
Real-Time Local Unfolding for Agents Navigation
on Arbitrary Surfaces

Iago U. Berndt, Anderson Maciel
Instituto de Informtica (INF)

Federal University of Rio Grande do Sul (UFRGS)
Porto Alegre, Brazil

Rafael P. Torchelsen
Centro de Desenvolvimento Tecnolgico (CDTec)

Federal University of Pelotas (UFPel)
Pelotas, Brazil

Figure 1: Examples of the meshes used in our tests. From left to right: Heptoroid, Waves, Glog and Meteorite. Our method
can handle 140,000 agents in real-time with current consumer class hardware. We used only 20,000 agents in these images to
allow visual inspection.

Abstract—Agents path planning is an essential part of games
and crowd simulations. In those contexts they are usually
restricted to planar surfaces due to the huge computational cost
of mapping arbitrary surfaces to a plane without distortions.
Mapping is required to benefit from the lower computational
cost of distance calculations on a plane (Euclidean distance)
when compared to distances on arbitrary surfaces (Geodesic
distance). Although solutions have been presented, none have
properly handled non-planar surfaces around the agent. In this
paper we present mesh parametrization techniques to unfold the
region around the agent allowing to extend to arbitrary surfaces
the use of existing path planning algorithms initially designed
only for planar surfaces. To mitigate the high computational
cost of unfolding the entire surface dynamically, we propose
pre-processing stages and massive parallelization, resulting in
performances similar to that of using a planar surface. We
also present a GPU implementation schema that permits a
solution to be computed in real-time allowing agents to navigate
on deformable surfaces that require dynamic unfolding of the
surface. We present results with over 100k agents to prove the
approach practicality.

Keywords-path planning; agents; computer graphics;

I. INTRODUCTION

Path planning restricted to a 3D mesh surface is an emerging
research topic. The applicability to several fields is one of the
motivations. Scenes where several agents move as a crowd
on an irregular surface have become familiar in movies. On
the other hand, for games and real-time crowd simulations
their use is still limited. One of the main reasons is the

lack of a technique that integrates the existing path planning,
mostly designed for planar surfaces, and arbitrary meshes
with a low computational cost. This is an important aspect
due to the considerable number of path planning algorithms
in the literature. Although those can be used on non-planar
surfaces the computational cost is prohibitive. For example,
most methods use distance computation between agents, which
on planar surfaces is a cheap Euclidean distance. On the other
hand, on irregular surfaces a geodesic distance is necessary
which presents a considerably higher computational cost.

Recent works have presented solutions that avoid the higher
costs of geodesic distance computation during local obstacle
avoidance. Those methods assume that the agent is always
surrounded by a planar surface, allowing the use of path
planning techniques designed for planar surfaces on an ar-
bitrary surface. Fig. 2 illustrates the problem of assuming
that the region around an agent is planar on an arbitrary
surface. At each frame each agent must compute a new
direction and speed according to their surroundings. To avoid
using geodesic distance computation the usual approach is to
orthogonally project the triangles around the agent onto the
plane of the triangle where the agent is located. This results
in all neighboring agents to be mapped to the same plane
where Euclidean distance can be computed. Notice, however,
that several collateral problems occur. Agents relatively distant
may be mapped very close to each other. In addition, the
heading direction of each agent is also mapped, which causes
navigation errors, as illustrated in Fig. 2. On the other hand,



unfolding the mesh around the agent avoids all those problems.

Unfolding

Orthogonal Projection

Figure 2: The left mesh illustrates an arbitrary surface with
several agents moving. The orthogonal projection is the ap-
proach used in previous works. It causes triangle overlap and
inconsistencies on the agent’s heading directions. Instead, our
proposal is to unfold the mesh around the agent, resulting
in the bottom right situation that is suitable to any planar
navigation algorithm.

To mitigate the distortion and allow the use of existing path
planning techniques on arbitrary meshes our proposal is to
unfold the region around each agent using a mesh parameter-
ization technique. This is similar to what advanced texturing
techniques do. To demonstrate the benefits of this approach,
we present results of agents navigating on animated meshes. In
addition, for static meshes, we propose a pre-processing stage
that avoids the computational cost of dynamically unfolding
the mesh. Results in Sec. IV show a smaller computational
footprint compared to using a planar region during the obstacle
avoidance stage, allowing the use of very complex meshes with
more than 100,000 agents in real-time. Different from similar
works, we show results that explore GPU parallelism, also
presenting a practical solution for real-time applications.

