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Abstract—Image segmentation evaluation is usually performed
by visual inspection, by comparing segmentation to a ground-
truth, or by computing an objective function value for the
segmented image. All these methods require user participation
either for manual evaluation, or to define ground-truth, or
to embed desired segmentation properties into the objective
function. However, evaluating segmentation is a hard task if none
of these three methods can be easily employed. Often, higher level
tasks such as detecting or classifying objects can be performed
much more easily than low level tasks such as delineating the
contours of the objects. This fact can be advantageously used to
evaluate algorithms for a low level task. We apply this approach
to a case study on plankton classification. Segmentation methods
are evaluated from the perspective of plankton classification
accuracy. This approach not only helps choosing a good segmen-
tation method but also helps detecting points where segmentation
is failing. In addition, this more holistic form of segmentation
evaluation better meets requirements of big data analysis.

Keywords-holistic system evaluation; classification evaluation;
plankton image classification; segmentation evaluation; plankton
image segmentation;

I. INTRODUCTION

Segmentation is one of the most studied problems in the

fields of image analysis and computer vision. There are many

algorithms for image segmentation and, although not equally

numerous, studies concerned with segmentation evaluation are

also receiving increasing attention [1], [2], [3], [4], [5], [6].

Most of the approaches for image segmentation evaluation

can be divided into three major categories: subjective, super-

vised and non-supervised [1]. Subjective evaluation basically

refers to visual inspection by a specialist in the application do-

main. Supervised evaluation refers to methods that objectively

compare segmentation to a reference segmentation (usually

known as ground-truth or gold standard). Unsupervised evalu-

ation refers to objective metrics that are computed based solely

on the segmented image.

One of the difficulties pointed in evaluating segmentation

is the conflict between generality and objectivity [7]. For

general purpose segmentation, ground-truth and the notion of

segmentation accuracy may not be well defined, and thus even

using objective metrics, evaluation is not completely objective.

In fact, there are several situations in which more than one

ground-truth may exist. Moreover, in many cases ground-

truth is built subjectively. On the other hand, if evaluation

is restricted to situations where ground-truth is well defined,

generality is lost.

Generality and objectivity seek applicability to general

segmentation problems. However, specificity in the sense of

adequation to a specific application context is also an impor-

tant characteristic. This is being achieved through the creation

of a myriad of objective evaluation metrics. Additionally,

we can argue that context information is in fact embedded

both in supervised and non-supervised evaluation methods.

In the supervised case, context information is embedded in

the ground-truth. In the non-supervised case, the objective

function can be designed to incorporate application specific

segmentation properties.

How to deal, however, with problems in which ground truth

information is not available or can not be easily obtained or

when context information can not be easily embedded into

an objective function? For instance, ground truth can not be

easily built when contours of target objects can not be clearly

delineated by visual inspection only (e.g., see plankton images

in Fig. 1). In addition, manual delineation of contours would

be particularly critical concerning workload when there are

many types of targets and a very large number of images. A

relatively large number of ground truth for every variation

of the input must be available to achieve some statistical

significance in the evaluation.

Fig. 1. From left to right: Calanoida, Cyclopida, Thick Fiber, and
Neoceratium. The first two present good contrast and clear contour while
the last two are blurred with no clear contour.

Given that segmentation is usually a step in a processing

chain related to a specific application context, it is natural to

expect that there should be connections between the segmen-

tation task itself and the application goal. In fact, there are

many ways to explore context in segmentation. For instance,

interactive image segmentation methods exploit the fact that

for human beings it is much easier to recognize an object/target

than delineate its contours. Thus a common approach is to have

users interactively placing rough marks on targets of interest

directly on the image and then apply seed based segmentation



algorithms as in [8]. Another example consists in adjusting

parameters of a segmentation algorithm based on classification

accuracy. In [9], from the observation that most classification

errors are due to poor segmentation results, the authors propose

to use classifier confidence as a measure for segmentation

accuracy. When classifier confidence is low, segmentation is

redone changing parameters of the segmentation algorithm

and the classifier is applied to the new segmented image.

The process is repeated iteratively, until a high classification

confidence is achieved. Similarly, in [10], segments (super-

pixels) of satellite or aerial images that are generated by an

unsupervised method are classified using some classification

method. Classification accuracy is used to evaluate parameters

of the segmentation method.

