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Fig. 1. Our system uses the graph of streets (b) and panoramic sequences (c) provided by Google Maps and Google Street View to estimate the location of
a building of interest (d), identified by a query image (a). The search starts at inaccurate geographical coordinates associated to the given picture.

Abstract—Geo-spatial queries, i.e., queries that combine loca-
tion data with other kinds of input, have taken huge importance
in the last generation of search engines. The success of a
geo-spatial search depends on the quality of the positioning
information provided, for instance, by GPS-enabled smartphones.
Therefore, the quality of the GPS signal and the quality of the
built-in GPS may affect the accuracy of the estimated location,
and hence the quality of the searching result. This paper proposes
an automatic image-based solution for improving the estimation
of the geographical coordinates of a building of interest on
which a geo-spatial search will be performed. Our approach
uses the inaccurate GPS coordinates estimated by smartphones
as starting point for automated visual search into a graph of
streets enhanced with street view panoramic sequences. During
the search, our approach uses a query image of the building of
interest to identify which panoramic views include the building’s
façade. From the geographical location of the panoramic views
and from the best matching directions of the given image with
the panoramic images, our approach triangulates the location
of the target building. In addition, our approach estimates the
uncertainty in the computed locations by modeling the error
propagation along the triangulation procedure. We evaluate our
method on several real images of buildings.
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I. INTRODUCTION

The last years have seen a surge in the number of GPS-
enabled devices launched on the market. Maybe because
smartphones are digital Swiss Army knives that do just about
everything. The use of this kind of device to search on the
Internet is perhaps one of the most interesting alternatives
to overcome, for instance, lack of knowledge on a particular
subject and language issues while travelling abroad. However,
the quality of geo-spatial search may be affected when the
GPS has reduced accuracy. In urban centers, the GPS signal
is usually of low quality when the device has the view of the
sky partially blocked by canyons of buildings.

We consider the problem of inferring the location of a
building of interest based on a picture of its façade, the
inaccurate geographical coordinates provided by the GPS-
camera, and street view panoramic sequences. The geo-spatial
search considered in this work requires approximately correct
coordinates of the building of interest to retrieve information
about commercial establishments, restaurants, monuments, and
cultural spaces in the target place.

Using a GPS-enabled smartphone, the user of our frame-



work takes a picture of a building (Fig.1a) with a geographical
location estimative. Starting from the given location ( in
Fig.1b), our approach traverses the graph of streets provided
by Google Maps, and compares the query image with envi-
ronment maps provided by Google Street View. The visited
vertices of the graph are identified by the , , and markers
in Fig. 1. Vertices associated to environment maps having
matching features with the given picture are denoted by
and (Fig. 1c). The latter indicates vertices having the most
important views of the façade of interest. We use the location
of those vertices and the direction of the most likely corre-
spondences between the query image and the environment
maps to estimate the building’s location ( ). The uncertainty
on estimated coordinates are depicted by the yellow ellipse in
Fig. 1d. Notice the distance between the actual location from
where the picture was taken ( ), and the location assigned by
the smartphone to the image file ( ). The inaccuracy intrinsic
to off-the-shelf GPS-enabled mobile devices motivated the
development of the proposed approach. The estimated location
of the building can then be used as input in geo-spatial queries.

Contributions: This paper proposes a new image-based
query procedure for estimating the geographical location of
places of interest that include, but are not limited to, shops,
monuments, and museums, from a query image and inaccurate
GPS coordinates. The resulting location is expressed as a
bivariate normal random variable that models the uncertainty
in the computed geographical coordinates.

The main contributions of this paper are: (i) an algorithm for
computing the location of buildings in a completely automatic
way (Section II); (ii) a strategy for producing gnomonic
projections of the environment that restrict the visual analysis
of the panoramas to views of the sidewalks (Section II-A);
(iii) a heuristic to select which are the environment maps in
street view panoramic sequences that best estimate the location
of the building of interest (Section II-C); and (iv) a derivation
of how to estimate the error associated with the computed
location (Section II-E).

