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Abstract—When training morphological operators that are
locally defined with respect to a neighborhood window, one
must deal with the tradeoff between window size and statistical
precision of the learned operator. More precisely, too small
windows result in large restriction errors due to the constrained
operator space and, on the other hand, too large windows result in
large variance error due to often insufficient number of samples.
A two-level training method that combines a number of operators
designed on distinct windows of moderate size is an effective
way to mitigate this issue. However, in order to train combined
operators, one must specify not only how many operators will
be combined, but also the windows for each of them. To date,
a genetic algorithm that searches for window combinations
has produced the best results for this problem. In this work
we propose an alternative approach that is computationally
much more efficient. The proposed method consists in efficiently
reducing the search space by ranking windows of a collection
according to an entropy based measure estimated from input-
output joint probabilities. Computational efficiency comes from
the fact that only few operators need to be trained. Experimental
results show that this method produces results that outperform
the best results obtained with manually selected combinations and
are competitive with results obtained with the genetic algorithm
based solution. The proposed approach is, thus, a promising step
towards fully automating the process of binary morphological
operator design.

Keywords-binary image; morphological operator design; W -
operator combination; conditional entropy; sequential forward
selection

I. INTRODUCTION

Morphological operators are widely used in several image
processing and analysis problems [1], [2], [3], [4]. Manual de-
sign of these operators consists on trial and error approaches to
find compositions of simpler operators and suitable structuring
elements until the desired processing results are achieved.

An alternative design approach rely on learning techniques
from input-output pairs of training images. The goal of
the learning process is to determine an image operator that
maps input images to the corresponding output images. Most
learning based approaches [5], [6], [7] consider translation-
invariant and locally defined morphological operators, called
W-operators. The local definition property of an operator
means that its output at a given pixel can be determined by
examining a finite region, delimited by a non-empty window

W , around the pixel. Furthermore, all structuring elements that
characterize the elementary operators of the learned operator
will necessarily be constrained within W [8]. Windows should
not be too small nor too large. Small windows result in
large restriction errors and large windows result in large
variance errors [9]. Therefore, specifying the right window
W is important for the learning process to be able to produce
a useful operator. An example of a pair of training images for
the segmentation of handwriting is shown in Fig. 1.

W−operator

Fig. 1. Input-output pair of training images. Learning is concerned with
determining an operator that maps the input to the output.

Given that the amount of training data is usually limited,
once an optimal window in the sense of best balancing the
tradeoff between the two types of errors is found, there is no
much room to reduce the error of the trained operator. How-
ever, if more than one operator is allowed, one consistent way
of reducing error is to consider combinations of operators [9].
The basic idea is to have several operators trained on distinct
windows, and then in a second level of training combine their
outcomes to reach a final output value.

However, such approach poses a new challenge. How many
operators should be combined and how their individual win-
dows should be chosen? Some recent works have addressed
these questions [10], [11], [12]. Among them, a genetic
algorithm (GA) based approach that searches for combina-
tions in a reduced space of candidate windows has produced
very interesting results, outperforming all manually selected
combinations [12].

A major drawback of the GA based approach is, however,
its computational cost. The high computational cost is due to



the fact that the training process, which is a computationally
expensive procedure, need to be executed each time the fitness
function is evaluated. Fitness function must be evaluated
through the GA iterations for each of the individuals (possible
combinations) that compose the population.

Given this context, our main aim in this work is to propose
an alternative approach to find window combinations that
result in good combined operators.

We propose an approach that further reduces the search
space by assigning a quality value to individual candidates in
a collection of windows. The quality value is computed from
training images without training, and thus very efficiently,
using an entropy based measure. Then a search for good
combinations is performed among the best ranked windows
in a sequential forward fashion, similar to the well known
sequential forward feature selection (SFS) algorithm [13]. This
procedure requires only a few trainings. We also propose a
slight modification in the entropy computation, in order to
take into consideration the fact that we use estimated joint
probabilities. The proposed modification is an attempt to better
predict the generalization error of the learned operators.

A first set of experiments is carried out to verify the
validity of the proposed method with respect to its ability
to advantageously reduce the search space. Then a second
set of experiments is performed to verify how effective are
the combinations selected by the proposed approach in terms
of producing good operators. Operators obtained using the
selected window combinations are compared both to those
selected by the GA based approach and to those selected
manually.