A method for evaluating solutions for low level tasks from

the perspective of a higher level task, in a similar fashion

as it is done to compare edge detection algorithm for object

recognition in [11], may be an interesting approach to tackle

some of the issues in image segmentation. A first issue,

pointed above, is how to evaluate segmentation when ground-

truth (or context information) can not be easily conveyed. A

second issue is how relevant are the small differences among

segmentations obtained with different segmentation algorithms

from the point of view of the application.

Such evaluation method would fall within the system level

evaluation category listed in [1]. Although there are some

attempts on employing such approach [11], [9], it seems it

has not yet been established as a common evaluation method.

A disadvantage of system level methods may be the fact that it

only provides indirect evaluation. However, if the main interest

of evaluation is to choose a good segmentation algorithm

rather than to rank segmentation methods, we could take

advantage of the fact that ground-truth at a higher level pro-

cessing task is usually simpler to be provided. An immediate

consequence is that there would be much more data for eval-

uating the algorithms. Furthermore, a system level evaluation

stands aligned with current efforts for a holistic evaluation

of systems, for instance those seen in scene understanding

as in [12], [13]. As such, it may provide information about

segmentation that is valuable from the application point of

view.

In this work we present a case study on assessing segmen-

tation methods from the perspective of a higher level task.

Specifically, we consider the problem of plankton classification

as the higher level task. Segmentation assessment is done

based on classification accuracy. This is a particularly inter-

esting case study since targets often present no clear contour

and because there is a huge amount of data (making manual

delineation of contours or visual inspection of segmentation

results unfeasible). On the other hand, assigning class labels

to the targets is a relatively much simpler task for a specialist.

This enables the construction of a much larger dataset with

ground-truth (for the higher level task).

These ideas are further elaborated and discussed in Sec-

tion II. In Section III we describe our case study where

the processing chain of interest is composed of three main

components: target segmentation, feature extraction and clas-

sification. We list the evaluated segmentation algorithms, and

examples of plankton segmentation with these algorithms. We

also specify the training and classifier evaluation methods

used in the experiments, and report classification results with

discussions on what kind of information concerning segmen-

tation can be extracted based on the classification results. In

Section IV we present our concluding remarks.

II. EVALUATION METHOD

To further motivate the idea, we first take the problem of

optical character recognition [14] as an example. In order to

recognize, for instance, the contents in a scanned document

page, a series of processing is usually performed. Typical pro-

cessing includes binarization of the image, character segmenta-

tion, character recognition, and detection of page components

such as figures, titles, paragraphs among others.

In this process, binarization is an extremely important step

because it affects all subsequent steps. Due to such importance,

many binarization algorithms have been developed and there

are even competitions on binarization algorithms [15]. On

the other hand, binarization is a relatively lower level task

compared to the overall task of recognizing the document page

content. Thus, choosing a binarization algorithm should take

into account not only the performance of the algorithms in the

specific binarization task itself, but also on how does it affect

performance of higher level tasks. More specifically, although

a “perfect” binarization is desirable, from the perspective of

the final goal, a binarization only just close to perfect might

be sufficient. For instance, how much slight differences in

binarization of individual characters like the one shown in

Fig. 2 would affect recognition rate?

Fig. 2. Example of two slightly different binarization.

Supposing there are multiple binarization algorithms that

lead to equivalent performance for a higher level task (e.g. in

character recognition or even in word recognition), other as-

pects of the binarization algorithms such as processing speed,

ease of implementation, availability, among others could be

taken into consideration for selecting a particular one.

A. Procedure description

Let us consider a processing chain, composed of several

components linked sequentially, where each component is

responsible for a specific task. We assume that earlier com-

ponents in the chain are responsible for semantically lower

level tasks, while those at the end of the chain are responsible

for higher level tasks. The output of one component feeds the

input of the next component. Solutions for a specific com-

ponent can be evaluated in terms of the performance of any

of the subsequent components. A critical issue in this method

is that the larger the distance between the two components,



the larger the possible interference of other components in the

evaluation.

To minimize possible interference of intermediary steps, the

ideal is to evaluate solutions of a low level task in terms of the

performance of the subsequent component in the chain. When

this is not possible, the granularity of the components can be

modified by fusing a subset of consecutive components into

one single component. In this way, most processing chains can

be reduced to a few components.

Under the above described assumptions, let then A represent

the first task (the low level one) and B the second task (the

higher level one) in the processing chain. Let us also suppose

we are concerned in assessing different algorithms for task

A, and that an input dataset D for the chain is available as

well as ground truth for the output of the chain. Consider n

solvers Ai for task A, a fixed solver B for task B, and a fixed

evaluation metric for the output. The evaluation procedure is

summarized below.