A. Related work

Wikitude [1], Google+ Local [2], and MobiSpatial [3]
are examples of frameworks that use the location provided
by GPS-enabled smartphones, the orientation estimated by
accelerometers, and digital compass to infer the relative lo-
cation of nearby places registered in some mapping system.
Wikitude [1] is an augmented reality API to present the
approximate location of commercial establishments as an
overlay of videos captured by smartphones. Google+ Local [2]
retrieves the nearby establishments as the answer of a query
provided by the user. Unfortunately, this query cannot be made
using an image. MobiSpatial [3] benefits from location and
orientation aware smartphones and existing open source spatial
data initiatives to calculate a mobile user’s visibility shape at
his/her current location. This shape is used as query window
to facilitate user interaction with the geo-spatial query process.

Micusik and Kosecka [4] presented a framework for creating
3D city models from street view panoramic sequences. The

authors shown that by exploring image segmentation cues as
well as presence of dominant scene orientations and piecewise
planar structures, recurrent problems related to geometrical re-
construction of textureless surfaces may be overcome. In their
work, the authors were not concerned to identify the places.

The problem of multiple view semantic segmentation for
street view images was studied by Xiao and Quan [5]. This
problem has many potential applications, such as to automatic
vehicles and city modeling. Their approach uses structure from
motion to reconstruct the scene geometry and prune incorrect
correspondences. Xiao and Quan used a Markov random field
to enable labeling of many images at the same time using the
available geometry and color information.

Zamir and Shah [6] addressed the problem of finding the
GPS location of images with an accuracy which is comparable
to hand-held GPS devices. In their approach, the authors used
only the panoramas provided by Google Street View and a
query image to infer the actual location of the photographer.

To the best of our knowledge, Sampaio et al. [7], [8]
were the first to propose an image-based framework to locate
buildings using a query image, inaccurate GPS coordinates,
and panoramic views provided by a web mapping service. The
technique produces interesting results. However, the heuristics
for panoramic view analysis, and for selecting the most
important views of the target place produce unstable results.

B. Technique overview
Our technique aims at locating a building of interest by

visually searching for its façade while traversing the graph of
streets and environment maps provided by web mapping sys-
tems. We use breadth-first search (BFS) to traverse the graph,
generate images of the streets by environment projection,
and apply visual feature extraction and matching to compare
the query image provided by the user with the generated
projections of the environment. After detecting the vertices
of the graph with best views of the target façade, the geo-
graphical coordinates of the building of interest are estimated
by triangulating its location from known points and directions
extracted from graph’s data. Our approach is tailored to work
with Goggle Street Map and Goggle Street View. However, it
could be adapted to work with similar web mapping solutions.
The execution of the whole process is schematized in Fig. 1.
Details are presented in Section II. Implementation and results
are discussed, respectively, in Sections III and IV.

In contrast to Sampaio et al. [8], our projections of the
environment preserve the imaged straight lines. As a result,
feature extraction and matching are not affected by image
distortions. In addition, our approach triangulates the final
location using two or more views of the place. Sampaio’s
et al. work is tailored to triangulate from two views. Also,
we present an analytical derivation of uncertainty propagated
along the computation chain that allows estimation of the error
in the computed locations.

II. PROPOSED APPROACH

Let G = {V,E} be a graph on a set of vertices V and a
set of edges E. Each vertex in V is augmented with longitude



and latitude, such that it can be located in the geographic co-
ordinate system. In addition, each vertex has assigned to it an
equirectangular panoramic projection [9] of the environment,
and an angle αN that orients the panorama with respect to the
North direction. Without loss of generality, we assume that
edges in E represent sections of public pathways.

Our technique requires only two inputs provided by the
user: a picture of the façade of interest (i.e, the query image),
and the GPS coordinates from where the picture was taken.
This data may be acquired at the same time by GPS-enabled
smartphones. Usually, the device includes the coordinates in
the Exif tag of the JPEG image file [10]. It is expected an
image having the façade of interest as the main target. Due to
restrictions imposed by the panoramas used in this project, it
is expected a picture taken under daylight conditions.

