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Abstract—Motivated by the ALARA (As Low As Reasonably

Achievable) principle, this paper proposes to denoise Computed

Tomography (CT) images by using a double-filtering approach.

First, projection data were filtered using methods to filter

Poisson noise (pre-filtering step). Then the filtered backprojection

(FBP) algorithm was applied to image reconstruction. After, the

reconstructed images were denoised by using suitable methods

for filtering Gaussian noise (post-filtering step). Finally, known

metrics of image quality evaluation (such as SSIM and PSNR)

were used to compare the filtered images with the ones considered

ideal images in various combinations of filters. The results lead to

the conclusion that a second filtering applied on image domain

can improve the CT denoising quality from pre-filtering step.

Thus, CT double-filtering strategy achieved a better balance

between noise reduction and details preservation.
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I. INTRODUCTION

In order to avoid an invasive analysis in the patient, Com-
puted Tomography (CT) was established as a method of ob-
taining internal images of a body (or object) by emitting X-ray
or �-ray. This two-dimensional image of a three-dimensional
body is represented as a slice in which the rays goes from the
emissor to the detector, crossing the body.

Traditionally, CT is associated with medical diagnosis.
However, this technique of imaging has applications in many
other areas, such as agriculture and industry.

The data obtained by the radiation detector are known
as projection data whose noise follows Poisson statistics: a
signal-dependent noise [1], [2] characterized by having the
same mean and variance. Furthermore, the projection data has
Poisson noise due to the low photon counting [3].

Then, a reconstruction method is applied in projection data
to generate an image of the slice of the body/object in analysis.

In addition, the reconstructed CT image noise can be
approximated by a zero-mean, signal-dependent Gaussian
noise [4] (by invoking the Central Limit Theorem [2]).

Thus, in accordance with the ALARA principle (As Low As
Reasonably Achievable) [4] which establishes the idea that
radiation doses should be the lowest possible for a suitable
exam acquisition (in order to reduce radiation emission for
CT), this paper proposes to use a double denoising method to
filter noisy CT data acquired on low radiation dose, in order
to get a better balance between details preservation and noise
reduction.

Basically, a double-filtering in this research is to filter the
projection data (pre-filtering), rebuild them and then apply
a new filtering stage (post-filtering), but now on the recon-
structed image.

Fig. 1. Block diagram for CT double-filtering

Some related works using double-filtering for CT images
can be found in the literature [5], [6]. The work [6] uses a
Penalized Weighted Least-Squares approach with Karhunen-
Loève (KL-PWLS) to filter sinogram and a NLM approach for
image domain filtering. On the other hand, [5] uses Kalman
filter for pre-filtering step and Wavelet Shrinkage for post-
filtering step.

Contributions: In summary, the contribution of this paper
is a comprehensive study of double noise filtering in CT, in
order to take the best advantages of both filtering methods,
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by using state-of-art and classical methods to filter Poisson
noise in CT projections and Gaussian noise in reconstructed
image. Its main goal is to reduce noise levels on CT images
respecting ALARA philosophy.

This paper is organized as follows. Section II presents the
methodology of this work and also describes the methods
used to develop the proposed idea. Section III discusses
the experimental considerations and the results are shown
in Section IV. Finally, the conclusions and future work are
discussed in Section V.

II. METHODOLOGY

As previously mentioned, our study consists of CT double
denoising, filtering both (pre- and post-) reconstruction steps,
as illustrated in Fig. I.

In the experiments, the projection data were acquired with
different exposure times of tomograph rays, which gave us
images that we consider as ideal (20 seconds of exposure)
and noisy (3 seconds of exposure).

Anscombe Tranform: Given the fact that the Poisson
noise is signal-dependent, Anscombe Transform (AT) [7] aims
to stabilize the variance of the noise. It is able to transform
a dependent noise signal to an additive noise, approximately
Gaussian, with zero mean and unit variance. Thus, it is
common to see the pre-filters working in Anscombe domain,
and after the process, the inverse Anscombe Transform (IAT)
is applied, so that the image is ready to go trough a recon-
struction process.

