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Abstract—We present an adaptive integration strategy to
evaluate the volume rendering integral for regular volumes. We
discuss different strategies to control the step size for both the
inner and the outer integrals in the volume rendering equation.
We report a set of computational experiments that compare
both accuracy and efficiency of our proposal against Riemann
summation with uniform step size. The comparisons are made for
both CPU and GPU implementations and show that our method
delivers both accuracy control and competitive performance.
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I. INTRODUCTION

Volume rendering is a widely-used technique to visualize
scalar fields in three-dimensional datasets. The technique was
first presented by Drebin [1] to render a set of medical images
containing a mixture of materials.

The illumination model typically used for volume rendering
is the well-known low albedo emission and absorption model
presented by Max [2] and later described and simplified by
Engel [3]. The ray casting algorithm for volume visualization
renders the image by integrating the effects of light properties
along each viewing ray [2], resulting in the well-known Volume
Rendering Integral (VRI):

I =
D∫

0

C(s(t))τ(s(t)) exp
(
−

t∫
0

τ(s(t ′))dt ′
)

dt (1)

where D is the ray’s length, C is the emitted light (given by the
transfer function), τ is light extinction coefficient (also given
by the transfer function), and s is the scalar field along the
ray, which is parametrized by t. One of the main challenges
in volume rendering is how to compute the VRI accurately,
while maintaining good performance.

The VRI can be solved analytically only if severe constraints
are imposed on the scalar field and on the transfer function.
In practice, the integral can be solved only with numerical
approximation methods. This raises the challenge of evaluating
the error of the chosen integration procedure: this error should
be kept within an acceptable limit to ensure accuracy.

It is common practice to simply use uniform steps to evaluate
the integral as a Riemann sum. This makes implementations
straightforward, specially on GPU architectures, but it lacks
control: choosing a large step results in fast but not necessarily

accurate solutions; choosing a small step to improve accuracy
usually compromises performance.

Adaptive numerical integration methods appear as a solution
to this dilemma. In these methods, the step size is adapted
according to the estimated numerical error. This allows better
control on accuracy and makes it possible to use strategies that
automatically balance accuracy and efficiency. However, using
adaptive methods to compute the VRI is not straightforward.
We see two main challenges:
• The volume rendering equation involves two integrals:

the inner one to compute transparency and the outer one
to capture the final contribution. How can we employ
adaptive step sizes for both integrals while preserving
efficiency?

• Adaptive integration methods are typically implemented
recursively. How can we map such recursive solutions to
GPU architectures?

In this paper, we propose an adaptive integration algorithm
for volume rendering of regular volumes. We present an
iterative integration method based on the adaptive Simpson’s
rule and discuss different strategies to use adaptive step sizes for
both the inner and the outer integrals of the volume rendering
equation (1). The control of the step size for both integrals is
done in consonance. We present the results of computational
experiments with different datasets designed to analyze the
accuracy and the efficiency of our method. We demonstrate
that our method delivers accuracy control while preserving
competitive performance.

The text is organized as follows: Section II reviews previous
works on volume rendering related to our proposal. Section III
details our adaptive method and discusses strategies to adapt
the integration step. Section IV presents the results on the
accuracy and the efficiency achieved by our method. Section V
contains final remarks and opportunities for future work.

II. RELATED WORK

Miranda and Celes [4] considered rays crossing hexahedral
cells and used Gauss–Legendre quadrature for volume rendering
of unstructured meshes, evaluating the contribution of each
cell along the ray analytically. Hajjar et al. [5] proposed a
parameterized evaluation based on Simpson’s rule, using a
number of iterations to determine how parameterized intervals
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are to be split. Their method is very accurate, but gets slower
as the number of interactions increases.

Novins and Arvo [6] presented three adaptive integration
methods, two of them based on Newton–Cotes formulas of
order 1 and 2, and one based on power series expansion. They
used the remainder term to control the error and the speed
of the computation, by successively calculating the next step
based on an estimative of the derivate at each position along the
ray. However, their methods require a pre-classification of the
data, to be able to estimate the derivate at any point, resulting
in artifacts and loss of details. Moreover, the estimation of
global error and step size does not guarantee high accuracy.

