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Abstract—Emergency events involving fire are potentially
harmful, demanding a fast and precise decision making. The
use of crowdsourcing image and videos on crisis management
systems can aid in these situations by providing more information
than verbal/textual descriptions. Due to the usual high volume
of data, automatic solutions need to discard non-relevant content
without losing relevant information. There are several methods
for fire detection on video using color-based models. However,
they are not adequate for still image processing, because they can
suffer on high false-positive results. These methods also suffer
from parameters with little physical meaning, which makes fine
tuning a difficult task. In this context, we propose a novel fire
detection method for still images that uses classification based on
color features combined with texture classification on superpixel
regions. Our method uses a reduced number of parameters if
compared to previous works, easing the process of fine tuning
the method. Results show the effectiveness of our method of
reducing false-positives while its precision remains compatible
with the state-of-the-art methods.
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I. INTRODUCTION

Emergency situations can cause economic losses, environ-
mental disasters or serious damage to human life. In particular,
accidents involving fire and explosion, have attracted interest
to the development of automatic fire detection systems. Ex-
isting solutions are based on ultraviolet and infrared sensors,
and usually explore the chemical properties of fire and smoke
in particle samplings [1]. However, the main constraint of
these solutions is that sensors must be set near to the fire
source, which brings complexity and cost of installation and
maintenance, especially in large open areas.

Alternative to sensors, cameras can provide visual informa-
tion of wider spaces, and have been increasingly embedded
in a variety of portable devices such as smartphones. To
take advantage of this, the RESCUER1 Project is developing
an emergency system to support Crisis Control Committees
(CCC) during a crisis situation. The system under development
in the RESCUER Project allows witnesses, victims or rescue
staff, present at the emergency location, to send images and
videos of the incident to a crowdsourcing mobile framework.
However, this approach might lead to a volume of information
flowing at a rate higher than what human specialists are able

1Project FP7-ICT-2013-EU-Brazil - ”RESCUER - Reliable and Smart
Crowdsourcing Solution for Emergency and Crisis Management”

to analyze. For this reason, as part of the RESCUER Project,
an automated data analysis solution is under investigation
aimed at identifying the most relevant pieces of information,
filtering out irrelevant data. Relevance here refers to images
that actually contain fire elements, and that can effectively
assist in the decision making of a given crisis.

Several methods regarding to fire detection on videos have
been proposed in the last years. These methods use two
steps to detect fire. First, they explore the visual features
extracted from the video frames (images); second, they take
advantage of the motion and other temporal features of the
videos [3]. In the first step, the general approach is to create
a mathematical/rule-based model, defining a sub-space on the
color space that represents all the fire-colored pixels in the
image. There are several empirical models using different color
spaces as RGB [1], YCbCr [4], CIE Lab [5] and HSV [6]. In
these cases, the limitation is the lack of correspondence of
these models to fire properties beyond color. The problem is
that high illumination value or reddish-yellowish objects lead
to a higher false-positive rate. These false-positives are usually
eliminated on the second step through temporal analysis.

In contrast to such methods, our proposal is to detect fire
in still images, without any further (temporal) information,
using only visual features extracted from the images. To
overcome the problems aforementioned, we propose a new
method to detect fire in still images that is based on the
combination of two approaches: pixel-color classification and
texture classification. The use of color is a traditional approach
to the problem; whilst, the use of texture is promising, because
fire traces present particular textures that permit to distinguish
between actual fire and fire-like regions. We show that, even
with just the information present in the images, it is possible
to achieve a high accuracy level in such detection.