So, for filtering this kind of data (pre-filtering step), whose
noise follows a Poisson distribution [8], the pre-filters used
were: Pointwise Wiener filter (1D-PWF) [9], tradicional Non-
Local Means (AT-NLM) [10] and a version for Poisson
noise (P-NLM) [3], Maximum a Posteriori (MAP) [8], Block-
Matching and 3D filtering (AT-BM3D) [11] and contextual
versions of the Wiener filter based on Markov Random Fields
(MRF), such as Generalized Wiener filter (AT-GWF) [12]
and Wiener filter with Isotropic (AT-IWF) and Separable (AT-
SWF) [13] MRF. All these filters were applied on Anscombe
Domain, except for the MAP and P-NLM.

After a pre-filtering, the filtered data goes trough a mathe-
matical method for image reconstruction. For this paper, the
traditional Filtered Backprojection (FBP) algorithm [1] was
used.

The filtering in image domain is known as post-filtering, and
for those, we investigated: 2D-PWF [9], NLM [10], GWF [12],
BM3D [11] and also the filters IWF and SWF [13].

In the following Subsections, we present a brief description
of the filters used in our study.

A. Pointwise Wiener Filter (PWF)

Defined as a linear minimum mean square error (LMMSE)
estimate [9] of a desired signal from a noisy, the PWF filter
is a traditional method of filtering in CT.

This noise reduction method has its process defined by the
following equation:

gs = fs + vs, (1)

where gs is the observed noisy signal, fs the noise-free signal
and vs is the noise at s pixel.

The Pointwise version of this filter is proposed by [9], with
the following equation:

ˆfs = µf s +
�2
fs

�2
f s

+ �2
vs

�
gs � µgs

�
. (2)

where µf s is the local mean of f and �2
fs

and �2
vs are the local

variances of the original image f and the noise v, respectively.
Finally, it is important to mention that the 1D version (1D-

PWF) [8] obtains the image statistics (mean and variance) by
using a 1D window, while 2D-PWF uses a 2D one.

B. Generalized Wiener Filter (GWF)

Also known as Wiener filter with Fisher information [12],
it is a derivation of the just mentioned method where Fisher
information represents the data quantity which a random
variable has under the parameter to be estimated. This filter is
described by:

ˆfs = µf s

+

�2
f s

�2
f s

+ �2
vs

⇥
↵(gs � µf s)

+ (1� ↵)
X

gt2⌘s

(gt � µgs)
⇤
, (3)

where ↵ controls the context level to be considered in the
estimation of the noise-free pixel and gt is a neighbor pixel
in the neighborhood ⌘s of s.

C. Pointwise - Maximum a Posteriori (MAP)

The method is a way to obtain the signal pointwise estimator
which has a great performance when known this signal statis-
tics. According to [8] a MAP estimator regarding Poisson and
Gaussian as likelihood and a priori distributions, respectively,
is given by the equation:

ˆfs =
µgs � �2

gs

q
(�2

gs
� µgs)

2
+ 4�2

gs
gs

2

. (4)

D. Non-Local Means (NLM)

Due to patch (P) redundancies in an image, NLM [10]
was created to incorporate this information into denoising.
Basically, the original estimated value is given by the weighted
average of noisy pixels in a region. Traditionally, the weights
of its averages are obtained by the Euclidean distance to mea-
sure similarity between the central and the neighbor patches.
The following equation

ˆfs =

P
t2W !(s, t)gtP
t2W !(s, t)

, (5)

represents the method, where to get noise-free estimation of an
image pixel ( ˆfs), W represents a search window, gt is a noisy
pixel in this window and !(s, t) are the weights corresponding



to the similarity between patches centered at s and t. The
weights are defined by the formula:

!(s, t) = exp

 
� 1

h

X

k2P

|gs,k � gt,k|2
!
, (6)

where the parameter h controls the smoothing, and gs,k and
gt,k are k-th elements of the noisy patches at s and t,
respectively.

As the Euclidean distance is suitable for additive white
Gaussian noise (AWGN), P-NLM [3] is an adapted version of
NLM, but for Poisson noise. The main modification consists in
changing the similarity measure in order to get a more suitable
one for Poisson noise.