Some works focus on the accuracy delivered by numerical
methods. Etiene et al. [7] provided a theoretical discussion
about the discretization errors caused by the approximations
made in traditional volume rendering systems, focusing on
Riemann summation for both the inner and the outer integrals.
Etiene et al. [8] later extended that discussion, evaluating
the convergence rate of other numerical integration techniques.
Hajjar et al. [5] also presented an initial discussion on numerical
integration methods of order 0, 1, and 2, comparing their
accuracy using adaptive and uniform sampling.

Some works propose adaptive sampling strategies, trying to
ensure more samples in regions where the scalar field or the
transfer function vary sharply. Lindholm et al. [9] proposed a
coherent sampling geometry-based technique using the depth
buffer: the number of samples is increased as the integration
approaches the isosurfaces of interest. Hajjar et al. [5] argued
that, using Simpson’s rule for hexahedron meshes, the best way
to evaluate each voxel was to get a sample on the boundaries
and another at the midpoint. Because of the trilinear variation
in hexahedron meshes, the scalar field can be simplified by two
quadratic functions. However, their implementation was based
on uniform steps because they use a 3D pre-integration table.
Marchesin and de Verdiere [10] proposed a semi-analytical
adaptive sampling using AMR data.

A common strategy is to use pre-integration tables to store
pre-computed integration along intervals [11]. This results in an
increase of performance, but demands much additional memory.
Röttger et al. [12] first presented a pre-integration table,
accessed via the scalar values at front and back faces of each
tetrahedral cell crossed by the ray. One main drawback of using
pre-integration tables is that they need to be rebuilt whenever
the transfer function changes. This need was overcome by
Moreland and Angel [13] using reparameterization. Hajjar
et al. [5] presented two pre-integration tables using Simpson’s
rule: a 4D table for adaptive sampling, accessed via three scalar
values and the size of the interval, and a 3D table for uniform
sampling, using just the three scalar values.

III. OUR INTEGRATION METHOD

We propose an adaptive integration method based on the
well-known adaptive Simpson’s rule. Instead of the usual
recursive approach, we employ an iterative procedure: the
integration adaptively evolves step by step, always taking a
step forward, similar to the numerical methods for solving

ordinary differential equations. This allows us to advance both
inner and outer integrations in consonance without excessive
re-computations.

Simpson’s rule

The well-know Simpson’s rule approximates the integral of
a function f in an interval [t, t+h] by combining three function
evaluations:∫ t+h

t
f (x)dx ≈ S(t,h) =

h
6

[
f (t)+4 f (t +

h
2
)+ f (t +h)

]
The adaptive Simpson’s rule, proposed by Kuncir [14] and

McKeeman [15] and analysed by Lyness [16], recursively
subdivides the interval of integration applying Simpson’s
rule until the approximation error is within a user-specified
tolerance ε . The recursion is governed by the following error
estimate. Using two half steps in Simpson’s rule results in:∫ t+h

t
f (x)dx = D(t,h)+E(t,h)

where

D(t,h) = S(t,
h
2
)+S(t +

h
2
,

h
2
)

The error is estimated by comparing this with the value of
Simpson’s rule for a full step as follows:

E(t,h) =
1

15
|D(t,h)−S(t,h)|

If the estimated error exceeds the user tolerance ε , then
the procedure is repeated recursively for the two subintervals
[t, t + h

2 ] and [t + h
2 , t + h]. The function evaluations required

for Simpson’s rule are shared by adjacent intervals and sub-
intervals, and can be cached and reused to gain performance,
resulting in one function evaluation per visited interval. This is
especially important for the volume rendering integral because
the integrand contains an integral.

A simplified pseudo-code of Simpson’s adaptive method is
shown in Algorithm 1, using the notation introduced above.
Note that the tolerance ε is halved together with the step size h
when recursion is required. This ensures that the overall error
will respect the original specified tolerance.

Algorithm 1 – Recursive adaptive Simpson’s rule
input: t,h,ε
output:

∫
(t,h)

if E(t,h)≤ ε then
return D(t,h)+E(t,h)

else
return

∫
(t, h

2 ,
ε

2 )+
∫
(t + h

2 ,
h
2 ,

ε

2 )
end if



Our iterative integration method

The volume rendering integral (1) is composed of two
integrals: the inner one and the outer one. To keep track
of the integration error, both integrals have to be considered
in the adaptive approach. Although the error tolerance could
be set separately for the two integrals, we have opted to use
the same tolerance for both integrals in this work.