The main contribution of this research is the proposal of
BoWFire (Best of both Worlds Fire detection), a novel method
to detect fire in still images. By merging color and texture
information, our method showed to be effective in detecting
true-positive regions of fire in real-scenario images, while dis-
carding a considerable quantity of false-positives. Our method
uses fewer parameters than former works, what leads to a
more intuitive process of fine tuning the automated detection.
Regarding these claims, in the experiments, we systematically
compare BoWFire with four works that currently define the
state-of-the-art, that is, the works of Celik et al. [4], Chen et



al. [1], Rossi et al. [7], and Rudz et al. [8]. The remaining
of this manuscript is organized as follows: Section III briefly
surveys previous approaches related to fire detection methods;
Section IV presents the proposed method using color and
texture segmentation; Section V describes the experimentation;
Section VI presents the discussion about the results and,
finally, Section VII concludes this study.

II. RELATED WORKS

A fire detection method based on rules was proposed in
the work of Chen et al. [1]. They define a set of three rules
using a combination of the RGB and the HSI color spaces; the
user, in turn, must set two threshold parameters to detect fire
pixels. Another method based on color was proposed by Celik
et al. [4], who conducted a wide-ranging study regarding the
color of fire pixels to define a model. This method defines
a set of five mathematical rules to compare the intensity of
the channels in the YCbCr color space; this was because the
YCbCr has a better discrimination regarding fire [4][8]. Also
in this work, the user must set a threshold for one of the rules.

Rossi et al. [7] proposed a method to extract geometric fire
characteristics using stereoscope videos. One of the steps is
a segmentation based on a clustering algorithm, in which the
image is divided into two clusters based on the channel V
of the YUV color space. The cluster with the highest value
of V corresponds to fire. Thereafter, Rossi et al. used a 3D-
Gaussian model to classify pixels as fire. In this method, the
accuracy of the classification depends on a parameter provided
by the user. This method presents limitations, since the authors
assume that the fire is registered in a controlled environment.

Rudz et al. [8] proposed another method based on clus-
tering. Instead of using the YUV color space, Rudz et al.
computes four clusters using the channel Cb of the YCbCr
color space. The cluster with the lowest value of Cb refers
to a fire region. A second step eliminates false-positive pixels
using a reference dataset. The method treats small and large
regions with different approaches; small regions are compared
with the mean value of a reference region, while large regions
are compared to the reference histogram. This comparison is
made for each RGB color channel. The user must set three
constants for the small regions, and three thresholds for the
large regions, resulting in a total of six parameters.

In comparison to the previous works, our method improves
the state-of-the-art by using texture, beyond color, to reduce
false-positives; and by using a smaller set of parameters, an
important characteristic to fine tune the detection process.
Besides, the parameters of former methods do not carry
physical significance, therefore, they are less intuitive to adjust.

III. BASIC CONCEPTS AND NOTATIONS

In this section we present important concepts related to the
problem under analysis. An image can be defined as a set of
pixels I = {Pi|0 ≤ i < n}, where n is the total number of
pixels in the image. Each pixel is a tuple Pi = (Ri, Gi, Bi),
where the values of Ri, Gi and Bi represents the intensity
of each channel of the RGB color space. Global or local

information can be extracted from images. A feature extraction
is a function F that for a given image I , generates a feature
vector V ∈ Rd, of size d.

Let a set T ⊂ Rd of tuples of size d and a set of possible
labels L. Given a training set in which every ti ∈ T has a
label ci assigned by an expert, where ci ∈ L; a supervised
classifier C must build a model capable to predict the label
of a new data item. Given a tuple x ∈ Rd, a classifier can be
defined as the function C(x) = c, where c ∈ L. Among the
most used classifiers are the Naı̈ve-Bayes [9] and K-Nearest
Neighbors (KNN) [10]. We refer to the above definitions in
the rest of this work.

A. Feature Extraction

Images are processed by means of extracted features. The
features extracted from a given image correspond to numerical
measurements that describe visual properties. Such properties
are able to discover and represent connections between pixels
of the whole image (global) [11], or of small regions of the
image (local) [12]. Low-level descriptors [13], as those base
on color, shape and texture, are frequently used.