II. RELATED WORK

Path planning for agents or crowds is an active research
topic. However, most of the previous works are focused
on path planning for planar surfaces [1], [2], [3], [4], [5].
Although planar surfaces are the most common surfaces where
agents navigate there are applications, especially games, where
the agents are uncommon and walk over any surface. Movies
and simulations of insects, for example, also require a method
to use path planning on arbitrary surfaces.

To allow unrestricted agents movement on a 3D mesh
surface the path planning technique must consider limitations
that are not present in planar surfaces. The first work to
explore this topic used simple grid subdivision of the space
to identify collision routes [6]. Although the method can
compute paths on arbitrary meshes for several agents, the
collision avoidance was prone to errors. Another work [7]
used a collision avoidance method [8] on non-planar surfaces.
However, navigation was only on a simplified version of
the mesh that is locally planar. Assuming that the mesh is
always planar around the agent allows the use of existing path
planning algorithms. However, this imposes a limitation to the
complexity of the mesh that must be almost entirely planar.

Jund et al. [9] presented a unified structure to account for
path planning and proximity queries. To be able to use RVO2
algorithm [2] for local collision avoidance they flattened the
region around the agents. The paper is not specific about the
method used to flatten the mesh, but the surfaces used and the
agents size result in quasi-planar regions around the agent,
where the Euclidean distance and geodesic distance would
be very similar. The authors present results with scenes that
change over time, but those changes are only regarding moving
obstacles. In contrast, our approach allows surface animation.

Ricks and Egbert [10] also present a technique capable
of computing paths on 3D meshes. Firstly, the optimal path
is computed avoiding sharp turns. Then, obstacle avoidance
is conducted during the agent movement on the optimal
path. Also, collision with obstacles external to the surface
are accounted. Similarly to other previous works, the surface
around the agent is considered planar and no efficient parallel
implementation is proposed.

Another drawback of assuming that the region around the
agent is always planar is that it reduces the agent’s field of
view. For example, Golas et al. [11] proposed a long-range
collision avoidance that, if applied to a highly curved mesh
using the orthogonal projection, would result in considerable
error in the distance computation (Euclidian vs. Geodesic).

Another trend for obstacle avoidance is to mimic the real
vision [12]. Such approach would provide limited vision over
an intricate mesh when mimicking the agent’s vision, which
may be desired. The same desired feature can be obtained
with ordinary vision techniques, however, using our unfolding
approach with a long-range geodesic view.

In face of the exposed limitations of previous works, in this
paper we focus on an approach to unfold the mesh around the
agent. This accounts for surface animations and allows the use
of existing flat surface path planning techniques. Contrarily to
previous works, we also present a highly parallel and efficient
implementation.

III. ARBITRARY SURFACES UNFOLDING FOR AGENTS
NAVIGATION

Agent navigation usually involves two stages. The first stage
is path planning, where an optimal path is determined, e.g.
the shortest path between two points on a surface. The second
stage is local obstacle avoidance, where the optimal path is
dynamically modified to cope with the influence of moving
obstacles. Several methods are already available that can be
used in each of the two stages.

Our proposal is to provide an intermediary stage between
the other two as a common ground where the navigation is
computed. While common approaches for local obstacle avoid-
ance rely on the planification of the terrain around the agent
by orthogonal projection, our approach is to locally unfold
the surface around each agent. The unfolding is based on
traditional texturing techniques and avoids a number of issues



𝑣

𝑣

(a) Region to be unfolded (b) Optimal path (c) Proximity query (d) Local obstacle avoidance

Figure 3: (a) Firstly, a region around a triangle is defined and unfolded in to a chart. (b) The optimal path is computed on the
entire mesh and encoded as a distance field; here only the distance field on the chart is visible. The green dot denotes the agent
destination. (c) To select the possibly colliding agents, a proximity query is done. (d) Finally, the local obstacle avoidance is
computed on the chart plane and the new position is mapped back to the 3D surface.

Figure 4: The optimal path encoded as a distance field using
the Dijkstra’s algorithm. The red pixels are closer to the agent’s
goal, while the blue ones are the most distant. This example
illustrates only one of many distance fields in use.

of the previous methods. It creates a planar representation
(chart) where a suitable path can be planned. Fig 3 depicts
an overview of this processes.