The remaining of this paper is organized as follows. In
Section II we introduce some background material and review
related works for window selection in W -operator training.
In Section III we detail the proposed method, including
the window ranking method, the modified definition of the
conditional entropy used to perform ranking, and a description
of the whole procedure for two-level operator design from a
set of ranked windows. In Section IV we present and discuss
the experimental results and in Section V we present the
conclusions of this work.

II. BACKGROUND

Binary images defined on a discrete grid (for instance, on
E = Z2) can be represented as elements of the power set
P(E). Binary morphological operators  : P(E) ! P(E)
that are translation-invariant and locally defined with respect
to a window W are called W-operators. They can be char-
acterized by a local function  : P(W ) ! {0, 1} such that
z 2  (S) ()  ((S � z)\W ) = 1, for any S 2 P(E) and
z 2 E, where (S � z) \W represents image S translated by
�z and restricted to W .

The problem of designing binary morphological operators
can be reduced to the problem of learning its characteristic
function [5], [6], [9]. Given pairs (S, I) of input-output sample
images, the goal is to find a W-operator  that, when used
to process S, generates a result as close as possible of I .

Closeness can be measured, for instance, computing the mean
absolute error (MAE) between  (S) and I .

Assuming that samples (S, I) are realizations of a jointly
stationary pair (S, I) of random processes with a local condi-
tional probability distribution denoted by P (y|X), the MAE
optimum W-operator is the one characterized by the function
 given, for any X 2 P(W ), by

 (X) =

(
1, if P (1|X) > P (0|X),

0, otherwise.
(1)

Note that when P (1|X) = P (0|X), any of the two values can
be attributed to  (X) without affecting the error. We opt to
attribute 0.

Since the conditional probabilities P (y|X) are not known,
in the learning process they are estimated from the input-
output pairs of training images. The learning process also
takes care of the generalization process, i.e., it assigns a value
in {0, 1} for each of the patterns X that are not present in
the training images [9]. This is important because the learned
operator  must be able to assign an output value for each
pattern that may be observed during its application. We call
this process that takes as input a set of training images and a
window and returns an image operator as the basic training
procedure. Details of the procedure can be found in [9].

As mentioned in the introduction, too small windows should
be avoided because the probability of having |y �  (X)| 6= 0
is high. On the other hand, too large windows may result
in large imprecision of estimated conditional probabilities
P (y|X). Moreover, many low probability patterns X hardly
are observed in the training images. These facts usually lead
to large generalization error.

Combination of W-operators is an approach that has been
proposed to better deal with the tradeoff between these two
types of errors [9]. It consists in designing a number of
operators using distinct windows, and then combining these
operators. The combination process can be accomplished by
first applying the basic training procedure for each of the
windows, and then repeating it once again for patterns obtained
by concatenating the output values of each of the operators.
More specifically, if k operators are to be combined, then the
basic training procedure must be executed k+1 times (one for
each of the k windows and one for the combiner). This training
method is called two-level training and the operators that are
combined are called first-level operators while the operator
that defines how they are combined (the combiner) is called
second-level operator. The final two-level operator, which is
a combined operator, is also a W-operator. The neighborhood
considered by the combined operator, although not directly, is
the union of the neighborhoods considered by the individual
operators.

Empirical evaluation shows that combined operators result-
ing from the two-level training method consistently outper-
forms operators obtained with the basic training procedure
for single windows [9]. This motivated studies on methods
to help determining the number of operators to be combined



and their respective windows. The problem of choosing an
adequate window, even for the design of a single operator, is
still an open problem.

A. Related works

One of the first attempts to automatically determine window
combinations for two-level operators is described in [10]. A
number of windows are created, from points in a given window
domain, by using an algorithm that minimizes the magnitude
of interaction information computed from training images.
Operators are trained for each of the windows and ordered
according to a criterion based on Conditional Mutual Informa-
tion Maximization (CMIM) [14]. Then, two-level operators are
designed using the first two windows, the first three windows,
the first four windows and so on. The operators resulting
from this process are then evaluated following the Minimum
Description Length principle [15] and the best combination is
selected. No conclusive comparison with manually designed
combinations, described in [9], has been presented.