The given GPS coordinates are the first guess we have
to infer the actual location of the building of interest. In
conventional web applications [1]–[3], the given location is
used to rank results of simple queries on nearby places.
However, the provided coordinates may not be valid under
three conditions: (i) the given location may not be accurate
enough due to calibration issues or the quality of the GPS
system; (ii) the records of the web mapping system may suffer
from some systematic error that relates the location of the
camera to another place; and (iii) the façade of interest may
actually be distant from the subject, perhaps a few kilometers
away, but with a direct view to the camera.

For the first two conditions, one may expect that the given
location will be different from the actual location of the
photographer. It is likely that the building of interest will be
close to the given location without attending the same city
block or street. In such case, a reasonable alternative is to
traverse the graph G by using the BFS strategy, assuming the
closest vertex to the given location as starting point. Since we
have a picture of the façade of interest, the stopping criteria
could be the perception of being in a vertex that includes the
façade in its panoramic view. The location of the last visited
vertex could then be used in more interesting web queries.

The BFS is the basis of our searching approach. One
contribution of our technique is how to perform the visual
analysis of the panoramic views assigned to each visited vertex
in order to identify the vertices with good views of the given
façade (see Sections II-A to II-C for details). However, the
problem with condition (iii) is that BFS may not be sufficient
to guarantee that one will find a vertex of G that is close to
the building of interest. Large distances would lead to very
wide BFS to reach an interesting vertex. In order to avoid
the drawback of distant pictures and to improve results on
pictures taken at close range, we collect the subset of visited
vertices with good views of the imaged façade while traversing
the graph (see Sections II-B and II-C for details). From the
location of those vertices and the direction that best match
the query image, we triangulate the location of the building
of interest (see Section II-D for details). The heuristic used
for suppressing falsely collected vertices is a contribution of
this work. Our approach also estimates the uncertainty in the

computed locations by modeling the error propagation along
the triangulation procedure (Section II-E).

The stopping criteria for our BFS approach are: (i) the
detection of k vertices of G with a view to the intended façade;
or (ii) the next vertex to be visited be located more than rmax
meters from the starting vertex. In our experiments, we set
k = 5 and rmax = 200 meters.

The distance (in meters) between two geographical locations
p1 = (x1, y1) and p2 = (x2, y2) is computed using:

dist (x1, y1, x2, y2) = 12,742,018 tan−1

(√
a

1− a

)
, (1)

where 12,742,018 is approximately twice the Earth’s mean
radius (in meters), and

a = sin
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π
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)2
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π
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)
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π
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)
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π
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)2
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In (1), xi and yi denote the longitude and latitude of the
i-th input location (in degrees). It is important to emphasize
that tan−1 (y/x) must be evaluated using the atan2 function
available in many programming languages, whose range is
[−π, π). It applies to all tan−1 (y/x) in this paper.

A. Computing views of the sidewalks from panoramas

We compute two images parallel to the sidewalks of the
street (namely, the left and the right views, taken with respect
to the front of Google’s camera car) through gnomonic projec-
tions [9] of the environment assigned to a given map vertex.
By construction, Google Street View registers the front view of
the car at the center of the provided equirectangular panoramic
images, i.e., λ ≈ 0. The left, right and back views are regis-
tered at, respectively, λ ≈ −π/2, λ ≈ π/2, and λ ≈ ±π. As
presented in Section II-B, the computed images are compared
with the query image. From this comparison, we infer whether
the façade of interest can be seen from a vertex of the
graph. In our notation, −π ≤ λ < π and −π/2 ≤ φ < π/2
are, respectively, the coordinates for horizontal (Azimuth) and
vertical (Zenith) fields of view of an equirectangular panorama
with Weq ×Heq pixels.

In order to prevent the registration of useless information of
parts of the front, back, top, and bottom of the environment, we
restrict the gnomonic projections to specific ranges of λ and
φ. For the left view we assume −π/2− Λ ≤ λ < −π/2 + Λ,
and for the right view we use π/2− Λ ≤ λ < π/2 + Λ. In
both cases, −π/2− Φ ≤ φ < π/2 + Φ, where Λ and Φ where
experimentally set to Λ = π 5/18 and Φ = π/6.