Usually, color-feature extraction methods have a low com-
puting cost. Color Layout [14] is an example of color ex-
traction, it describes the space distribution of the colors. The
color histogram also allows to compute the color moments [15]
to describe the probability distribution of the image colors.
Shape information, in turn, is considered the closest approx-
imation to the human perception of an object’s image [16].
Feature extractors of this depend on a pre-processing step
that segments and detects the border of the objects. There
are various methods to extract shape features, as the Zernike
moments [17] and the Fourier descriptors [18]. Texture is also
a common feature in image processing. It is important because,
together with color, it describes the surface of naturally-
occurring phenomena, as fire, smoke, and water. Classical
feature extractors of texture are LBP [19] and Haralick [20].

The Local Binary Pattern (LBP) is a texture feature extractor
that considers the neighborhood of a pixel [19]. The LBP
can be used in several applications, as helmet detection on
motorcyclists [21], MR image retrieval systems [22], and
image segmentation [23]. The LPB can be performed in gray
scale, in a region of 3×3 pixels. For each pixel Pi from the
neighborhood of the central pixel Pc, a binary code is created
by assigning the value 1 if Pi > Pc, or 0, otherwise. Then,
the histogram of codes is used as a feature vector.

In order to make the LBP rotation invariant, a variation
of the original algorithm shifts the code until it reaches its
minimum value [24]. Another variation is defined as uniform
patterns [25]. A code is called uniform if the binary pattern
contains at most two bitwise transitions from 0 to 1 (or vice
versa). The histogram is obtained by taking one bin for each
uniform pattern and a single bin for the non-uniform patterns.

B. Superpixel Generation

Superpixel algorithms group pixels into atomic regions with
similar homogeneity. Doing so, superpixels can capture the



image redundancy and reduce the complexity of subsequent
image processing tasks. Superpixels can be used as building
blocks of many computer vision algorithms [26], in this paper,
we will focus on image segmentation [27][28].

A superpixel Sp is defined as a subset of the image I
that contains pixels from a continuous region of the image.
A superpixel generation algorithm can be described as the
process S(I,Ksp) = {Spj |0 ≤ j < Ksp} that takes the
image I and returns Ksp partitions. A superpixel generation
algorithm must have a good adherence to image boundaries
and should improve the performance of the segmentation
algorithm. An empirical comparison between the state-of-the
art superpixel algorithms was made by Achanta et al. [26].
Their results showed that the algorithm with the best overall
performance was the Simple Linear Iterative Clustering (SLIC)
technique. The SLIC technique is an adaptation of K-Means
for superpixel generation using a distance function based on
the values of pixels using the Lab color space and their
geometric position. The user gives as parameter the number of
superpixels Ksp and their compactness m. The algorithm then
positions the centroids on a regular grid, avoiding seeding a
superpixel on an edge pixel.

IV. OUR PROPOSAL

We propose BoWFire (Best of Both Worlds Fire detection), a
novel method for fire detection in emergency-situation images.
We explore the fact that color combined with texture can
improve the detection of fire, reducing the number of false-
positives as compared to related works from the literature.
We show that such combination can distinguish actual fire
from fire-like regions (reddish/yellowish) of a given image.
The goal is to provide a more effective automated detection
of fire scenes in the context of the crisis situations, as those of
the RESCUER Project. Figure 1 shows the basic architecture
of our proposal. The BoWFire method consists of three basic
steps: Color Classification, Texture Classification, and Region
Merge. As shown in Figure 1, the two first steps occur in
parallel to produce images in which fire-classified pixels are
marked. Then, the output from both classifications is merged
into a single output image by the Region Merge step.