A naive adaptive procedure for computing the volume
rendering integral is straightforward: Subdivide the ray length
into major intervals and, for each major interval, try to compute
the outer integral, subdividing the interval according to the
adaptive Simpson’s rule. The main problem with this naive
solution is the need to also adaptively integrate the inner
integral: each function evaluation for the outer integral requires
the evaluation of the inner integral. This would demand a lot
of re-work because it is not possible to cache all intermediate
evaluations of the inner integral. Moreover, this recursive
procedure cannot be mapped efficiently to GPU architectures.

To overcome these problems, we propose an iterative
integration method with separate, but in consonance, step size
control for both the inner and the outer integrals. Our approach
is inspired in the adaptive strategies used to solve ordinary
differential equations (e.g., adaptive Runge–Kutta).

Algorithm 2 shows the pseudocode of our iterative integration
method. The goal is to perform the integration from t to t +h.
The procedure also receives as input the initial step h0. We
use the adaptive Simpson’s rule to evaluate the integral and
the corresponding error. If the error exceeds the tolerance, we
halve the step size (and the tolerance) and try to advance from
t to t + h

2 . If the error is within the tolerance, we accumulate
the computed integral value and advance the integration to
tnew = t +h. In the next iteration, the interval is from tnew to
tnew+hnew. The new step hnew is double the current step if this
is at least the second consecutive step where Simpson’s rule
succeeds; otherwise, the step remains unchanged.

Figure 1 illustrates how the step is adapted: dashed lines
indicate failed tries; solid lines indicates succeeded tries. The
numbers indicate the order of evaluation of each try. In the
example shown, both the recursive and the iterative algorithms
would process the tries in the same order. The recursive
algorithm favors reuse of function evaluations, which are stored
in the recursion call stack; the price paid is the amount of
memory used. More importantly, because it stores this execution
context, the recursive approach cannot be re-initialized after a
succeeded step. The ability to re-initialize the integration is of
crucial importance in our proposal for controlling both inner
and outer step size accordingly.

Our integration method in volume rendering

We use the iterative integration method shown in Algorithm 2
as the basis for computing the VRI. In practice, we adopt two
additional parameters to limit the variation of the step size: hmin
and hmax. If the minimum value is reached, the step is taken
even if the error is above the tolerance, when the step would
normally be halved. On the other hand, the step size is never
set to a value above the maximum value. The minimum value is

Algorithm 2 – Our iterative integration method
input: t,h,h0,ε
output:

∫
(t,h)

I = 0
t f inal = t +h
h = min(h0, t f inal− t)
lastsuceeded = true
while t < t f inal do

if E(t,h)≤ ε then
I = I +D(t,h)+E(t,h)
t = t +h
if lastsuceeded then

h = 2h {increase step}
ε = 2ε

else
lastsuceeded = true

end if
h = min(h, t f inal− t)

else
h = h/2 {decrease step}
ε = ε/2
lastsuceeded = false

end if
end while
return I
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Fig. 1. Adaptive step size control.

used to avoid unnecessary reduction when, in practice, the error
cannot be estimated precisely. The maximum value is used to
prevent missing high function variations. Figure 2 illustrates
the importance of limiting the step size to maximum value.
Note the difference in the Bonsai leaves; when no maximum
limit is set, some leaves are missing.

For computing the VRI using adaptive integration, we first
use the inner integral to evaluate a step size, ensuring that
its computation is accurate within the given tolerance. This
procedure

∫
I is essentially the one illustrated in Algorithm 2,

with the following minor changes:
• Ensure that h stays between hmin and hmax.
• Terminate as soon as a valid step size is found.
• Return the last step size along with the integral value.
The integral value returned by

∫
I is only used to avoid

unnecessary evaluation of the outer integral when
∫

I is close to
zero: in that case, the medium is almost transparent, with low
contribution to the final image. In our experiments, we only
skip the outer integral on an interval if the inner value is zero.



(a) With no hmax limit

(b) With hmax = 8 voxel units

Fig. 2. Importance of limiting the maximum step size.

The important value returned by
∫

I is the step size. The
integration procedure ensures that, in this interval, the inner
integral can be precisely evaluated (within the specified
tolerance). We then evaluate the outer integral

∫
O using another

variation of Algorithm 2 with these minor changes:
• Ensure that h stays between hmin and hmax.
• Perform the integration for all color channels.
• Iterate until the whole ray is covered.
• Return the last step size along with the integral value.