In the remainder of this section we detail the two traditional
stages and the new stage of local unfolding, including a
pseudo-algorithm of our method.

A. Optimal Path

The optimal path can be defined as the path that would be
followed by an agent when no dynamic obstacle is present in
the simulation. Many times it is the shortest path, and it is
also called global path. Being optimal depends, however, on
the level of accuracy required by the application. Distance over
the graph (Dijkstra’s, A∗) [13] or geodesic distance [14] [15]
are commonly used as global paths. Other existing approaches,
instead, try to mimic the human behavior [16] [17].

Independently of the method used to build the path, it can
be mapped to the surface as the distance field as in Fig 4.

Implementation

In our implementation, the Dijkstra’s algorithm is used to

estimate the shortest path to the destination. The accuracy is
dependent on the mesh tessellation, but it is still a usual and
plausible approximation.

We compute the optimal path on the fly using an FIFO
queue to minimize simulation stall. In this queue schema, the
number of paths computed per frame is given by a time budget.
Each path can be computed independently, allowing a multi-
thread implementation. We use a CPU implementation where
each thread computes one path. Similar implementations exist
using the GPU [13]. However, we have opted by the CPU to
save the GPU for the unfolding in the next stage (Sec. III-B).

The FIFO approach is efficient especially when the number
of agents is smaller than the number of vertices on the mesh
surface. However, if the number of agents is greater than
the number of vertices, precomputation is more suitable. It
is also more memory efficient as many agents will share the
same destination points and thus the same map. Precomputing
reduces the computational cost during run-time and, even if the
mesh deforms, only the deformed regions will require update,
which is done with the FIFO approach.

As we intended to simulate a huge number of agents, we
pre-processed all possible distance fields, from each vertex,
avoiding line 7 of Algorithm 1. The resulting memory com-
plexity is vertices2. Although this results in a considerable
memory footprint, the solution is viable for real-time applica-
tions, especially games, where the path planning is just one
of the several algorithms running.

B. Local Unfolding

To compute a plausible path for each agent on an arbitrary
mesh, obstacle avoidance methods require a planar region
to be computed. As already stated, we propose to do so
by unfolding the mesh instead of projecting it on a plane.
Common unfolding approaches are to unfold the entire mesh
or non-intersecting regions (clusters) [18]. In any case, it is
desirable that the almost inevitable distortions resulting from



the unfolding be away from the agent. The unfolding result
is a chart (planar sub-mesh) that is independent of the agent’s
position on the central triangle of the chart, allowing several
agents to populate the same region.

Our method consists in creating one chart for each triangle
of the mesh and use it only for the agents on that triangle.
Fig 3a show the chart region. The agent’s view radius (v)
from the vertices of the central triangle determines the chart
radius. All triangles with at least one vertex inside this radius
are included. The Dijkstra’s algorithm is used to walk on the
mesh from the central triangle up to the radius limit.

After the chart’s triangles are selected that region is un-
folded using the LSCM algorithm [19]. We map the central
triangle to the plane without distortion, which can be done with
a single triangle by an orthogonal projection. We also lock it
so the LSCM algorithm do not change it during the unfolding
of the remaining of the chart. This is done to avoid distortion
on the region where the agent using the chart is located. The
unfolding begins by an orthogonal projection of the mesh over
a plane as an initial solution, in other words, assuming the
surface can be approximated by a plane, similar to previous
works [9][10]. However, the initial solution is optimized to
minimize distortion and overlapping triangles by the LSCM
algorithm [19] which is done by an iterative deformation of
the triangles (2D) similar to a mass-spring system [20].

Other unfolding methods exist and could be used as an
alternative to LSCM. We refer the reader to references [21],
[20] and [22]. In most cases, there will be some distortion
that will affect the agent’s movement. It is, nevertheless, lower
than assuming that the surrounding of the agent is planar as
in previous path planning methods. The effect in the agent’s
movement is explored in the results section.