More recently, a genetic algorithm based solution, here to
be called WGA, has been proposed [11], [12]. The main idea
is to first constrain the search space by defining a collection of
windows and then perform a genetic algorithm based search of
window combinations in the constrained space. Each solution
is encoded as a combination of windows and in order to evalu-
ate fitness, the corresponding two-level operator is trained and
its MAE is computed with respect to a validation set. Window
combinations encoded on the individuals of the population are
changed along iterations, and at the end, the one that resulted
in minimum MAE is returned as the solution. Although WGA
has shown to consistently produce better combinations than
manually designed combinations, its execution time is high
because evaluation of the fitness function requires training,
which is a time consuming process. The collection of windows
is built in such a way as to be coherent with the problem in
hand. Three collections are considered: the first one, CJB, con-
sists of basic shapes frequently used as structuring elements
such as line segments, disks, and rectangles of different sizes
and/or orientations, and occupying different positions relative
to the origin within the window domain; the second one, CJI,
consists of the windows obtained following the method based
on minimizing the magnitude of interaction information as
proposed in [10]; the last one, CJBI, is the union of the first
two.

Combined classifiers have been also recently applied to the
problem of removing staff-lines in music score images [16],
[17]. Concerning methods for window definition, besides those
pointed above, approaches based on feature selection has been
also explored in [18].

III. WINDOW SELECTION USING ENTROPY BASED
RANKING

In classifier combination, by adding a new classifier to a
group, often a final model with better performance can be
obtained [19]. However, in order to improve a model by
adding a new element in the combination, diversity is an

important aspect to be considered. It is expected that each
of the classifiers in the combination should be a specialist in
some area of the problem to be solved. In general, the larger
the diversity the better the model [19].

In our context, a major issue is how to measure the diversity
of a set of windows and the quality of individual windows.
A good measure of quality for a window is the MAE of
the corresponding operator. However, computing the MAE
requires training the operator. As for diversity, it could be
ensured during the definition of a collection of windows to be
used for searching the window combinations.

In order to choose a window combination, we use the
same principle described above of adding new elements to a
group. First, candidate windows are ordered according to some
criterion. Then, the two top-ranked windows are used to train
a two-level operator. Then, the process is repeated by taking at
each iteration a new window combination obtained by adding
the next ranked window to the previous combination, until a
combination of a given maximum size is processed. At the end
of the iterations, the combination that resulted in an operator
with minimum MAE is chosen.

A key point in this approach is to use an efficient rank-
ing criterion. We propose the use of conditional probability
entropy.

A. Ranking criterion

Shannon’s entropy [20], [21] has been used in previous
works [22], [18] to evaluate candidate windows for the design
of morphological operators. Recall that an optimal operator is
estimated from conditional probabilities p(y/X) (see Eq. 1).
It is clear that when the conditional probability p(y/X) is
concentrated on one of the possible values (0 or 1), we
have the best scenario with zero error. Conversely, when
p(1/X) = p(0/X) = 0.5 we have the worst scenario in
terms of error. This information can be captured by the mean
conditional entropy [18], given by,

H(X,y) = �
X

X2X

p(X)
X

y2{0,1}

p(y|X)lg(p(y|X))

= �
X

X2X

p(X)H(y|X). (2)

Note that in a theoretical formulation, both MAE and
H(X,y) are equivalent in the sense that minimizing MAE
corresponds to minimizing the conditional entropy and vice-
versa. In other words, as we increase window size, MAE
decreases or stays equal. Similarly, as we increase window,
entropy tends to diminish because each conditional probability
tends to concentrate on one of the possible outputs (i.e., there
is a decrease in output confusion).

However, the direct use of this definition to estimate the
quality of a window is not adequate since it neglects the
fact that probabilities are estimated from a limited amount
of training data. In the context of image operator design, it
is expected that as we increase the window size the training
error decreases as well, until reaching zero error. However,
this decrease in error does not follow the same pattern with



regard to test error; for test error, there is decrease of error
until a certain point and after that the error starts to increase.
The reason for such behavior lies in the fact that the larger the
window is, the larger the variance of the designed operators
and, thus, the chance of a non optimal operator to be produced
increases as this variance increases. This is the so called
generalization error that, once a minimum error point is
reached, tends to increase with increasing window size.