E. Block-Matching and 3D filtering (BM3D)

It is an state-of-art denoising method which does the similar
block matching (2D), accumulating them in 3D groups.

BM3D [11] preserves well the textures, repeated areas,
uniform areas, edges (even the thin ones) and singularities.
However, the main problem is the addition of artifacts to the
images.

The idea of using BM3D as a pre-filter in Anscombe
Domain (AT-BM3D) was inspired by [14], [15]. In [14],
BM3D was applied for the first time on the Anscombe Domain
to evaluate the proposal of an exact inverse Anscombe Trans-
form. In turn, [15] applied it to denoise Positron Emission
Tomography (PET).

F. Wiener filters with Isotropic (IWF) and Separable (SWF)

MRF

Supposing a lexicographic notation, ˆf is a window esti-
mative of the original N pixels image, defined as a linear
combination of g, given by

ˆf =

N�1X

n=0

↵ng[n] (7)

where ↵n are the weights which minimize ✏ = f � ˆf and
g is the pixel of a noisy image. This is the same as mini-
mizing the expected value of ||✏||2, obeying the Orthogonality
Principle [13].

This way, we get a system of N equations with N un-
knowns, admitting only one solution, as described by

Rgg↵ = Rfg, (8)

Moreover, it is important to mention that each line of Rgg

matrix represents the autocorrelation of g pixels between each
pixel and each other point of a window, while Rfg is a
vector which represents the autocorrelation of f pixels from
the center point (current) and all other observed values of the
window.

For SWF, the autocorrelation matrices for each central pixel
(i, j) in a W ⇥W window are:

Rgg =

(
�2
f (i, j) + �2

v(i, j), main diagonal
�2
f (i, j)⇢

|i0�i00|
V ⇢|j

0�j00|
H , remainder

(9)

Rff = (�2
f (i, j)⇢

|i0�i|
V ⇢|j

0�j|
H ); (10)

where ⇢V and ⇢H are vertical and horizontal correlation coef-
ficients, both valued 0.95, and (i0, j0) and (i00, j00) correspond
to pixels positions in a window.

On the other hand, we have for IWF:

Rgg =

(
�2
f (i, j) + �2

v(i, j), main diagonal
�2
f (i, j)⇢

p
(i0�i00)2+(j0�j00)2 , remainder

(11)

Rff = (�2
f (i, j)⇢

p
(i0�i)2+(j0�j)2

), (12)

where ⇢ is a correlation coefficient, also valued 0.95.

III. EXPERIMENTAL EVALUATION

For our experiments, it is necessary to reinforce some topics:
(i) we used Matlab software for implementations; (ii) there
was a visual evaluation and also quantitative, by using Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
(SSIM) [16] comparing the final images, after the recon-
struction process; (iii) comparisons were made with double-
filtering and also with pre- and post-filtering only; (iv) standard
deviation of the images were manually obtained by selecting a
constant area of each image and taking notes; (v) the standard
deviations of the noisy images and also of the pre-filtered ones
(used only for post-filtering) are in Table I.

TABLE I
STANDARD DEVIATIONS PARAMETERS

Methods

Standard Deviation

Image 1 Image 2

Noisy Image 22.4 16.2
MAP 19.3 8.8
P-NLM 26.5 9.6
AT-NLM 20.3 16.3
AT-BM3D 11.6 5.7
1D-PWF 21.6 4.0
AT-GWF 15.2 10.6
AT-IWF 12.8 14.1
AT-SWF 19.5 13.6

IV. RESULTS

The filtered images obtained by using the proposal are
displayed in Figs. 2 to 7 and the results in terms of PSNR
and SSIM are shown in Tables II to IV, comparing ideal
images (exposed to 20 seconds of radiation) with filtered noisy
images (exposed to 3 seconds of radiation). The ideal and
noisy images used in these experiments are displayed in Figs. 2
(items a and b) and 3 (items a and b) for Image 1 and 2,
respectively. In addition, these results are discussed in next
Subsections.