1) solve task A for input D using each of the n solvers,

Ai, i = 1, . . . , n, and denote the respective results as

Ai(D), i = 1, . . . , n
2) solve task B for each dataset Ai(D), i = 1, . . . , n,

using solver B, and denote the respective results as

B(Ai(D)), i = 1, . . . , n
3) evaluate performance measure for each resulting dataset

B(Ai(D)), i = 1, . . . , n
4) order each of the solvers of task A according to cor-

responding performance computed in the previous step

and return

III. CASE STUDY ON PLANKTON CLASSIFICATION

The discussed method is applied in a case study on plankton

classification. The processing pipeline considered here consists

of the following steps:

• target detection: individual target images are created by

cropping targets from a large image;

• segmentation: contours of the target are delineated. This

task may include pre-processing, a binary segmentation

algorithm, and post processing;

• Feature extraction: several features used in [16] related

to shape, size, color, Hu moments, among others, are

extracted from the segmented targets;

• Classification: targets are classified using a previously

trained classifier, having as input all or a selected subset

of the features computed in the previous step.

In this case study we start from the point where targets are

already detected. Moreover, to fit the two task model described

in the previous section, we consider segmentation as task A

and feature extraction+classification as task B.

A. Segmentation methods

The segmentation algorithms considered consist of simple

binarization and contour detection algorithms, favoring com-

putational simplicity due to efficiency requirements in the

application context. Let I denote an image, p a point in the

image domain, I(p) the intensity of I at p, I the mean intensity

of image I and σ its standard deviation. Targets are assumed

to be relatively darker than the background. The following

methods are considered. The first three are taken from [16].

• Fixed: smoothing with a 5 × 5 Gaussian mask, fixed-

intensity thresholding, and morphological closing. The

adopted threshold value is T = 170 and the structuring

element of the closing operator is a 5×5 elliptical kernel.

• Dyn: smoothing with a 5 × 5 Gaussian mask and dy-

namic intensity thresholding. The thresholding value is

computed for each image as T = I − cσ, using c = 1.5.

• Waters: smoothing with a 5 × 5 Gaussian mask and

watershed from markers. Foreground and background

markers are given by Mf = {p : I(p) < I − 2σ} and

Mb = {p : I(p) > I − σ}, respectively.

• Yen: histogram equalization, Yen’s thresholding [17], and

largest connected component selection.

• Otsu: histogram equalization, Otsu’s thresholding [18],

and largest connected component selection.

• Isodata: histogram equalization, Isodata threshold-

ing [19], and largest connected component selection.

Figures 3 and 4 (the latter at the end of the paper) show

a sample from each of the 16 classes considered in this

study, together with segmentation results obtained using the

above listed six methods. The 16 classes considered here do

not necessarily correspond to distinct species of plankton. A

same species may have been further divided based on some

subjective or convenient criteria. We adopt the division used

in [16].

Any visual inspection would require examination of a large

number of segmentations. Considering that the number of

classes may be very large (hundreds) and that each class may

have hundreds or even thousands of images, the workload

would be huge. More than that, if ground-truth were to be

generated, a critical issue is not only the workload, but the

need to repeat the work whenever there are significant changes

in the characteristics of the images.

B. Classifier training and evaluation

Although manually classifying each target also represents

a heavy workload, clearly it can be performed much faster

than delineating the contours of the targets in the image. In

order to evaluate different segmentation methods, for each

experiment we fixed the feature extraction algorithms and

the classifier model, and then a stratified 10-fold cross-

validation (CV) of classification was performed for each of the

segmented datasets. Feature extraction were performed using

OpenCV [20]. Classifier training and cross-validation accuracy

estimation were performed using WEKA [21], considering the

16 classes, each with 100 samples.

C. Results and discussions

In the first experiment, we used a set of 55 fixed features,

extracted from the segmented images, and the SVM classifier

(with C = 13, RBF kernel and γ = 1). As can be seen in



(a) Input (b) Yen (c) Otsu (d) Isodata (e) Fixed (f) Dyn (g) Waters

Fig. 3. Samples of 7 classes of plankton and respective segmentations using the six methods. From top to bottom, Copepod Calanoid (Acartia), Copepod

jumping, Fine fibers, Chaetoceros out of focus, Copepod dead, Thick Fibers, and Nauplius out of focus.

Table I, top accuracies (even considering variations among

folders) were achieved when using Waters or Yen as the seg-

mentation method. This is consistent with the visual evaluation

of segmentation results (see Figs. 3 and 4).