Fig. 2 (top) shows the original equirectangular panorama
assigned to one of the vertices marked with in Fig. 1b. The
left and right gnomonic projections of the sidewalks produced
for this panorama are presented in Fig. 2 (center). By compar-
ing the gnomonic projections with the cubic face-concatenated
panorama used in Sampaio et al. [8] (Fig. 2, bottom), one can
see that our strategy preserves straight lines. The concatenation
of the four lateral faces of a cubic environment, on the other



hand, map straight lines to C0 continuity functions with joint
points at faces’ boundaries (see [8] for details).

We compute the intensities of the images of the sidewalks
by casting rays from the pixels of the resulting images (sitting
in planes tangent to a unit sphere) toward the center of
the sphere, and by sampling the resulting position in the
equirectangular panoramas with bicubic interpolation. For
each pixel (ign, jgn) in a given gnomonic image, where
ign ∈ {0, 1, · · · ,Wgn − 1} and jgn ∈ {0, 1, · · · , Hgn − 1},
the sampled coordinates (xeq, yeq) ∈ R2 in the equirectangular
image are given by:

xeq = λeq
Weq − 1

2π
+
Weq

2
, and (2a)

yeq = φeq
Heq − 1

π
+
Heq

2
, (2b)

where λeq = tan−1 (wsh/ush), and φeq = sin−1 (vsh). The
coordinates of vector (ush, vsh, wsh) for the left and right
images are computed, respectively, as

(
u, v√

u2+v2+1
,−1

)
and(

−u, v√
u2+v2+1

, 1
)

, where

u =
2 tan (Λ) ign
Wgn − 1

− tan (Λ) , and (3a)

v =
2 tan (Φ) jgn
Hgn − 1

− tan (Φ) . (3b)

In our experiments, we set the resolution of the resulting
Wgn ×Hgn images to:

Wgn =

2
tan (Λ)

tan
(

2π
Weq

)
 and Hgn =

⌈
Wgn

tan (Φ)

tan (Λ)

⌉
. (4)

By doing so, we guarantee that the amount of aliasing intro-
duced by the interpolation procedure will not affect the feature
detection performed in the next step of the procedure. It is
because the center of the resulting images keeps almost the
same sampling rate of the original equirectangular panorama.

B. Detecting the target building in panoramic views

We use Affine-SIFT features [11] to compare the query
image with each gnomonic projection of the sidewalks. Ac-
cording to our experience, traditional techniques like SIFT [12]
and SURF [13] do not fit to our purposes since they are
tailored to describe features invariant to translation, rotation,
and scaling. Affine-SIFT, on the other hand, describes visual
features invariant to affine transformations.

Fig. 2 illustrates the effects of the projection strategy
adopted in this work and in [8] for building and analysing
panoramic views. In this example, 190 matching features were
detected in the query image and in the gnomonic projection
of the left sidewalk (the white crosses in Fig. 2, center),
against 18 matching features detected in the face-concatenated
panorama (Fig. 2, bottom). As a result, the proposed strategy
has a better chance of correctly identifying the building of
interest in this environment map.

Fig. 2. Different projections of the environment map assigned to one of
the preferred vertices in Fig. 1. From top to bottom: original equirectangular
projection, left and right gnomonic projections produced by our approach,
and cubic face-concatenated projection adopted in [8]. White crosses show
the location of matching features. Image proportions where preserved.

In this work, a vertex of the graph G of streets is considered
as facing the building of interest if at least one matching
feature is detected in both the query image and in one of the
two gnomonic projections of the sidewalks. Such a conserva-
tive heuristic may lead to the detection of spurious viewing
vertices. Section II-C describes how false-viewing vertices are
suppressed before the triangulation procedure (Section II-D).

For the triangulation procedure, one has to estimate the most
likely direction of correspondence between the query image
and a given panorama. Such a direction is characterized by the
Azimuth λhigh (in the equirectangular map) having the highest
concentration of Affine-SIFT features. We estimate λhigh as
the global maximum of the circular histogram of abscissa of
features mapped from the gnomonic projected images (ign
in (3a)) to the equirectangular map (λeq in (2a)). In order to
reduce noise, we take the maximum features count (w) after
perform histogram smoothing with a Gaussian filter. In our
experiments, we used a histogram with 360 bins and a filtering
kernel window of size 9.