Implementation

Unfolding techniques often imply pre-processing due to the
high computational cost. However, in our implementation the
regions that are unfolded contain few triangles. In our tests,
the charts contain from 13 to 133 triangles. This causes the
cost to process one chart to be small. Moreover, our unfolding
defines one independent chart for each mesh triangle, resulting
in a highly parallel distribution of work. For this reason, the
performance of a GPU implementation allows real-time update
of the charts during animation. Lines 1-4 in Algorithm 1 refer
to the pre-processing step, while lines 11-13 correspond to
the update. Fig 5 show a surface that is being interactively de-
formed over time. Notice that only charts containing triangles
affected by the animation need an update.

C. Local Obstacle Avoidance

Local obstacle avoidance is any algorithm that given an op-
timal path tries to follow the path while avoiding obstacles. As
mentioned before, there are several methods in the literature
that solve this problem for planar regions. Our approach allows
using any of those methods without modifications with non-

Algorithm 1: Simulation

1 for t ∈ triangles do
2 select triangles around t;
3 charts[t]← unfolding of the region around t;
4 end
5 while True do
6 for a ∈ agents waiting destination do
7 if current frame time budget allow then
8 Dijkstra(adestination);
9 end

10 end
11 for t ∈ modified mesh region do
12 charts[t]← unfolded charts[t];
13 end
14 for a ∈ agents do
15 c← current a chart;
16 RVO2 ← position (2D) of a in c ;
17 RVO2 ← velocity of a in c ;
18 RVO2 ← preferred velocity of a;
19 for i ∈ other agents on c and in a view range do
20 RVO2 ← position of i in c;
21 RVO2 ← velocity of i in c;
22 end
23 new velocity of a← RVO2;
24 new position of a← RVO2;
25 end
26 for a ∈ agents do
27 velocity of a← new velocity of a;
28 position of a← new position of a;
29 update triangle beneath a (chart);
30 calculate barycentric coordinates of a;
31 if a changed chart then
32 update preferred direction (optimal path) of a;
33 end
34 end
35 end

planar arbitrary surfaces. Only the input changes to include
the unfolded chart (Sec. III-B).

Given the chart we compute the agent’s barycentric coor-
dinates on the triangle where it is currently located, creating
a mapping between the chart domain and the original surface
mesh. The lines in Algorithm 1 containing ”RVO2” indicate
the interface with the local obstacle avoidance. Three inputs
are given to the RVO2 algorithm for the agent and its neigh-
bors: position, velocity and preferred velocity.

Implementation

To compute the direction of the preferred velocity, we
determine a reference point that represents an intermediary
target for the agent on the chart plane at the same distance
as the actual destination (green dot in Fig 3). The actual
destination cannot be used as it might cause convergence to
a local minimum. The reference point is then calculated, in



Figure 5: Before and after deformation of the mesh. The red
region denotes the charts that are gradually updated (unfolded)
while agents navigate.

our implementation, as the sum of the vectors departing from
the center of the current triangle to the n vertices around it
(Dijkstra’s is used again) weighted by the distance of each
vertex to the final destination as in Eq 1. We used n = 10.

refP t =

n∑
i=1

diri(distcenter − disti)

∧

distcenter (1)

Next step is to select agents in the view range of the current
agent (lines 19-22 in Algorithm 1). This requires a proximity
query (Fig. 3c). Our approach is similar to the one in reference
[9]. Each agent is associated to the triangle it is located and,
according to the view range of each agent, the surrounding
triangles are queried. Only the triangles in the chart need to
be queried, as no agent can see beyond it (Fig. 3a). To avoid
querying the entire chart we store a distance field from the
central triangle to the borders, which also allow agents with
different view ranges.

Finally, RVO2 or any other planar navigation algorithm is
applied to produce the new velocity and position of the agent
(lines 23-24 in Algorithm 1).

IV. RESULTS

Our implementation uses C++, OpenGL, OpenMP, NVIDIA
CUDATM, RVO2 Library [23] and OpenNL[24] (unfolding).
The following performance numbers have being collected on
an Intel I7TM4770k, 12GB ram and a NVIDIA GeForce GTX
980TMwith Microsoft Windows 7TM.

The rendering quality used to represent the agents are
application dependent. To avoid mixing computational costs,
the performance numbers do not consider the rendering cost.
We use pre-processing for charts and optimal path on all static
models, and we gradually update both on animated meshes.

The charts and local obstacle avoidance are computed in the
GPU while the optimal path uses the CPU. Such work distri-
bution allows both processors to work in parallel, although
there is a computational cost of transferring the data. Also,
most of the time the CPU is waiting for the GPU, due to the
higher cost of the local obstacle avoidance with several agents.
Fig 6 illustrates the workload distribution.

