + y2) + 2axx+ 2ayy = |a|2 . (8)

However, in specific cases where κ 6= 0, the equation 8 can
be reformulated as (x+ κ ax

|a|2 )2 + (y + κ
ay
|a|2 )2 = 1

|a|2 + κ.
At last, the midpoint m relative to the perpendicular bisector

(0a) is defined as:

m =


1
2a, if κ = 0

κ

√
1+κ|a|2−1

|a|2 a
. (9)

C. Geodesic Circle (O,R)

The classical definition of a circle is restricted to the Eu-
clidean plane. While considering nonzero space curvatures, its
crucial to revise a few definitions so that all space curvatures
can be contemplated. Therefore, the geodesic circle is defined
as (x − Ox(1+κp2)

1−p2κ2|O|2 )2 + (y − Oy(1+κp2)

1−p2κ2|O|2 )2 = ( p(1+κ|O|2)

1−p2κ2|O|2 )2,
with p = tanκ(R2 ).

D. Geodesic update rule

As the update rule in phase space, mentioned in Section II,
was adapted to this work’s context, some of its equations were
reevaluated. In addition, considering the 2-dimensional aspect
related to 2D games, the Lagrangian function was reformulated
by taking the position and momentum into consideration for
each one of the axis: L(qx, qy, px, py) =

4(p2x+p2y)

(1+κ(q2x+q2y))2 .
The discrete Lagrangian, considers both current and con-

secutive position, q and q′, in addition to h, the time interval
between two samples. In this equation, every position is
dismembered according to its respective axis, q′x = qx + ∆qx
and q′y = qy + ∆qy . Henceforth, the final discrete Lagrangian

becomes: Ld(qx, qy, q′x, q
′
y, h) = hL(qx, qy,

q′x−qx
h ,

q′y−qy
h ).

As the equation 2 was redesigned to determine the mo-
mentum p in this new context, the displacement ∆q, the time
interval h, and the space curvature κ were taken into account.
So, the momentum relative to each axis is portrayed as:

px =
8

h(1 + κ |q|2)2
(∆qx + 2κqx((∆qx)2 + (∆qy)2)); (10)

py =
8

h(1 + κ |q|2)2
(∆qy + 2κqy((∆qx)2 + (∆qy)2)). (11)

Finally, the successive momentum p′, for each axis, is
presented in the following equations: p′x = 8∆qx

h(1+κ|q|2)2
; and

p′y =
8∆qy

h(1+κ|q|2)2
.

IV. RESULTS AND DISCUSSION

Our encapsulation method and its geometry independent
essence are validated through the implementation of the classic
Atari, Inc. game Asteroids. This specific game was chosen
as our main case study because of its vast popularity. As
mentioned in Section I, it represents a great proof of concept
to showcase the differences and particularities between its
original Euclidean geometry and the hyperbolic and elliptic
ones. This game has been implemented and is fully functional
in all three geometric spaces, as seen in [10].

As future work, a second experiment is intended and it
shall further demonstrate the potential that our encapsulation
method presents. It consists in developing a simple and novel
game with a non-Euclidean geometry gameplay experience in
mind.

V. CONCLUSION

In this paper, we introduced an encapsulation method
focused on making a game’s internal controls development
independent from its final/underlying geometry, utilized in its
screen representation. This has the potential to impact the
introduction of non-Euclidean geometries to a wide range of
students and enthusiasts, as well as demonstrate, in a interac-
tive way, the particularities of each specific geometric space.
Alongside, the presented method is also a efficient and simple
form of developing games to non-Euclidean geometries.
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