The preferential angle θhigh is computed by mapping λhigh
from the equirectangular domain to the geographic domain
with respect to the North direction (αN ) associated to each
vertex of the graph. All angles in (5) are expressed in radians:

θhigh = λhigh + αN . (5)

C. Selecting the best panoramic views

Given the set C comprised of n vertices of G potentially
facing the building of interest (i.e., the candidate vertices),
one has to identify the subset W ⊂ C with m vertices which
are more likely to produce a good triangulation of the target
façade (i.e., the winner vertices). We choose W as the subset
of C that includes at least two vertices (condition 1) that
maximize the mean preferred direction’s weight (condition 2)



while having intra-set distances smaller than the threshold
value dmax (condition 3). Recall that the preferred direction’s
weight w is computed for each vertex using the histogram of
the procedure described in Section II-B.

Fig. 3 presents our simple and effective algorithm for
selecting W , were P (C) denotes the power set of C, |T |
denotes the cardinality of T , and D (T ) is a function that
returns the greatest distance between pairs of vertices in T .

In our experiments, we assumed dmax = 30 meters. We
choose this particular value in order to avoid the selection
of subsets having vertices from different city blocks. When
the resulting W is and empty set, our implementation skips
the triangulation procedure and returns the coordinates of the
vertex in C with highest weight w as the suggested closest
location to the building.

D. Triangulating the target building

The location of the target building is computed as the
point t that best fit the intersection of the straight lines ri,
for 2 ≤ i ≤ m, expanded by the location pi = (xi, yi, 1)

T

of each of the m winner vertices selected using the
procedure described in Section II-C, and the direction
di = (sin (θi) , cos (θi) , 0)

T indicating the most likely corre-
spondence of the query image to the panorama assigned to the
i-th vertex (see (5)).

It is important to recall that (xi, yi) and (sin (θi) , cos (θi))
are expressed in the geographic coordinates system as angu-
lar values (i.e., longitude and latitude). However, since the
working distances among t and pi are up to few kilometers,
one can assume that they are relatively small with respect to
Earth radius (≈ 6,371 kilometers). Without loss of generality,
such observation allow us to treat pi and di as vectors
in a 2-dimensional homogeneous space. By doing so, the
coefficients of the general equation of the line describing ri
are computed as:

ri =

aibi
ci

 = pi × di =

 − cos (θi)
sin (θi)

cos (θi) xi − sin (θi) yi

 , (6)

where × denotes the cross product.
Denote by R = (r1, r2, · · · , rm)

T the m× 3 matrix con-
structed from the coefficients of lines {ri}mi=1 (6). A point t
that minimizes ‖Rt‖2 is then the best fit to the data in an
algebraic sense. Thus, the point t is obtained (up to scale) as
the eigenvector of R with the smaller eigenvalue.

In order to obtain real valued eigenvalues and orthogonal
eigenvectors, we evaluate the eigenvalues and eigenvalues of
R by performing the singular value decomposition (SVD) on

S = RT R, (7)

which is symmetric. RT denote the transpose of R. The
singular vectors are then simply the eigenvectors and the
square root of the singular values gives the eigenvalues of R.

Denote by v = (xv, yv, zv)
T the eigenvector of R (and S)

with the smaller eigenvalue. The location t of the building

Require: the set of candidate vertices C, and the threshold value dmax

1: W ← ∅
2: w̄ ← 0
3: for all T ⊂ P (C) do
4: if |T | ≥ 2 and D (T ) ≤ dmax then
5: t̄← mean preferred direction’s weight of vertices in T
6: if w̄ < t̄ then
7: W ← T
8: w̄ ← t̄
9: end if

10: end if
11: end for
12: return W

Fig. 3. Algorithm for suppressing spurious viewing vertices from the set C
of vertices whose environments and query image include matching features.

of interest is computed by normalizing the homogeneous
coordinate of v to 1:

t =

(
xt
yt

)
=

(
xv/zv
yv/zv

)
. (8)