Different from other methods, usually based on mathemat-
ical models, the use of a Color Classification step avoids
the need of a great number of parameters. Any machine
learning classification algorithm could be used, specifically,
in this work, we use Naı̈ve-Bayes and KNN, as detailed
in Section V. By doing so, we also avoid the use of the
global information of the image to classify only one pixel
as opposed to other approaches; this is a desired feature
because the semantics of the image may vary according to
the emergency situation (small/large fire regions or day/night
time). Figure 2 presents more details of the color-based
classification. Given an image I with n pixels Pi, 0 ≤ i < n.
Each pixel Pi = (Ri, Gi, Bi) of the image is converted to
P ′i = (Yi, Cbi, Cri) in the YCbCr color space, since this color
space provides a better discrimination of fire regions. Then P ′i
goes through a Pixel-Color Classification (pixelClass), which
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Fig. 1: Architecture of the BoWFire method.

consists of a Color Training Set and a Color Classifier. Then,
if pixelClass(P ′i ) = 〈fire〉, Pi is used to build the output
image Icolor, otherwise Pi is discarded.
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Fig. 2: Color-based classification step.

As mentioned earlier, the Texture Classification step allows
for a more accurate detection; however, it brings a challenge.
Since there may be a variety of fire images according to the
emergency situation, it is not possible to extract global features
of the image because the small fire regions would vanish in the
global context. Therefore, we extract only local features from
regular shaped regions with similar patterns automatically
detected by superpixel methods. Figure 3 presents details of
the Texture Classification step. Given the same image I , we
use a superpixel method S(I,Ksp) to generate a set of Ksp su-
perpixels Spj , where 0 ≤ j < Ksp. Next, each superpixel Spj
passes through a local Feature Extraction process, resulting in
a feature vector Vj = (vj0, . . . , vj(d−1)) of size d. Then, Vj is
classified using a Feature Classification (featClass), which
consists of a Feature Training Set and a Feature Classifier.



If featClass(Vj) = 〈fire〉, all pixels Pi ∈ Spj are used to
build the output image Itexture, otherwise they are discarded.
After this, the superpixel region is no longer necessary since
the method is performed in pixel-level only.
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Input Image I
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Superpixel
Generation

Discard
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Fig. 3: Texture-based classification step.

With the outputs from the Color Classification (image
Icolor), and from the Texture Classification (image Itexture),
it is still necessary to join the results in an output image
Iclassified. We perform this task in the Region Merge step.
According to our hypothesis, if a pixel is simultaneously
classified as fire following color and texture classification, then
there is a higher chance that this pixel is actual fire. Therefore,
given an image I and its color and texture classifications Icolor
and Itexture, the final classified image Iclassified is defined
as Iclassified = {Pi|Pi ∈ Icolor and Pi ∈ Itexture}. That
is, a given pixel is added to the final output only if it was
detected in both color and texture classifications, otherwise
it is discarded. Consequently, we dismiss false-positives from
both approaches, taking advantage of the best of both worlds.

The BoWFire method was developed in a modularized
scheme, allowing an easy way to add and set different feature
extraction algorithms, as well as different classifiers. We note
that, since the BoWFire method is fully customizable, the
number of parameters is dependent only on the algorithms
used in the intermediate steps.

V. EXPERIMENTS

A. Configuration

Following, we describe the configuration of our experi-
ments.

Datasets: We performed experiments using a dataset of fire
images. It consists of 226 images with various resolutions2.
Also, it was divided in two categories: 119 images containing
fire, and 107 images without fire. The fire images consist of
emergency situations with different fire incidents, as buildings
on fire, industrial fire, car accidents, and riots. These images
were manually cropped by human experts. The remaining
images consist of emergency situations with no visible fire and
also images with fire-like regions, such as sunsets, and red or

2Available at http://www.gbdi.icmc.usp.br

Fire Images Non-Fire Images

Fig. 4: Sample images of the training dataset.

yellow objects. Figures 9, 10 and 11 show some samples of
this dataset. Since we are using supervised machine learning,
we also used a training dataset2. This second dataset consists
of 240 images of 50×50 pixels resolution; 80 images classified
as fire, and 160 as non-fire. Figure 4 shows some samples of
this dataset. It is important to note that the non-fire images
also contain red or yellow objects.