A. Pre-Filtering

According to Table II and Figs. 2 and 3, AT-BM3D has the
best SSIM results while AT-GWF has the best PSNR results.
Although visually having a superior reduction of noise levels
comparing with AT-GWF, AT-BM3D added some artifacts in
the images.

In the second place, the NLM for Poisson noise (P-NLM)
also obtained interesting results, as well as 1D-PWF, AT-IWF
and AT-SWF.



In addition, we compared the higher quantitative results with
the second ones. A pre-filtering using AT-GWF improved in
terms of PSNR around 0.1 dB for Image 1 in comparison with
AT-IWF and 0.98 dB comparing with AT-BM3D for Image 2.
For SSIM results, AT-BM3D improved 0.05 comparing with
P-NLM for Image 1 and 0.02 in comparison with AT-GWF
for Image 2.

Finally, MAP and AT-NLM underperformed the methods
above, displaying a low Signal-to-Noise Ratio (SNR).

TABLE II
PSNR AND SSIM RESULTS FOR PRE-FILTERING

Image 1 Image 2

Methods

PSNR

(dB)

SSIM

PSNR

(dB)

SSIM

Noisy Image 15.91 0.27 19.88 0.56
MAP 17.79 0.33 22,17 0.62
P-NLM 20.25 0.43 24.47 0.63
AT-NLM 16.79 0.31 20.46 0.49
AT-BM3D 18.89 0.48 24.90 0.72

1D-PWF 20.08 0.40 22.54 0.64
AT-GWF 20.52 0.42 25.88 0.70
AT-IWF 20.45 0.42 21.65 0.62
AT-SWF 19.53 0.41 21.95 0.64

B. Post-Filtering

In quantitative terms (Table III), as well as in qualitative
terms for post-filtering displayed in Figs. 4 and 5, the best
results appeared when applied BM3D filter. Visually, a better
balance between noise reduction and detail preservation was
achieved comparing with any other applied method but yet
adding some artifacts in the images.

It is believed that the addition of artifacts when using AT-
BM3D and BM3D is because of the patch shape, specially in
the pre-filtering case. The data above and below the sinogram
line do not correspond to the neighbor pixels in image domain.
Thus, patch shape should be defined in the projection line (1-
D) and not squared (2-D), as it is implemented.

As a result of the BM3D post-filtering, there was an
improvement of 0.19 dB and 0.12 dB for Images 1 and 2
respectively, comparing with IWF and SWF in terms of PSNR.
Conversely, SSIM improved in 0.02 comparing with both IWF
and SWF for Image 1, while Image 2 filtered with BM3D and
SWF achieved the same values.

Secondly, similar results are obtained in SWF, IWF and
GWF (for PSNR and SSIM). Lastly, 2D-PWF and NLM did
not achieve so interesting visual results, because of excessive
smoothing.

In addition, it is noteworthy that post-filters are inferior than
pre-filters, in qualitative and quantitative evaluations.

C. Double-filtering

For double-filtering, the results are shown in Table IV and
Figs. 6 and 7. It is noteworthy that Table IV follows the
name pattern: X + Y , where pre-filters and post-filters are
represented by X and Y , respectively.

Moreover, the lines and columns in Figs. 6 and 7 represent
the pre-filters applied to noisy CT images and post-filters
applied to the pre-filtered data, respectively.

TABLE III
PSNR AND SSIM RESULTS FOR POST-FILTERING

Image 1 Image 2

Methods

PSNR

(dB)

SSIM

PSNR

(dB)

SSIM

Noisy Image 15.91 0.27 19.88 0.56
NLM 16.23 0.26 19.22 0.47
BM3D 17.28 0.37 21.05 0.64

2D-PWF 16.26 0.26 19.45 0.50
GWF 16.95 0.34 20.75 0.63
IWF 17.09 0.35 20.93 0.63
SWF 17.09 0.35 20.93 0.64

Thereby, after all double denoising evaluations, it is clear
that using a post-filtering in the pre-filtered data projection
considerably improves the results in general, comparing to the
only pre-filtered results.

Concerning a comparison between a pre-filter application
and double-filtering with the same pre-filter, the results im-
proved in general when applied a post-filter to the pre-filtered
image. However, the use of 2D-PWF and NLM decreased
some results, mainly for Image 2.