0.0s

0.010s

0.020s

0.030s

0.040s

40128 60096 80064 100032 120000 140064

Ti
m
e

Agents

Transfer

GPU

CPU

Figure 6: Total computational time of one iteration (Algorithm
1) on the Glob mesh. The time that the CPU is waiting for
the GPU is accounted in the GPU processing time.

(a) Surface scale 1x (b) Surface scale 5x

Figure 7: Two surface scales used on the tests. The right figure
is the result of scaling up the surface 5 times. The green
region represents the chart (Fig 3a) for the red agent. Note
that the agent’s size and field-of-view are relatively smaller as
the surface size increases, possibly impacting the quality and
performance of the path planning.

To demonstrate the method on different situations, the
results presented below use two different scales for the surface
where the agents navigate. Increasing the surface scale results
in a reduced field-of-view (chart) for the agents. It can then
be interpreted as a scale-down on the agent size. Notice on
Fig. 7 the effect on the number of neighboring agents and on
the complexity of the mesh that is unfolded.

Below, we analyze our results comparing our method (un-
folding) with the orthogonal projection of the agents surround-
ings onto the plane, which is used in previous works. We do
this following a number of criteria.

First criterion is distortion. Fig 8 illustrates the L2 stretch
[25] measured per triangle per chart. Each triangle is ac-
counted several times because each one is present in several
charts. The distortion around the agent is usually lower than
near the chart border due to the locking of the central triangle
during unfolding. This is not the case with the orthogonal
projection method. Overlapped triangles resulting from the
orthogonal projection (see Fig 2) also affect the quality of the
path planning and is an error that our method avoids. Fig. 9
illustrates the difference in quality.

The next criterion is average agent travel time and distance.
We tested each surface with increasing number of agents.



Model Triangles Time Memory Average triangles per chart
Chart unfold Chart unfold (S.5x) Optimal path Charts Charts (S.5x) Paths Surf. 1x Surf. 5x

Glob 29774 0.0579ms 0.0164ms 1.8766ms 28.63MB 10.67MB 0.82GB 36.01 13.43
Meteorite 81920 0.2337ms 0.0143ms 5.2388ms 208.54MB 28.52MB 6.25GB 95.33 13.04

Waves 81920 0.282ms 0.0141ms 4.8174ms 248.62MB 28.44MB 6.25GB 113.65 13.00
Heptoroid 40084 0.0755ms 0.0164ms 2.8737ms 44.53MB 14.56MB 1.49GB 41.60 13.60

Table I: This table shows the computational cost of the method. The unfold time is the average required to unfold a chart. The
optimal path is the average time for a single distance field. The memory consumption for the charts increases significantly
with the number of triangles. However, this can be computed gradually by prioritizing regions of the surface with agents.

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Tr
ia
n
gl
e
s

Distortion

Glob

Heptoroid

Meteorite

Waves

Unfolding
Projection

(a) Surface scale 1x

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Tr
ia
n
gl
e
s

Distortion

Glob

Heptoroid

Meteorite

Waves

Unfolding
Projection

(b) Surface scale 5x

Figure 8: Percentage of triangles according to the L2 stretch.
A distortion of 1 means the triangle was not distorted. Notice
on Table I that the larger surface result in charts with fewer
triangles, decreasing the distortion on both methods.

Initially, each agent was randomly placed on the surface. Then,
a goal for each agent is randomly computed. To avoid a goal
too close to the agent we randomly compute a new one if
the travel distance is shorter than the average of the initial
goals, and we repeat the processes if necessary. Fig. 9 shows
the results. Notice that the travel time and travel distance are
lower with our method (solid lines), which means the agents
found less errant paths. Also notice that the difference is more
significant with the surface in 1x scale, where the unfolded
charts are larger and contain more triangles. In 5x scale, the
neighboring surface becomes flatter in relation to the size of
the agent. There, orthogonal projection (dashed lines) suffers
less from distortions and overlap.