Thus, the mean conditional entropy given by Eq. 2 computes
a value for windows that is consistent with the expected
training error of corresponding operators, but it is not adequate
for predicting the error behavior of these operators with respect
to test error.

1) Corrected conditional entropy: To cope with the above
described issue, a correction term in the mean conditional
entropy equation is proposed in [18]:

Ĥ(X,y) =
2|W | �N

2|W | + T
+

NX

i=1

(NXi + 1)

2|W | + T
Ĥ(y|Xi) (3)

where |W | is the window size, NXi is the number of times Xi

has been observed, N is the total number of observed distinct
patterns, T is the number of samples, and Ĥ(y|Xi) is the
estimated conditional entropy of y given Xi.

This equation attributes conditional entropy 1 for all patterns
that are not observed in the training data. When the window
increases, the first term in the right side of the equation
dominates the second one, and therefore minimum of Ĥ(X,y)

is achieved only by very small windows.
In [23], a new correction term is proposed based on an

idea similar to the one proposed in a completely different
application context [24]. Likewise [24], in [23] the non ob-
served patterns are not included in the equation. Correction is
applied to the so called unique patterns, that is, those that
are observed only once in the training data:

ĤU
(X,y) =

U

T
+

X

p̂(Xi)> 1
T

p̂(Xi)Ĥ(y|Xi), (4)

where U is the number of unique patterns. A conditional
entropy equal to 1 is attributed to unique patterns, with the
argument that unique patterns carry no sufficient information.

We propose, alternatively, to assign an entropy value Hc

close to zero (e.g., Hc = 0.001) rather than equal to 1 (as in
Eq. 4) to the unique patterns. This is motivated by the fact
that although a single observation may not be sufficient, it
does carry some information than no observation at all; it is
more likely that its real conditional entropy is closer to zero
than it is to 1. Thus, we have:

Ĥ⇤
(X,y) = Hc ⇤ U

T
+

X

p̂(X)> 1
T

p̂(X)Ĥ(y|X). (5)

Note that Eq. 4 is a particular case of this, where Hc = 1.

B. Procedure

The mean conditional entropy does not measure diversity
between two windows. However it does associate a quality

measure for each individual window. A possible way to
guarantee some diversity is to consider windows with distinct
shapes and sizes.

Let CJ = {W1,W2, . . . ,Wn} be a collection of windows,
each one of them defined on a common window domain. As
stated before, evaluation of window combinations is performed
by training the corresponding two-level operator. For training
and evaluation, pairs of input-output images are divided into
four groups: (S1, I1) denotes the pairs of images to be used to
train the first-level operators, (S2, I2) denotes the pairs to be
used to train the second-level operator (the combiner), and
(S, I) denotes the pairs to be used to validate the trained
operator in order to select the best one. The fourth group,
denoted (St, It), is used to test the selected operator.

This division may require a large number of pairs of input-
output images. Ideally the four groups should be disjoint, as
it will become clear below. However, the procedure can be
applied even if the three first groups overlap each other. Only
the fourth group, to be used to test the selected operators
should not overlap the first three.

The proposed procedure, which we call WER (Window
selection using Entropy based Ranking), consists of the fol-
lowing steps:

1) Compute, for each window Wi in CJ, the value of a
previously established criterion. We use as a criterion
the corrected mean conditional entropy Ĥ⇤

(X,y) defined
by Eq. 5, with Hc = 0.001.

2) Rank windows in CJ according to the criterion function
value, from the best to the worst one.

3) Train the two level operator for the first two windows,
and denote it  ̂2; train the two-level operator for the
three first windows and denote it  ̂3; repeat this process
adding successively one window at a time, following the
ranking order, until the combination with the first top-
ranked J windows is processed.
The basic training procedure must be executed once for
each of the first J windows, and the two-level operator
must be trained for J � 1 combinations (with 2 to J
windows).
Number J is the maximum number of operators allowed
in a combined operator. Reports in [12] suggest that 15
is a sufficient number for J and thus we adopt it here.

4) Apply each of the two-level operators
 ̂2,  ̂3,  ̂4, · · · ,  ̂J to the images in S. The processed
images will be denoted  ̂2(S),  ̂3(S),  ̂4(S), · · · ,
 ̂J(S).