For instance, a double-filtering using MAP, P-NLM, AT-
NLM, AT-BM3D, 1D-PWF and AT-SWF improved an average
of 1.08 dB, 0.98 dB, 0.82 dB, 1.31 dB, 1.06 dB and 0.67 dB
respectively in terms of PSNR for Image 1 (AT-GWF and AT-
IWF did not improve). In SSIM comparison, MAP, P-NLM,
AT-NLM, AT-BM3D, 1D-PWF, AT-GWF, AT-IWF and AT-
SWF achieved an enhancement of average 0.05, 0.02, 0.00,
0.04, 0.01, 0.01 and 0.02 for Image 1.

The Image 2, for example, improved in terms of PSNR
in all methods except AT-BM3D and AT-GWF. On the other
hand, SSIM results were worse in the comparison with only
pre-filters, except the AT-NLM which improved an average of
0.08 and AT-IWF kept the same result in average.

Finally, the best improvements comparing with the noisy
images is described as follows. In terms of PSNR, this is
obtained by combining AT-GWF + BM3D for Image 1 (6.05
dB) and Image 2 (6.52 dB). On the other hand, in terms of
SSIM, AT-BM3D + BM3D and AT-BM3D + SWF performed
the highest results for Image 1 (0.22) and the pre-filter AT-
BM3D for Image 2 (0.16).

V. CONCLUSION

In this paper, we proposed a review and comparison of the
pre-filters, post-filters and double-filters, with CT applications.
In other words, the denoising methods were used to filter
both Poisson (in projection domain) and Gaussian (in image
domain) noises.

In addition, to our knowledge, the proposal to use contextual
Wiener filters and BM3D on Anscombe Domain to denoise CT
was applied for the first time. They achieved a good quality
outcome data.

The experiments were performed by using state-of-art meth-
ods and classical for each step. They show good results in
general, improving quantitatively and qualitatively the result-
ing images, when compared to pre-filtering.



(a) Ideal (20s) (b) Noisy (3s) (c) MAP (d) P-NLM (e) AT-NLM

(f) AT-BM3D (g) 1D-PWF (h) AT-GWF (i) AT-IWF (j) AT-SWF

Fig. 2. Original Image, Noisy Image and Results of pre-filtering for Image 1

(a) Ideal (20s) (b) Noisy (3s) (c) MAP (d) P-NLM (e) AT-NLM

(f) AT-BM3D (g) 1D-PWF (h) AT-GWF (i) AT-IWF (j) AT-SWF

Fig. 3. Original Image, Noisy Image and Results of pre-filtering for Image 2

(a) NLM (b) BM3D (c) 2D-PWF (d) GWF (e) IWF (f) SWF

Fig. 4. Results of post-filtering for Image 1

(a) NLM (b) BM3D (c) 2D-PWF (d) GWF (e) IWF (f) SWF

Fig. 5. Results of post-filtering for Image 2



TABLE IV
PSNR AND SSIM RESULTS FOR DOUBLE-FILTERING

Image 1 Image 2

Methods

PSNR

(dB)

SSIM

PSNR

(dB)

SSIM

Noisy Image 15.91 0.27 19.88 0.56
MAP + NLM 18.13 0.33 20.98 0.50
MAP + BM3D 19.53 0.43 23.47 0.67
MAP + 2D-PWF 18.29 0.34 21.70 0.57
MAP + GWF 18.96 0.39 22.99 0.65
MAP + IWF 19.14 0.40 23.24 0.67
MAP + SWF 19.15 0.40 23.25 0.68
P-NLM + NLM 21.18 0.44 22.86 0.53
P-NLM + BM3D 21.50 0.48 25.72 0.65
P-NLM + 2D-PWF 21.17 0.44 23.70 0.57
P-NLM + GWF 21.21 0.46 25.03 0.63
P-NLM + IWF 21.14 0.46 25.72 0.66
P-NLM + SWF 21.16 0.46 25.72 0.66
AT-NLM + NLM 17.07 0.31 20.42 0.49
AT-NLM + BM3D 18.10 0.41 22.27 0.62
AT-NLM + 2D-PWF 17.15 0.32 20.64 0.50
AT-NLM + GWF 17.71 0.37 21.93 0.60
AT-NLM + IWF 17.82 0.38 22.08 0.61
AT-NLM + SWF 17.83 0.38 22.08 0.61
AT-BM3D + NLM 19.51 0.47 22.58 0.56
AT-BM3D + BM3D 19.24 0.49 24.81 0.67
AT-BM3D + 2D-PWF 19.51 0.48 24.48 0.65
AT-BM3D + GWF 19.39 0.48 23.99 0.65
AT-BM3D + IWF 19.12 0.50 24.82 0.69