In Fig. 9, for the sake of evaluating the path quality, only the
agents that reached the destination within a given time limit
were accounted. Fig. 10 shows that using projection (dashed
lines) many agents get lost, and that this is more significant
as the total number of agents increases. All tests have used

0s

50s

100s

150s

200s

Tr
av
e
lT
im

e

Agents

Glob Heptoroid Meteorite Waves

400

600

800

1000

1200

1400

1600

Tr
av
e
lD

is
ta
n
ce

Agents

Unfolding Projection

(a) Surface scale 1x

120s

140s

160s

180s

200s

220s

Tr
av
e
lT
im

e

Agents

Glob Heptoroid Meteorite Waves

2500

2700

2900

3100

3300

3500

3700

Tr
av
e
lD

is
ta
n
ce

Agents

Unfolding Projection

(b) Surface scale 5x

Figure 9: The average time and distance required for all the
agents to reach their goals increases almost linearly with
the increase in the number of agents. Notice that orthogonal
projection incurs in higher times and distances due to the
distortion illustrated in Figs. 2 and 8.

the same amount of time. With projection, more than half of
the agents are still navigating for some surfaces when 20,000
agents are used. The trend indicates that it will be even worse
if the number of agents increases. Our unfolding method, on
the other hand, finds paths for all agents within the time given
for all simulations, being very effective.

Figs. 11 and 12 illustrate the efficiency of our method.
Fig. 11 presents the average agent speed, which is affected
by the increasing number of agents. Speed using our method
is always closer to the desired speed (100%) when compared
with projection. Fig. 12 shows the average deviation from the
optimal direction (given by the optimal path). Notice that the
local obstacle avoidance method has to apply more turns as the
number of agents increase, and that the final path is closer to
the optimal when the unfolding is used instead of projection.

As for computation efficiency, Fig. 13 depicts the framerate



0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

5088 10176 15264 20160

C
o

n
cl

u
d

e
d

 P
at

h
s

Agents

Glob
Heptoroid
Meteorite
Waves

Unfolding
Projection

Figure 10: Percentage of agents that concluded their paths in
a given time limit.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

5088 10176 15264 20160

Sp
e
e
d

Agents

Glob
Heptoroid
Meteorite
Waves

Unfolding
Projection

(a) Surface scale 1x

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

105.00%

40128 60096 80064 100032 120000 140064

Sp
e
e
d

Agents

Glob
Heptoroid
Meteorite
Waves

Unfolding
Projection

(b) Surface scale 5x

Figure 11: Agents average speed in relation to the desired
speed (100%). The speed variation is lower on the larger
surface due to the fewer encounters between agents, allowing
the agents to follow the optimal path with minimal deviation.

with an increasing number of agents. Notice that the FPS
maintains near or above 30 for all meshes even with the
unprecedentedly high number of 140 thousand agents.

The depression around sec. 60 in Fig. 13 is caused by
a peak in the number of neighbors around that time, as
shown in Fig. 14. Table I presents information about the
meshes used and the computational cost for pre-processing
the charts and optimal paths. Also, it shows the average
number of triangles per chart. For surfaces with animation,
the performance is degraded by the number of charts and
optimal paths recomputed per frame. Notice that both can be
recomputed gradually to avoid instability in the FPS. However
this results in paths less accurate before the update completes.

0°

10°

20°

30°

40°

50°

60°

70°

80°

90°

5088 10176 15264 20160

A
n
gl
e
o
f
D
ev
ia
ti
o
n

Agents

Glob
Heptoroid
Meteorite
Waves

Unfolding
Projection

(a) Surface scale 1x

0°

5°

10°

15°

20°

25°

30°

40128 60096 80064 100032 120000 140064

A
n
gl
e
o
f
D
ev
ia
ti
o
n

Agents

Glob
Heptoroid
Meteorite
Waves

Unfolding
Projection

(b) Surface scale 5x

Figure 12: Deviation from the optimal path (0◦) as the number
of agents increase.

V. DISCUSSION AND LIMITATIONS

The charts can contain holes, which we do not consider as
obstacles. Often, the holes are formed on the base of surface
spikes and the chart will surround it. One approach to avoid
holes is to cut the chart from the farthest point in the hole
border to the closest point in the chart border. We did not
pursue this because the hole is usually near the border of
the chart due to the chart being formed as a growing region
away from the agent position. Also, there was not a significant
increase in collision to justify the performance penalty to
handle it. Notice that every time the agent crosses a triangle
border a new chart is selected, consequently moving the hole
away from the agent. The same problem is present when
orthogonal projection is used.