5) Compute MAE comparing  ̂2(S),  ̂3(S), · · · ,  ̂J(S) to
the respective ideal output images in I. Denote the
computed MAEs as MAE2,MAE3, · · · ,MAEJ .

6) Let k = argmin{MAEi, i = 2, . . . , J}. Select the
combination with the first k windows and return.

Note that the above procedure uses the three first groups
of pairs of input-output images. Once the optimal combined
operator  k is selected, its expected performance can be
computed on the images in group (St, It).



IV. EXPERIMENTAL RESULTS

The procedure described in the previous section were im-
plemented in Python, version 2.7. The code for generating
the collection of windows were implemented in Java. Finally,
for training operators and computing the MAE, we used
TRIOSlib [25].

A preliminary set of tests were performed in order to assess
the ability of WER in properly constrain the search space.
Then, additional tests to compare the proposed method, WER,
with manual selection and with WGA, a genetic algorithm
based search method, were carried out for several datasets,
using three different collections of windows. The details are
presented below.

A. Datasets

The datasets used in the experiments are described in
Table I. They are the same datasets used in [9]. Column
Dataset indicates the name of the dataset and the respective
window domain considered; Description briefly describes the
task; (S1, I1) indicates the number of images used for training
first-level operators, (S2, I2) indicates the number of images
used to train second-level operators. The MAE for selecting
a combination is estimated on images in (S, I). Column with
header (St, It) indicates the number of test images.

TABLE I
DESCRIPTION OF DATASETS AND THE NUMBER OF IMAGES IN EACH OF

THE GROUPS (TRAINING, VALIDATION AND TEST SETS).

Dataset Description (S1, I1) (S2, I2) (S, I) (St, It)

Char s Segmentation
6 4 10 5

(9⇥ 7) of character s
CircCirc Segmentation of

5 3 10 2
(9⇥ 9) circular objects
TexCirc Segmentation

5 3 10 2
(9⇥ 9) of characters
BoolNoise Boolean noise

3 2 5 5
(9⇥ 9) filtering
TexRev Text

3 2 5 5
(9⇥ 7) segmentation

Figure 2 shows pairs of input-output images from each
of the datasets. The purpose is to just show the type of
image transformations considered. Scale of the image has been
reduced to better fit page width.

B. Window collections

The same window collections described in [12] have been
used. The three collections are recalled briefly.

CJI: windows are generated using the algorithm proposed
in [10] exploiting minimization of magnitude of
interaction information. All windows are within a
predefined window domain and are obtained by ap-
plying the algorithm to the training subset (S1, I1).
Collections with 81 and 105 windows were gener-
ated. Some windows in these collections are shown
in Fig. 3.

Fig. 3. Windows in the CJI collection, using the 9 ⇥ 9 window domain,
for dataset Char s.

CJB: Contains 24 windows corresponding to predefined
basic shapes that are within a fixed window do-
main. Sample windows of this collection are shown
in Fig. 4. In this case, window definition does not
depend on the images.

Fig. 4. Windows in the CJB collection, using the 9⇥ 9 window domain.

CJBI: Union of the two first sets.

C. Preliminary WER evaluation

Here we consider results obtained by WER considering
different rankings: using the top J = 15 windows as described
in the WER procedure, reversing the order of the top J = 15
windows, and considering J = 15 arbitrarily selected arbitrar-
ily ranked windows. The results, using the CJB collection, are
shown in Table II, where the first 10 rows refer to 10 runs of
the arbitrary ranking and WER-r refers to WER with reversed
ordering of the 15 top-ranked windows. The subscripts on
MAE values indicate the number of windows in the selected
combination.