In order to reinforce this finding of the best segmentation

methods, we did a second experiment that consisted on varying

the fixed part B of the chain by replacing the classifier

model. The results using Random Forest (RF, with Seed =

4, numTrees = 40) and K-nearest neighbor (KNN, with k=10)

models are shown also in Table I. Classification results have

the same behavior of the one obtained with SVM, that is, best

mean accuracies are obtained again using Waters and Yen as

the segmentation methods, for both classifier models. This is

a reassuring result in the sense that all three models indicate

that Waters and Yen are the two best segmentation methods.

Table II details the classification accuracy per class, with

respect to the SVM model. It shows the true positive rates

with respect to each of the classes. Note that when comparing

Waters with Yen, there is a large difference in the classifi-

cation rate of class Chaet. out of focus. Actually, we decided

to consider Yen as an alternative segmentation method after

observing in a preliminary study that Waters resulted in poor

classification rate for that class. After manually trying several

segmentation methods, Yen was chosen by visual inspection

as one of the algorithms that most improved segmentation of

samples in that class. In fact, the classification result reinforces

that perception.

Without information on classification accuracy per class, it



TABLE I
10-FOLD CV ACCURACY VARYING CLASSIFIER MODELS

Methods
Cross-validation accuracy (% out of 1600)

SVM RF KNN

Fixed
86.81±2.90 84.13±2.47 79.75±2.55

(1389) (1346) (1276)

Dyn
80.13±1.83 75.06±1.10 71.81±3.61

(1282) (1201) (1149)

Waters
89.81±2.36 86.56±2.81 84.00±2.17

(1437) (1385) (1344)

Yen
90.31±2.79 86.38±2.69 84.63±3.13

(1445) (1382) (1354)

Otsu
85.63±2.34 79.56±3.06 77.63±3.27

(1370) (1273) (1242)

Isodata
86.19±1.71 81.13±3.69 78.69±3.81

(1379) (1298) (1259)

TABLE II
DETAILED TP RATE PER CLASS USING SVM

Percentage of Instances Correctly Classified per Class

Classes (% relative to 100 instances per class)

Fixed Dyn Wat. Yen Otsu Isod.

Chaetoceros (Chaet.) 83.00 73.00 87.00 80.00 77.00 76.00

Chaet. out of focus 67.00 66.00 67.00 81.00 83.00 80.00

Copepod calanoida 87.00 82.00 90.00 85.00 79.00 84.00

Copepod cyclopoida 95.00 94.00 95.00 96.00 84.00 85.00

Copepod out of focus 91.00 86.00 95.00 94.00 86.00 86.00

Copepod jumping 92.00 85.00 91.00 94.00 89.00 88.00

Copepod dead 84.00 73.00 83.00 87.00 79.00 80.00

Copepod (no antenna) 92.00 87.00 93.00 92.00 87.00 87.00

Coscinodiscus T. 97.00 92.00 99.00 96.00 97.00 97.00

Fine Fibers 88.00 91.00 92.00 92.00 92.00 93.00

Thick fibers 88.00 70.00 83.00 85.00 76.00 78.00

Nauplius out of focus 92.00 88.00 90.00 89.00 87.00 86.00

Neoceratium (Neoc.) 88.00 83.00 95.00 92.00 90.00 91.00

Neoc. out of focus 80.00 73.00 87.00 88.00 78.00 82.00

Odontella sinensis 83.00 66.00 91.00 95.00 90.00 88.00

Pyrocystis 90.00 73.00 99.00 99.00 96.00 98.00

Average (Avg.) 86.81 80.13 89.81 90.31 85.63 86.19

would probably be much harder to reach the same diagnosis.

Classification results, separated by class, can also provide

another valuable information. Let us suppose that, rather than

classifying each target plankton, we are interested in detecting

plankton of a specific class. Let us also suppose that such

detection needs to be performed on the fly, with no time for

training a specific classifier to recognize only plankton of that

class. In such a case, we can decide to use the segmentation

method that most favors the identification of samples of that

class, without concerning how well it performs with regard to

other classes. It would only require changing the segmentation

component in the recognition system. For instance, suppose

we were interested in detecting occurrences of Nauplius out

of focus. From the above results, using the Fixed segmentation

method could be an adequate choice.