Rendering crowds as the ones in Fig. 1 results in a substan-
tial computational cost. Although our method can compute
the paths in real-time for more than 140,000 agents, rendering
in real-time is challenging. We did not pursue rendering
optimizations (LOD or geometry instancing) in this paper.

VI. CONCLUSION AND FUTURE WORKS

In this work, we introduced a novel method to allow the
use of existing ordinary flat surfaces path planning techniques
on arbitrary irregular 3D surfaces. The use of those techniques
on arbitrary surfaces was limited, specially in terms of quality
of the final paths and low performance. Our results show
that the insertion of the unfolding stage between the optimal
path and the local obstacle avoidance stages allows real-time



Glob Heptoroid

0
s

6
0

s
1

2
0

s
1

8
0

s
2

4
0

s
3

0
0

s 0
s

6
0

s
1

2
0

s
1

8
0

s
2

4
0

s
3

0
0

s 0
s

6
0

s
1

2
0

s
1

8
0

s
2

4
0

s
3

0
0

s0

100

200

300

400

500

600

700

800

0
s

6
0

s
1

2
0

s
1

8
0

s
2

4
0

s
3

0
0

s

FP
S

5088 Agents 10176 Agents 15264 Agents 20160 Agents

Meteorite Waves

(a) Surface scale 1x
Glob Heptoroid

0
s

6
0
s

1
2
0
s

1
8
0
s

2
4
0
s

3
0
0
s 0
s

6
0
s

1
2
0
s

1
8
0
s

2
4
0
s

3
0
0
s 0
s

6
0
s

1
2
0
s

1
8
0
s

2
4
0
s

3
0
0
s0

30
60
90

120
150
180
210
240
270

0
s

6
0
s

1
2
0
s

1
8
0
s

2
4
0
s

3
0
0
s

FP
S

40128 60096 80064 100032 120000 140064

Meteorite Waves

(b) Surface scale 5x

Figure 13: FPS variation during several simulations. Notice
the correlation with the number of neighbors in Fig. 14.

Glob Heptoroid

0
s

6
0

s
1

2
0

s
1

8
0

s
2

4
0

s
3

0
0

s 0
s

6
0

s
1

2
0

s
1

8
0

s
2

4
0

s
3

0
0

s 0
s

6
0

s
1

2
0

s
1

8
0

s
2

4
0

s
3

0
0

s0

5

10

15

20

25

30

35

0
s

6
0

s
1

2
0

s
1

8
0

s
2

4
0

s
3

0
0

s

N
e
ig
h
b
o
rs

5088 Agents 10176 Agents 15264 Agents 20160 Agents

Meteorite Waves

Figure 14: Average variation on the number of neighbors
(agents inside another agent view range). The higher the
number, the higher the computational cost to avoid collision.

performance for over 100,000 agents, which is more than 10
times higher than previous works [6], [9], [10].

We also proposed a combination of pre-processing stages
and update queues that reach performances similar to those
previously obtained only on simpler planar surfaces. Thus, our
method can handle interactively animated deformable terrains
in real-time. We finally analyzed the performance of a massive
parallel implementation to prove the method applicability.
None of these aspects were present in previous works.

As future work, we would like to explore a levels-of-detail
approach to the path planning of agents occluded of the view
or far away from the camera. Such method would be useful
for games, especially Real-Time-Strategy.

ACKNOWLEDGMENT

We gratefully acknowledge the partial financial support
from FAPERGS through grant 2283-2551/14-8, and CNPq
through grants 305071/2012-2 and 449555/2014-3. Also
NVIDIA Corporation for hardware donation.

REFERENCES

[1] J. van den Berg, S. Patil, J. Sewall, D. Manocha, and M. Lin, “Interactive
navigation of multiple agents in crowded environments,” in Proceedings
of the 2008 ACM symposium on Interactive 3D graphics and games,
2008.

[2] S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. Lin, D. Manocha, and
P. Dubey, “Clearpath: highly parallel collision avoidance for multi-agent
simulation,” in Proceedings of the 2009 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 2009.

[3] J. Snape, J. van den Berg, S. J. Guy, and D. Manocha, “The hybrid
reciprocal velocity obstacle,” IEEE Transactions on Robotics, vol. 27,
no. 4, 2011.