E. Error propagation

Any given computation propagates the uncertainties as-
sociated with its input variables to its output. The un-
certainty associated with a location t whose coordi-
nates are computed from a set of experimental data
ϑ = {x1, y1, θ1, x2, y2, θ2, · · · , xm, ym, θm} can be approxi-
mated by first-order error propagation model [14]:

Λt = ∇t Λϑ∇Tt , (9)

where Λt is the covariance matrix that models the uncertainty
in t, ∇t is the Jacobian matrix for the function that computes
each term of t from the 3m input variables in ϑ, and Λϑ is
the covariance matrix that models the uncertainty in the input
variables. Using such a model, we can obtain elliptical confi-
dence intervals for the computed location t, which correspond
to the k-sigma band around the mean (t) in a bivariate normal
distribution with covariance matrix Λt.

To apply the error propagation model (9), one needs to
estimate the uncertainty associated with each input variable
and to compute the Jacobian matrix for the equation that
calculates the geographical coordinates of t.

In our approach, we assume that the uncertainties on the
location pi of each of the m interesting vertices retrieved
from Google Street View are independent bivariate normal
distributions with standard deviations σxi and σyi in, respec-
tively, longitude and latitude coordinates. Likewise, we assume
independent identically distributed uncertainty in the θi angles,
i.e., σθi = σθ. As a result, Λϑ is a diagonal 3m× 3m matrix:

Λϑ = diag
(
σ2
x1
, σ2
y1 , σ

2
θ , · · · , σ2

xm
, σ2
ym , σ

2
θ

)
. (10)

The Jacobian matrix of the function that computes t (8) is:

∇t =

(
∂x1

xt ∂y1xt ∂θ1xt · · · ∂ymxt ∂θmxt
∂x1

yt ∂y1yt ∂θ1yt · · · ∂ymyt ∂θmyt

)
,

(11)
where the partial derivatives ∂υxt and ∂υyt, for υ ∈ ϑ, can
be solved using the chain rule.



According to Section II-D, the first stage of the triangulation
process computes the coefficients of straight lines ri (6). Their
partial derivatives are:

∂υai =

{
cos (θi) for υ = xi

0 otherwise
, (12a)

∂υbi =

{
− sin (θi) for υ = yi

0 otherwise
, and (12b)

∂υci =


sin (θi) for υ = xi

cos (θi) for υ = yi

−yi cos (θi)− xi sin (θi) for υ = θi.
0 otherwise

(12c)

The matrix S is computed from {ri}mi=1 using (7). The
partial derivatives of S are calculated as:

∂υS = ∂υR
T R + RT ∂υR, (13)

where ∂υM denotes the partial derivatives of the coefficients
of the matrix M with respect to a given variable υ ∈ ϑ. In (13),
∂υR

T = (∂υR)
T , and ∂υR is computed just by placing the

derivatives of ri (12) in the respective lines of ∂υR.
The next stage of the triangulation procedure computes the

eigenvectors and eigenvalues of R from the SVD of S. We
used the derivations presented by Giles [15] to compute the
partial derivative matrix ∂υW of the matrix of eigenvectors:

∂υW = W
(
F ◦

(
W−1 ∂υSW

))
, (14)

where Fr,c = (dc − dr)−1 for r 6= c, and zero otherwise,
W−1 denotes the inverse of matrix W (its transpose, since
W is orthogonal), ◦ denotes the Hadamard product of two
matrices of the same size, defined by each element being the
product of the corresponding elements of the input matrices,
and {d1, d2, d3} are the eigenvalues of S.

Finally, the partial derivatives of t (11) are:

∂υxt =
∂υxv
zv
− xv ∂υzv

z2
v

, and (15a)

∂υyt =
∂υyv
zv
− yv ∂υzv

z2
v

. (15b)

Given the covariance matrix Λϑ (10) and the Jacobian
matrix ∇t, we estimate the uncertainty in the location of
the target building using (9). In this equation, Λϑ stores the
uncertainty in the input data, while∇t weights the influence of
these uncertainties in the computed geographical coordinates.