Intermediate Algorithms: Since the goal of our method
is to have a fewer number of parameters, for the BoWFire
intermediate steps, we used the following algorithms. The
Pixel-Color Classification is done by a Naı̈ve-Bayes classi-
fier, using an automatic discretization method; the superpixel
algorithm was the SLIC method with a modification. Instead
of using the Lab color space, we used the YCbCr space due
to its discriminative property. Since we wanted to add texture
information, our implementation uses the uniform patterns
LBP. Other feature extraction methods were evaluated, but
were omitted due to space limitation. The features were
classified using the KNN classification with the Manhattan
Distance.

Parameters: Considering the configuration given by the
choice of intermediate algorithms, the BoWFire method needs
only 3 parameters: Ksp, m and K. For all experiments we
empirically evaluated the best values for parameters m and
K; for parameter K, we used the value K = 11. Regarding
to parameter m, we observed that a more compact superpixel
generates a more regular region, which leads to a better
representation of the texture feature. In this case, the best
value was m = 40. With these parameters, each method was
executed on three different datasets: only fire images, only
non-fire images, and a complete dataset with both fire and non-
fire. For each execution, we computed the confusion matrix for
the classification of all pixels and calculated four measures:
Precision, Recall, F1-Score, and False-Positive Rate (FPR).

B. Description of the experiments

In this section, we describe the experiments (i) on the impact
of parameter Ksp, (ii) on the Color Classification Evaluation,
and (iii) on the BoWFire Evaluation. Next, in Section VI, we
report on the execution and results of these experiments.

Impact of Ksp: The first experiment evaluates the impact
of the number of superpixels on the BoWFire performance.
We vary the number of superpixels Ksp with the following
values: 50, 100, 150, 200, 250 and 300.

Color Classification Evaluation: In this experiment, we
aim at evaluating the capability of the Color Classification
step proposed in this paper. Since BoWFire is based on

http://www.gbdi.icmc.usp.br


a combination of two different approaches, it is important
that the color-based method recovers as many fire pixels as
possible. So, Recall is the measure that closely meets this
need. Also, on this step FPR is not so important, since it will
be handled on the Texture Classification step. We evaluated the
behavior of our proposed Color Classification in comparison
with the state-of-the-art, as in the works of Celik [4], Chen [1],
Rossi [7] and Rudz [8].

BoWFire Evaluation: After evaluating only color, we eval-
uate the impact of considering texture together with color, as
defined in our proposal. The most important aspect of this
step is to reduce false-positives without affecting the overall
performance. In this context, we analyze the BoWFire perfor-
mance, which is the combination of the Color Classification
step with the Texture Classification step. We also evaluated
the performance of the state-of-the-art methods combined with
the Texture Classification. We used the best value of Ksp as
obtained in the experimentation.

VI. RESULTS AND DISCUSSION

Impact of Ksp: Figure 5 shows the results obtained while
varying the number of superpixels. Figure 5a shows the results
for the fire dataset. In this case, there was a slight increase of
all measure until Ksp = 150, then for greater values they
had a similar behavior. The Precision obtained was around
0.8, Recall around 0.65 and F1-Score around 0.72. Figure 5b
shows the results for the non-fire dataset. For this dataset
we computed only the False-Positive Rate. There is a slight
increasing of FPR as the number of superpixels increases,
except for Ksp = 300. It is important to notice that although
FPR increases, the values remain around 0.045, that is, less
than 5% of false-positives. And Figure 5c shows the results
combining both datasets. Again, there is a similar behavior
regarding Ksp, except for Ksp = 50. The Precision obtained
was around 0.5, Recall around 0.65 and F1-Score around 0.57.
The FPR values were not shown on both Figures 5a and 5c
due to their low values for all Ksp. There is also a slight
increasing of FPR as Ksp increases, but with lower values.
On the fire dataset, FPR went from 0.0169 to 0.0175, and on
the complete dataset it varied from 0.0305 to 0.0323.