[4] M. Kapadia, A. Beacco, F. Garcia, V. Reddy, N. Pelechano, and N. I.
Badler, “Multi-domain real-time planning in dynamic environments,” in
Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, 2013.

[5] F. M. Garcia, M. Kapadia, and N. I. Badler, “Gpu-based dynamic search
on adaptive resolution grids,” in IEEE International Conference on
Robotics and Automation, 2014.

[6] R. P. Torchelsen, L. F. Scheidegger, G. N. Oliveira, R. Bastos, and J. L.
Comba, “Real-time multi-agent path planning on arbitrary surfaces,” in
Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive
3D Graphics and Games, 2010.

[7] H. Jiang, W. Xu, T. Mao, C. Li, S. Xia, and Z. Wang, “Continuum crowd
simulation in complex environments,” Computers & Graphics, vol. 34,
no. 5, 2010.

[8] A. Treuille, S. Cooper, and Z. Popović, “Continuum crowds,” in ACM
Transactions on Graphics, vol. 25, no. 3, 2006.

[9] T. Jund, P. Kraemer, and D. Cazier, “A unified structure for crowd
simulation,” Computer Animation and Virtual Worlds, vol. 23, 2012.

[10] B. C. Ricks and P. K. Egbert, “A whole surface approach to crowd
simulation on arbitrary topologies,” IEEE Transactions on Visualization
and Computer Graphics, vol. 20, no. 2, 2014.

[11] A. Golas, R. Narain, and M. Lin, “Hybrid long-range collision avoid-
ance for crowd simulation,” in Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, 2013.

[12] J. Ondřej, J. Pettré, A.-H. Olivier, and S. Donikian, “A synthetic-vision
based steering approach for crowd simulation,” in ACM Transactions on
Graphics (TOG), vol. 29, no. 4, 2010.

[13] A. Bleiweiss, “Gpu accelerated pathfinding,” in 23rd ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware, 2008.

[14] A. A. Davidson, S. Baxter, M. Garland, and J. D. Owens, “Work-efficient
parallel gpu methods for single-source shortest paths,” in International
Parallel and Distributed Processing Symposium, vol. 28, 2014.

[15] X. Ying, S.-Q. Xin, and Y. He, “Parallel chen-han (pch) algorithm for
discrete geodesics,” ACM Transactions on Graphics, vol. 33, 2014.

[16] B. C. Ricks and P. K. Egbert, “Optimal acceleration thresholds for non-
holonomic agents,” The Visual Computer, no. 6-8, 2014.

[17] S. Singh, M. Kapadia, B. Hewlett, G. Reinman, and P. Faloutsos, “A
modular framework for adaptive agent-based steering,” in Symposium
on Interactive 3D Graphics and Games. ACM, 2011.

[18] N. A. Carr, J. Hoberock, K. Crane, and J. C. Hart, “Rectangular multi-
chart geometry images,” in Proceedings of the Fourth Eurographics
Symposium on Geometry Processing, 2006.

[19] B. Lévy, S. Petitjean, N. Ray, and J. Maillot, “Least squares conformal
maps for automatic texture atlas generation,” in ACM Transactions on
Graphics (TOG), vol. 21, no. 3. ACM, 2002.

[20] K. Hormann, K. Polthier, and A. Sheffer, “Mesh parameterization: theory
and practice,” in ACM SIGGRAPH ASIA 2008 courses.

[21] L. Liu, L. Zhang, Y. Xu, C. Gotsman, and S. J. Gortler, “A local/global
approach to mesh parameterization,” in Computer Graphics Forum,
vol. 27, no. 5. Wiley Online Library, 2008.

[22] F. de Goes, K. Crane, M. Desbrun, P. Schröder et al., “Digital geometry
processing with discrete exterior calculus,” in ACM SIGGRAPH 2013
Courses, 2013.

[23] J. van den Berg, S. J. Guy, J. Snape, M. C. Lin, and D. Manocha,
“Reciprocal collision avoidance for real-time multi-agent simulation,”
2014. [Online]. Available: http://gamma.cs.unc.edu/RVO2/

[24] Project-Team-ALICE, “Opennl (open numerical library),”
http://alice.loria.fr/index.php/software/4-library/23-opennl.html, 2014.

[25] P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe, “Texture mapping
progressive meshes,” in Proceedings of the 28th annual conference on
Computer graphics and interactive techniques. ACM, 2001.