We used σθ = π/135, σxi
= 1/dist (xi, yi, xi + 1, yi), and

σyi = 1/dist (xi, yi, xi, yi + 1) in all experiments, where dist
is defined by (1). By assuming local flatness on Earth’s surface,
one can verify that σxi and σyi were set in order to ensures an
interval of ±3 meters with 99.7% of confidence to the location
of the i-th vertex considered. The confidence interval assumed
for the preferential direction (θ) was ±4 degrees due to the
window size of the smoothing filter applied to the circular
histogram of features’ location (Section II-B).

Fig. 4. Thumbnail version of the query images used in the experiments. The
collection includes 30 images of 27 buildings.

III. IMPLEMENTATION

We have implemented the proposed algorithms using Java.
We used the ImageJ library [16] to perform bicubic interpola-
tion of panoramas, and EJML [17] to work with matrices and
to compute SVD. We used the reference C++ implementation
of the Affine-SIFT provided by Morel and Yu [11]. Our system
uses the Maps API [18] to access Google Maps and Google
Street View, and to plot results.

The feature extraction is the bottleneck of our framework. In
order to alleviate the computational cost of recurring searches
on the same areas of the map, we have implemented a caching
mechanism to store the features extracted from panoramic
views accessed in previous executions of our system. For
this purpose, we have modified the original implementation of
Affine-SIFT to perform feature extraction and feature match-
ing as separated procedures. Those procedures are called from
our Java application by command-line prompt commands.

IV. RESULTS AND DISCUSSION

We validate our technique by analyzing the results produced
by processing 30 pictures of 27 places of our city. Fig. 4
shows thumbnail versions of the query images used in the
experiments. The pictures were taken at different lighting
conditions, with varying distances from the target, and with
resolution of 2,592× 1,456 pixels. The input data was ac-
quired using a smartphone Motorola Moto G. The experiments
were performed on a Linux 2.4 Ghz Intel Dual Core machine
with 2 GB of RAM and Internet access.



TABLE I
DETECTION RESULTS FOR IMAGES IN FIG. 4. DISTANCE IN METERS.

? AND † DENOTE, RESPECTIVELY, CASES WHERE ONLY ONE PANORAMIC
VIEW INCLUDES THE TARGET BUILDING AND IMPOSSIBLE CASES.

Case dist ( , ) Success
1 133.89 45 3 2 Yes
2 17.80 17 1 2 Yes
3 14.55 26 1 2 Yes
4 10.76 19 0 2 Yes
5 4.71 21 3 2 Yes
6 9.54 38 2 2 Yes
7 196.52 152 3 2 Yes
8 39.34 26 3 2 Yes
9 48.27 25 3 2 Yes

10 14.55 10 0 2 Yes
11 50.86 38 3 2 Yes
12 34.37 30 1 2 Yes?
13 33.34 25 1 1 Yes?
14 35.00 41 1 1 Yes?
15 7.91 37 0 1 Yes?
16 20.37 30 1 1 Partial
17 263.64 14 1 1 Partial
18 399.16 188 4 1 Partial
19 296.23 40 0 1 Partial
20 15.67 22 0 1 No
21 3.86 22 0 0 No
22 48.97 32 0 1 No
23 31.84 12 3 2 No
24 27.23 24 0 2 No
25 265.87 159 4 1 No
26 646.46 25 1 1 No
27 25.69 7 3 2 No
28 9.47 103 3 1 No†

29 8.07 21 0 0 No†

30 269.75 42 1 1 No†

Table I summarizes the results for testing cases in Fig. 4.
The order of the images correspond to the order of table’s
rows. In Table I, the second column shows the distance (in
meters) between the actual location of the photographer and
the location assigned to the query image. Columns 3 to 5
show, respectively, the number of visited vertices that had no
matching features, the number of vertices with at least one
matching feature and not used by the triangulation procedure,
and the number of vertices used to compute the location of the
target building. The last column shows the detection result.