The main goal of the BoWFire is to decrease the FPR
while maintaining a good performance. With that in mind, we
evaluated that the best result is achieved when the number of
superpixels Ksp = 150. This number presented better results
while dealing with just the fire and complete dataset (fire and
non-fire), as showed by F1-score. Also, the value of FPR for
this Ksp is close to the lowest FPR value.

Color Classification Evaluation: Figures 6a, 6b and 6c,
show the results for the Color Classification step. Considering
only color-based approaches, Color Classification, Celik and
Rudz presented the best overall performance. Although Chen
obtained the highest value of Precision, its Recall got the
lowest value. As seen in Figures 9 and 10, Chen missed too
many true-positive pixels and Rossi has the lowest overall per-
formance. We observed that in outdoor emergency situations,
fire was not in the cluster with the higher values of V, as shown

in Figures 9 and 10. From now on, we will focus our analysis
only on the methods with the best overall performance.

Regarding to Precision, Rudz achieved the best value,
0.84 on the fire dataset and 0.31 on the complete dataset,
while Color Classification and Celik had similar behavior
with values around 0.62 on the fire dataset and 0.24 on the
complete. On the other hand, Color Classification achieved
the highest value of Recall, 0.77 on both fire and complete
dataset, followed by Celik, 0.63 on both fire and complete,
and Rudz, 0.41 on both fire and complete. Analyzing the F1-
Score, Color Classification and Celik methods outperformed
Rudz by at most 23.6% on the fire dataset with values of 0.68
to Color Classification, 0.63 to Celik and 0.55 to Rudz. On
the complete dataset, all methods achieved similar F1-Score
with the value of 0.35.

On the fire dataset, Color Classification and Celik achieved
similar values of FPR (0.05 and 0.04) and Rudz method
achieved 0.01 FPR. On the non-fire dataset, Color Clas-
sification, Celik and Rudz achieved respectively 0.21, 0.15
and 0.08. And on the complete dataset, Color Classification,
Celik and Rudz methods achieved respectively 0.13, 0.10 and
0.05. On all datasets, Rudz achieved the best FRP value, less
than 9% of the pixels was incorrectly classified. However,
while discarding more false-positives, Rudz also discarded
true-positives, reducing its Recall capability. Except for FPR,
Color Classification had a similar behavior of Celik, but had
better values of Recall and F1-Score. Therefore, the Color
Classification outperformed the other methods.

BoWFire Evaluation: Figures 6d, 6e and 6f show the
results when added texture information. It is possible to
note that there was an overall improvement for all methods.
Regarding Precision, with the exception of Rudz and Chen, all
methods had a considerable improvement. Color Classification
and Celik had a Precision improvement of up to 1.30× on
the fire dataset and 2.28× on the complete dataset. Rossi had
the greatest improvement, 4.43× on fire dataset and 5.65×
on the complete dataset. This high improvement was due to
the fact that Rossi, on outdoor images, detected other regions
than fire, as shown on Figures 9 and 10. When adding texture
information, these false-positive regions were discarded. For
both Chen and Rudz, there was a slightly improvement on the
fire dataset, but it is due to the fact that they already had low
FPR. On the other hand, on the complete dataset, there was
an improvement of 1.64× to Chen and 2.06× to Rudz.

There was a decreasing on the Recall value of up to 15%
less for all methods, except Rudz. This is due to the fact
that the combination of both approaches discarded a few true-
positives. However, the considerable gain on the precision can
justify this drawback. Analyzing the F1-Score, there was a
slight increase of up to 7% for all methods, except Rossi, on
the fire dataset, which had an improvement of 69%. On the
complete dataset, all methods had a considerable improvement,
up to 65%.

As one of the goals of BoWFire is to reduce the number
of false-positives, it is important to analyze FPR. On the fire
dataset, there was a reduction of up to 68% of FPR for Color



(a) Fire dataset (b) Non-fire dataset (c) Complete dataset

Fig. 5: Impact evaluation of the number of superPixel Ksp in three different datasets.