TABLE II
PERFORMANCE OF WER (SEE DETAILS IN THE TEXT)

MAE over (S, I)
Char s CircCirc TexCirc BoolNoise

1 0.00452610 0.00686215 0.0416638 0.00309912

2 0.00479911 0.00744414 0.04181810 0.0031167

3 0.00455112 0.00715315 0.04357113 0.0027799

4 0.00483911 0.00639413 0.04199313 0.00324914

5 0.00453112 0.00730914 0.04008511 0.00315714

6 0.0047138 0.00686213 0.0394949 0.0026317

7 0.00471311 0.00745415 0.0396209 0.0028968

8 0.00462711 0.00816115 0.0426619 0.00310115

9 0.00476810 0.00703815 0.0406667 0.00295913

10 0.00454110 0.00742315 0.04192514 0.00296011

WER 0.004468 0.00627913 0.0394657 0.0024209

WER-r 0.00494514 0.00756914 0.04041410 0.0028298

Note that, for all four datasets, WER produced better results.
That indicates that the restricted set of windows selected by
WER is effective in generating good combinations. Another
point to be noticed is that, in general, combinations selected
by WER contain less windows than those selected by the
alternative options.



Char s CircCirc TexCirc

BoolNoise TexRev

Fig. 2. Samples of the datasets used in the experiments. See also Table I.

An additional preliminary evaluation comparing the two
corrections in the mean conditional entropy criterion (see
Eq. 5), with Hc = 1 and Hc = 0.001 (ours) were also
performed. Table III shows the MAE of the combinations
selected by WER, using the CJB collection, when windows
were ranked using Hc = 1 and Hc = 0.001.

TABLE III
WER PERFORMANCE, USING Hc = 1 AND Hc = 0.001 IN THE EQUATION

OF THE RANKING CRITERION

Dataset Window domain
MAE over (St, It)

Hc = 0.001 Hc = 1

Char s 9⇥ 7 0.004468 0.004097

CircCirc 9⇥ 9 0.0062813 0.0070715

TexCirc 9⇥ 9 0.039467 0.0424115

BoolNoise 9⇥ 9 0.002429 0.0031515

TexRev 9⇥ 7 0.0373910 0.039289

Except for the first dataset, Hc = 0.001 produced better
results. This indicates that the newly proposed correction term
in the mean conditional entropy equation better captures the
expected generalization error of an operator.

D. Comparison with other methods

We compare the results obtained by WER with those
reported in [9] for manually combined windows and those
reported in [12] using WGA. Table IV shows the MAE relative
to the images in the test set (St, It) for the best combinations
obtained by WER and by WGA, and also for the manually
selected combination, with respect to each of the window
collections.

The best results are highlighted in light gray. As can be
seen, they all were produced by WGA. Although operators

TABLE IV
MAE COMPUTED OVER (St, It). SUBSCRIPT INDICATES THE NUMBER OF

WINDOWS. FOR THE CJBI COLLECTION, THE FIRST SUBSCRIPT REFERS TO
WINDOWS IN CJB AND THE SECOND ONE TO WINDOWS IN CJI

Method Char s CircCirc TexCirc BoolNoise TexRev

Manual 0.005615 0.006516 0.041966 0.003315 0.026005

CJI
WER 0.007348 0.0056215 0.047948 0.003377 0.035803

WGA 0.006728 0.0046115 0.046858 0.003128 0.032803

CJB
WER 0.004608 0.0047013 0.045357 0.002249 0.0219810

WGA 0.004618 0.0051015 0.037848 0.002248 0.012483

CJBI
WER 0.004666,1 0.005733,7 0.046486,2 0.002374,2 0.024904,5

WGA 0.004338,2 0.003962,13 0.041475,3 0.002156,2 0.012483,0

produced by combinations selected by WER are not as good as
the ones obtained with WGA, we note that they are better than
the manual choice. Another interesting observation is that best
results of WER are all obtained when using the CJB window
collection, while for WGA the best solutions are from either
CJB or CJBI. A possible explanation for this is the diversity
of windows. In CJB, windows are diverse by construction (at
least in terms of their shape). On the other hand, in CJI many
of the windows share several points and the results observed
in this experiment may be indicating that windows are not as
diverse as they ought to be. Further investigation is necessary
to better understand this property.

Examples of selected window combinations are shown
in Fig. 5. They are the combinations selected manually, by
WGA and by WER, for the Char s dataset. In general, we
have observed that the number of windows in combinations



selected by WGA and by WER are close each other.

Manually selected

14 17

1 2 5 6

13

11

31 76

Selected by WGA, from CJBI

22 6 2176 5 2 1

Selected by WER, from CJBI

Fig. 5. Window combinations selected for dataset Char s.