A third experiment was performed changing again the fixed

part B. This time, the classifier model was fixed to SVM with

the same configuration used before, and distinct feature subsets

were used. To define these subsets, first a feature selection

method available in WEKA were applied on 60% of the

segmented images for each segmentation method, generating

a total of 6 feature subsets. Then, three subsets were defined

from these 6 subsets as follows. The first subset, F1, was built

taking those features that were in at least 5 of these 6 subsets.

The second and third subsets, F2 and F3, were built in a similar

way, considering those features that were in at least 3 and 2

groups, respectively. The point that is noteworthy is the fact

that once again Waters and Yen were the best performing

segmentation methods as can be seen in Table III.

TABLE III
10-FOLD CV ACCURACY USING SVM WITH SELECTED SUBSETS OF

FEATURES

Feature subset (number of features)
Methods F1 (14) F2 (29) F3 (34) All (55)

Fixed
81.94% 85.32% 85.69% 86.81%
±2.58 ±2.71 ±2.72 ±2.90

Dyn
73.75% 78.31% 79.06% 80.13%
±1.51 ±1.51 ±1.19 ±1.83

Waters
85.88% 88.94% 88.81% 89.81%

±2.31 ±1.94 ±1.95 ±2.36

Yen
85.56% 89.25% 89.63% 90.31%
±3.13 ±2.86 ±1.84 ±2.79

Otsu
78.81% 84.44% 84.44% 85.63%
±4.84 ±2.67 ±3.09 ±2.34

Isodata
78.88% 83.81% 85.06% 86.19%
±4.30 ±2.90 ±2.76 ±1.71

In the fourth experiment we assess the relevance of the pre-

processing steps in the segmentation methods. Results, using

SVM classifier with the same configuration used before, are

shown in Table IV. Four of the tested segmentation methods,

except Dyn and Yen, resulted in a slight better classification

accuracy when segmentation were applied without the pre-

processing step (histogram equalization or smoothing). How-

ever, this experiment alone is not sufficient to conclude that

pre-processing is or is not relevant. It only indicates that pre-

processing may be unnecessary for four of the methods while

it may be important for two. For a solid conclusion, additional

assessment is necessary and, if possible, using a much larger

amount of data.

TABLE IV
10-FOLD CV ACCURACY USING SVM ON IMAGES SEGMENTED

WITH/WITHOUT PRE-PROCESSING

Methods
Percentage of Instances Correctly Classified

With Pre-Processing Without Pre-Processing

Fixed 86.81% ±2.90 87.00% ±2.60

Dyn 80.13% ±1.83 79.56% ±2.11

Waters 89.81% ±2.36 90.25% ±1.75

Yen 90.31% ±2.79 87.25% ±2.43

Otsu 85.63% ±2.34 87.88% ±1.99

Isodata 86.19% ±1.71 88.13% ±2.32

In the fifth experiment we explored the idea of adjusting

parameter values of segmentation algorithms based on classi-

fication accuracy, in a similar way as in [9], [10]. In particular,

we tried different thresholding values for the fixed threshold

(Fixed) method, and the results are shown in Table V. As can



be seen, T = 180 yields better classification accuracy than the

originally chosen T = 170.

TABLE V
10-FOLD CV ACCURACY USING SVM ON IMAGES SEGMENTED WITH

Fixed METHOD FOR DIFFERENT THRESHOLD VALUES (T)

Threshold (T) 170 175 180 185 190

Correctly 86.81% 86.93% 88.19% 87.81% 87.44%
Classified Inst. ±2.90 ±2.38 ±3.71 ±2.90 ±2.58
out of 1600 1389 1390 1411 1405 1399

Note, however, that adjusting the threshold value by hand

is not an easy task due to great variations among images. In

Figure 5 we show some examples where T = 180 works better

than T = 170 while in Fig. 6 we show some examples where

the inverse happens.

(a) Input (b) T = 170 (c) T = 180

Fig. 5. Samples of 3 classes of plankton, segmented using the Fixed

method, with different thresholding values: from top to bottom, Thick Fibers,
Neoceratium out of focus, and Neoceratium. Better results are obtained with
T = 180.

(a) Input (b) T = 170 (c) T = 180

Fig. 6. Samples of 2 classes of plankton, segmented using the Fixed method,
with different thresholding values: Copepod dead (top row), and Odontella

sinensis (bottom row). Better results are obtained with T = 170.

In the last experiment we try to assess how contour preci-

sion affects results. For that, based on visual inspection, we

choose 314 well segmented images (157 calanoidas and 157

cyclopoidas). Then, we systematically dilated and contracted

the boundary of the objects, applying morphological dilation

and erosion using structuring elements (SE) of increasing size.