AT-BM3D + SWF 19.11 0.49 24.87 0.69

1D-PWF + NLM 20.63 0.41 21.54 0.51
1D-PWF + BM3D 21.69 0.47 23.17 0.64
1D-PWF + 2D-PWF 20.78 0.41 22.22 0.59
1D-PWF + GWF 21.16 0.44 22.94 0.63
1D-PWF + IWF 21.29 0.45 23.17 0.67
1D-PWF + SWF 21.31 0.45 23.18 0.67
AT-GWF + NLM 21.03 0.42 23.45 0.54
AT-GWF + BM3D 21.96 0.48 26.40 0.68
AT-GWF + 2D-PWF 21.44 0.43 24.45 0.59
AT-GWF + GWF 21.32 0.44 25.62 0.66
AT-GWF + IWF 21.30 0.45 26.09 0.69

AT-GWF + SWF 21.32 0.45 26.16 0.69

AT-IWF + NLM 20.89 0.42 20.26 0.48
AT-IWF + BM3D 21.78 0.47 22.52 0.65
AT-IWF + 2D-PWF 21.26 0.43 20.62 0.52
AT-IWF + GWF 21.33 0.45 22.11 0.63
AT-IWF + IWF 21.41 0.46 22.40 0.65
AT-IWF + SWF 21.43 0.46 22.41 0.65
AT-SWF + NLM 20.45 0.42 20.64 0.50
AT-SWF + BM3D 21.14 0.47 22.84 0.67
AT-SWF + 2D-PWF 20.78 0.43 21.10 0.55
AT-SWF + GWF 20.69 0.44 22.42 0.65
AT-SWF + IWF 20.57 0.44 22.58 0.66
AT-SWF + SWF 20.58 0.45 22.59 0.66

In practice, we notice a lower processing time when denois-
ing a CT image with double-filtering and FBP, comparing with
state-of-art iterative reconstruction methods which use slow
reconstruction algorithms, as Projections Onto Convex Sets
(POCS) [17]. Therefore, a double-filtering which uses a fast
reconstruction algorithm, as FBP, can become a powerful tool
in order to get a better balance between details preservation
and noise reduction in CT.

Finally, for a future work we can consider double-filtering
using other methods, also a time vs. quality comparison be-
tween double-filtering (using FBP) and iterative reconstruction
methods, and even new patch shapes for BM3D in pre-filtering
step.
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sob ruı́do poisson,” Master’s thesis, UFSCar, São Carlos, 2010 (in
portuguese).

[9] D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel, “Adaptive
noise smoothing filter for images with signal-dependent noise,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 7, no. 2, pp. 165–177, 1985.
[10] A. Buades, B. Coll, and J. M. Morel, “A review of image denoising

algorithms, with a new one,” Simul, vol. 4, pp. 490–530, 2005.
[11] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by

sparse 3d transform-domain collaborative filtering,” IEEE Transactions

on Image Processing, vol. 16, no. 8, p. 2080, 2007.
[12] A. L. M. Levada and N. D. A. Mascarenhas, “Filtragem adaptativa de

ruı́do gaussiano em imagens através da minimização da informação de
fisher observada,” VI Workshop de Vis˜ao Computacional (WVC’2010),
pp. 7–12, 2010 (in portuguese).

[13] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation

Theory. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.
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Fig. 6. Results of double denoising for Image 1
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Fig. 7. Results of double denoising for Image 2