As for the processing time, while WER requires, after
window ranking, the training of J first-level operators (J = 15
in our experiments) and the training of J � 1 second-level
operators, WGA requires much more trainings. For instance,
let be a window collection of size 24, an initial population
with 20 individuals and 200 iterations in WGA. Then, 24
trainings must be executed, one for each of the windows
in the collection, and during the execution of the iterations,
the second-level training must be executed 20 ⇤ 200 times
corresponding to the number of times the fitting function
must be evaluated. Thus, the execution time of WGA also
depends on the population size and the number of iterations.
Table V shows execution times of WER and WGA. Running
time measurements were taken on a machine with Ubuntu 4.11
Linux operating system and with 4 Intel i5-2410M processors
of 2.30GHz. For the WGA, we present the number of windows
in the collection, the number of iterations and the final size
of the population. No clear patterns of execution times are
observed because window sizes vary much from one collection
to another. Nevertheless, it is clear that WER requires much
less time than WGA.

A comparative example of results for an image in the
CircCirc dataset is shown in Fig. 6. The image sections
shown are, respectively, from the input, ideal output, result
of the operator corresponding to manually chosen windows,
result of the operator corresponding to windows selected by
WGA (using the CJBI collection) and result of the operator
corresponding to windows selected by WER (using the CJB
collection).

It is possible to observe that, visually, the result of WER
is close to the one obtained with WGA and superior to the
one obtained manually. We have observed that, using the CJB
collection, the results obtained with WER were consistently

TABLE V
EXECUTION TIMES FOR WGA AND WER. FOR WGA, THE window

collection size / number of iterations / final population size IS INDICATED
BELOW EACH EXECUTION TIME (SEE MORE DETAILS IN THE TEXT)

WER - Time (hours) WGA - Time (hours)
Dataset CJI CJB CJBI CJI CJB CJBI

Char s 0.08 0.07 0.11
3.13 1.72 3.24

62/200/50 24/143/37 86/171/58

CircCirc 0.56 0.28 0.59
1.42 1.03 1.84

81/84/45 24/200/48 105/119/58

TexCirc 0.23 1.00 0.68
3.44 3.22 2.85

81/200/54 24/170/48 105/111/34

BoolNoise 2.38 2.06 2.12
14.60 5.09 18.09

81/137/38 24/157/37 105/147/47

TexRev 2.19 3.97 4.05
9.95 7.52 17,37

62/104/30 24/120/33 86/136/50

better than the results of manually chosen combinations for
all tested datasets.

Input Ideal output

Manual WGA: CJBI WER: CJB

Fig. 6. Sections of an image in CircCirc dataset.

Further examples of results are shown in Fig. 7 and Fig. 8.

Input Ideal output

Manual WGA: CJBI WER: CJB

Fig. 7. Results for dataset TexRev.

Input Ideal output

Manual WGA: CJBI WER: CJB

Fig. 8. Results for dataset Char s.



V. CONCLUSION

We have presented a method for selecting a window com-
bination, to be used to train the operators to be combined in
the process of designing two-level morphological operators.
The main idea is to rank windows in a collection according
to a quality criterion that may be useful to predict good
combinations. Then combinations are searched among top
ranked windows only. In this way, we drastically reduce the
search space. Another key point in the proposed method is the
use of a newly proposed modified mean conditional entropy
as the criterion for ranking windows. Since mean entropy
computation does not require training, it can be efficiently
computed.

Experimental results obtained using a collection of windows
with varying shapes, sizes and relative positions show that
the method selects combinations that are better than those
manually selected. At the same time, its results are only
slightly below the results produced by WGA that employs
a genetic algorithm based search. A great advantage of the
proposed method over WGA is its computational efficiency.

Thus, the results obtained in this work indicate that the
proposed method has potential to automate most of the bi-
nary morphological image operator design process. Using the
proposed approach, besides the training images an user would
need to provide only the specification of a window domain.

For further improvement, the proposed ranking criterion
can be combined with other criteria that take diversity of a
group of windows in consideration. By doing that, chances of
finding better combinations will increase without leading to an
increase in the number of combinations to be tested. Future
steps of this research include the development of methods to
automatically determine a window domain, improvements with
regard to the creation of window collections, and the develop-
ment of indexes to measure diversity of window combinations.
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