The classification accuracies with respect to SEs of different

size are shown in Table VI. As can be seen, the classification

accuracies relative to eroded boundaries decreases faster than

those for dilated ones as we increase the SE size. This

can be explained by the fact that erosions remove important

thin features such as antennas and legs, while dilation better

preserves the general shape for the species considered in this

experiment. This experiment shows that contour precision,

as far as the shape is preserved, does not affect accuracy

significantly.

TABLE VI
10-FOLD CV ACCURACY USING SVM ON ERODED/DILATED BOUNDARIES

WITH STRUCTURING ELEMENTS (SE) OF DIFFERENT SIZE

Erosion SE radius
Original

Dilation SE radius

10 5 3 3 5 10

87.90% 91.06% 90,44% 92.99% 92.69% 92.37% 90.48%
±4.73 ±5.37 ±7.02 ±6.35 ±4.73 ±4.97 ±5.64

IV. CONCLUDING REMARKS

In our case study, by analyzing classification accuracy,

we find out that Waters and Yen are the two segmentation

methods that consistently presented best results. In order to

reinforce this finding, we have varied the fixed part of the chain

(feature extraction+classification) with respect to the number

of features and also with respect to the classifier model. A

reassuring fact is that the finding is, in general, in agreement

with visual perception we have from the segmented images.

Altogether, we believe that the case study on plankton

classification presented in this work supports the applicability

of a system level evaluation method for assessing image

segmentation methods. The evaluation method not only helps

choosing a good segmentation method, but points where seg-

mentation may be failing, favoring a more holistic evaluation

of the process.

One potential drawback of the approach is the fact that it

is an indirect evaluation of solutions. In processings where

obtaining accurate segmentation is not a pursuit, a direct

measure of the performance of algorithms are not really

needed. Besides that, by repeating the evaluation process,

changing the fixed part, a more robust evaluation can be

achieved. This could be easily implemented using black-box

solutions for the fixed part. A second potential drawback

is computational cost. However, modern computing facilities

such as cloud and distributed computing can be used to

mitigate the computationally intensive part.

On the other hand, advantages and new evaluation possibili-

ties enabled by this type of approach surpass these drawbacks.

Some of the advantages and possibilities, are highlighted here.

With respect to segmentation, if there is interest in extracting



precise measures of a target, it may be helpful to first identify

its class and then apply a segmentation method customized

to that class. In this sense, then, we first need to find a

segmentation algorithm that favors correct classification of the

targets. Moreover, as already pointed, it may be possible to

identify where segmentation should be improved by analyzing

classification errors.

The evaluation approach studied in this work is particularly

useful in cases where ground-truth for a higher level task

can be obtained in a much easier way than for the low level

task. Since human beings, the agents that usually provide the

ground-truth, deal much better with semantically higher level

data, it is likely that much more training and validation data

will be available for the higher level tasks than the amount

that would be possible for the low level task. Amount of

training and validation data is important for statistically sound

evaluation.

Moreover, ground-truth is a means to embed context into

evaluation. This way of connecting evaluation to context is,

as already mentioned, more easy for semantically higher level

tasks. A direct consequence of this fact is that this system

level evaluation method is better suited than other methods to

big data analysis. In big data analysis, systems not only need

to process data efficiently but they also have to be able to

quickly adapt to variations in observed data. For instance, as

image acquisition devices are frequently improving, a partic-

ular image segmentation algorithm that had best performance

at a given moment may no longer be the best one after a

device is improved. In such situations, being able to quickly

replace the segmentation component is an important issue in

many applications. In order to do such replacement, a quick

evaluation of segmentation algorithms is also needed. The time

required to prepare ground truth for the segmentation task is

not feasible but the time required to manually classify a set

of images may be acceptable.

Although our case study is concerned with evaluation of

image segmentation methods, the same principle applies to

any low-level/high-level pair of processing tasks. We believe

that the existence of computational resources and technologies

such as cloud and distributed computing, and the emergence

of several software tools that can be used as black-boxes

for solving specific tasks will enable practical system level

evaluation of algorithms and methods in general. The case

study presented in this work is a contribution toward advances

in this type of evaluation.
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Fig. 4. Samples of 9 classes of plankton and respective segmentations using the six methods. From top to bottom, Neoceratium, Pyrocystis, Coscinodiscus,
Odontella sinesis, Copepod Cyclopoida, Chaetoceros, Copepod (Oithona) out of focus, Neoceratium out of focus, and Copepoda without antenna.