For cases 1 to 15, the detection of target buildings was
successfully accomplished. We classify as success the trian-
gulation of the façade of interest whose uncertainty ellipse
includes its correct location. Figs. 1, 5, and 6 illustrate results
for cases 1, 6, and 9, respectively. In cases 12 to 15, Google
Street View provides only one panoramic view for each target
façade. As a result, our system was not capable to triangulate
the target building. However, it was capable to identify this
single vertex and return its location as the suggested closest
location for geo-spatial queries. Refer to Fig. 7 for an example.
Cases 12 to 15 are successful under the available data.

The detection results of cases 16 to 19 were partially
successful. For case 16, Google Stret View provided more
than one environment map including the target buildings. Our
technique was capable to identify only one of them as a good
match. Thus, the triangulation procedure was not performed,
but our system improved the location estimated by GPS. In

cases 17 to 19, the coordinates assigned to the query image are
more than 200 meters away from the correct user’s location.
Fig. 8 illustrates that situation for case 18. By increasing the
searching radius, our system was capable to locate the façades
of interest. In Table I, columns 3 to 5 show the vertex count for
the first run of the approach, i.e., using rmax = 200 meters.

Our approach failed in cases 20 to 27 due to feature
matching issues. Cases 20 to 23 reported only incorrect
candidate vertices. One correct and one incorrect vertex were
used to triangulate in case 24. The GPS estimated the camera
position more than 200 meters away from the correct user
location in cases 25 and 26. Unfortunately, our system was
not capable to identify the correct matching environments
even after increasing the searching radius. Finally, in case 27
our system was capable to identify more than two correct
candidate vertices for triangulation. However, the two winner
vertices pointed to different parts of the building, leading to
divergent preferential directions. As a result, the intersection
of the lines defined by each vertex location and preferential
direction happened on the opposite side of the street.

The last three lines in Table I represent cases that cannot be
handled by our system. In case 28, the user took the picture
of a tree. The façade in case 29 was not registered by Google
Street View because there is a newsstand blocking the view of
the only panorama that would record the target building. The
query image in case 30 was taken at night.

A. Limitation

Google Street View provides panoramas captured under
daylight conditions. In addition, Affine-SIFT is only partially
tolerant to illumination changes. Therefore, our framework
fails when the query image is taken at night. The last image in
Fig. 4 (case 30 in Table I) illustrates this situation. Textureless
façades also affect the detection capacity of our framework.
It is because visual features have dependence upon texture
variability. That led to divergent directions in testing case 27.

The response time to each query image vary depending
on the speed of the Internet connection and the number of
visited panoramas. The bottleneck of our implementation is
the feature extraction procedure performed for each gnomonic
projection of the panorama. Each run of the Affine-SIFT
procedures takes approximately 64 seconds. The use of a
caching mechanism helps to alleviate this issue.

Finally, when only one panoramic view of the target façade
is available in the web mapping system, our approach is unable
to triangulate the location of the target building.

V. CONCLUSION

In this paper, we presented a completely automatic approach
that uses panoramas, a single query image, and inaccurate
geographical coordinates of the camera for estimating the
geographical location of buildings. We have introduced the
use of gnomonic projection to analyze only the most important
portion of street view panoramic sequences. The analysis was
performed by comparing the Affine-SIFT features extracted
from gnomonic projections of the environment with features



Fig. 5. Detection result for case 6. The target was successfully detected, as
can be seen in the detailed view of the uncertain ellipse including its façade.

Fig. 6. Detection result for case 9. Notice that a candidate vertex was
excluded from the triangulation procedure, even being close to the winner
vertices. Our approach was capable to identify this vertex as a false match to
the query image. Its preferred direction points to the beach.

extracted from the query image. Also, we have developed
an approach to indicate which panoramic views must be
combined to agree on a good identification of the façade of
interest, and have used SVD to triangulate the location that
best fit in an algebraic sense the views of the façade. In
addition, we presented an analytical derivation of uncertainty
propagated along the computation chain that allows estimation
of the error in the computed locations.

We demonstrated the effectiveness of our techniques by
implementing the proposed framework and using it to locate
several buildings in real case examples. The experimental
validation have shown that the proposed approach is accurate
and precise when more than one panoramic view of the
building of interest is available in the mapping system.
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