(a) Fire dataset (only color) (b) Non-fire dataset (only color) (c) Complete dataset (only color)

(d) Fire dataset (adding texture) (e) Non-fire dataset (adding texture) (f) Complete dataset (adding texture)

Fig. 6: Evaluation of the BoWFire method with the state-of-the-art methods.

Classification, using Celik and Chen methods. Rossi had 94%
less false-positives. Rudz was the least affected by this step,
reducing 5% false-positives, since they had already dismissed
false-positives on a post processing step. On both the non-
fire and complete dataset, all methods reduced FPR by up to
80%. This result confirms that the Texture Classification step
is capable of discarding false-positives without compromising
the overall performance.

We can now use the Receiver Operating Characteristic
(ROC) space to analyze the performance behavior between all
methods. The ROC Space shows the relation between FPR
and the true-positive rate (Recall). Figures 7 and 8 show
the ROC Space on, respectively, the fire and the complete

datasets for all methods. On both ROC Spaces, it is possible
to note that all methods move to the left, i.e., achieve less FPR
when texture information is added. The Color Classification
and the BoWFire method presented the best classification
results among the other methods, followed by Celik. Also,
the BoWFire achieved a similar Recall value as Celik without
texture information, but with a smaller FPR.

Figures 9, 10 and 11 show visual samples of output images
from three different situations. Figure 9 shows an emergency
situation with fire and low percentage of possible false-
positives. On this input image it is possible to note that Color
Classification, Celik and Rudz methods had similar outputs.
The BoWFire method was able to detect the same fire region



Fig. 7: ROC Space using the fire dataset.

Fig. 8: ROC Space using the complete dataset.

as these methods but discarded the fire reflection on the
ground. Rossi was not able to correctly detect fire regions,
while Chen discarded more than half of the true-positives.
Figure 10 also shows an emergency situation with fire with a
higher percentage of false-positives. In this case, all methods
detected false-positives, with the exception of BoWFire. It is
also possible to note that in some cases, Rudz discards more
fire pixels than necessary. This image also shows the problem
with the Rossi method, since no fire region was detected as
fire. Once again, Chen discarded almost every true-positive.
Figure 11 shows a sunset skyline image. For this input image,
both Color Classification and Rudz detected false-positives.
Meanwhile, when adding texture information to the Color
Classification, BoWFire was capable of discarding all false-
positives for this image.

VII. CONCLUSIONS

In this paper, we presented the BoWFire method, a novel
approach for fire detection on images in emergency context.
Our results showed that BoWFire was capable of detecting
fire with a perfomance similar to what is observed in the
works of the state-of-the-art, but with less false-positives. We

(a) Input image (b) Ground truth

(c) BoWFire (d) Color Classification

(e) Celik (f) Chen

(g) Rossi (h) Rudz

Fig. 9: Output from the methods with an input image with
fire.

systematically compared our work with four former works,
demonstrating that we achieved consistent improvements.

The course of action of BoWFire was that, by simul-
taneously using color and texture information, it was able
to dismiss false-positives relying solely on the information
present in the images; as opposed to former methods that use
temporal information. Furthermore, since BoWFire is based on
classification methods, rather than on mathematical modeling,
it was able to solve the problem with only three parameters.
In addition, these parameters were more intuitive for tuning,
unlike those of previous works, which are based on thresholds
and color-based values. Given its performance, we conclude
that BoWFire is suitable to integrate a crisis management
system as the one that motivates this work.

As future work, we plan to investigate the combination of
different features extraction methods. We also envision the
extension of BoWFire to detect other types of incident, such
as smoke and explosions.
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(a) Input image (b) Ground truth

(c) BoWFire (d) Color Classification

(e) Celik (f) Chen

(g) Rossi (h) Rudz

Fig. 10: Output from the methods with an input image with
fire and possible false-positives pixels.
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