Inside
∫

O, we use regular (i.e., non-adaptive) Simpson’s rule to
evaluate the inner integral whenever necessary, since the error
is already bounded.

The pseudocode of our adaptive VRI evaluation is shown
in Algorithm 3. The VRI is evaluated for all four channels in
tandem. For clarity, the pseudocode does not track the tolerance
value. In practice, the tolerance is adjusted accordingly as the
step size is decreased or increased, as in Algorithm 2.

Coupling strategies

One important question in the VRI adaptive computation
is how to couple the control of the steps used to evaluate the
inner and the outer integrals. As indicated in Algorithm 3, we
tried two different strategies, named coupled and decoupled.

In the coupled strategy, the inner integral dictates the initial
step size to be used at each time the outer integral has to be
evaluated. This is based on the assumption that both integrals
are coherent, and we try to cover the outer interval with just

Algorithm 3 – Proposed adaptive VRI evaluation
Input: t,h,h0,ε
Output: VRI (t,h)

I = [R = 0,G = 0,B = 0,A = 0]
t f inal = t +h
hinner = min(h0, t f inal− t)
houter = hinner {only for the “decoupled” strategy}
while t < t f inal do

Iinner,hinner =
∫

I(t, t f inal− t,hinner)
if Iinner 6= 0 then

houter = hinner {only for the “coupled” strategy}
Iouter,houter =

∫
O(t,hinner,houter)

I = I + Iouter
end if

end while
return I

one shot at first. Moreover, should we start the outer integration
with the same step as the last evaluation of the inner integration,
the intermediate values of Simpson’s rule for the inner integral
are already computed and can be reused.

In the decoupled strategy, the outer step is controlled
independently, at its own pace. The inner step is only used to
limit the integration interval. In theory, the decoupled strategy
seems more appropriate since it makes no assumptions on
coherence. That would be the case, for instance, when the
transfer function presents high frequency variation on the color
channels. In practice, as we shall demonstrate, both strategies
are equivalent: the coupled strategy is slightly more efficient,
while the decoupled is slightly more accurate.

Ideally, changing the initial step size of the evaluation would
only interfere in the performance of the computation. As the
error is controlled, any initial step should work. However, the
evaluation of the error is also based on a sampling strategy,
and high frequency regions may be wrongly ignored.

IV. RESULTS

To test the accuracy and the efficiency of our method, we
ran a set of computational experiments, using different datasets
obtained from volvis.org [17]. The experiments were run on a
computer equipped with a 2.66 Ghz Quad Core and a GeForce
GTX 560. Figure 3 shows the results achieved by our approach
with a prescribed error tolerance set to ε = 0.01 for four
different datasets. In all tests, the image is 800×600 pixels.

We tested both CPU and GPU implementations of a ray
casting algorithm to perform volume visualization using our
proposed approach. The GPU implementation uses a GLSL
fragment shader, with single precision floating point for better
performance. The CPU implementation uses double precision.

We compared our method, using both the coupled and the
decoupled strategies, against the uniform sampling approach us-
ing Riemann summation [7], with different sampling distances:
0.5, 0.4, 0.3, 0.2, and 0.1 voxel unit. We analyzed accuracy
by comparing the achieved result against a quality-reference
image obtained using Riemann summation with a very small
sampling distance (h = 0.01 voxel unit).



(a) BluntFin (b) Bonsai

(c) Boston teapot (d) Engine

Fig. 3. Results achieved by our adaptive method, with corresponding transfer functions.

We tested different parameter configurations. Different
models work better with different parameters configurations.
To use a single configuration applied to the four tested models,
we ran the experiments using h0 = 0.5, hmin = 0.1, hmax = 2.0,
all expressed in voxel units. Among the four tested models, we
noticed that the Bonsai model requires a small step to ensure
accuracy, while the BluntFin model limits the maximum step
size because of the large blue region with low transparency.
We then detail accuracy results achieved with this two models;
for the other two, the algorithms presented similar results.

To compare the accuracy among the algorithms, we used the
reference-quality image to compute the differences in intensity
for each color channel (R, G, B, and A) in the final image. Using
the CPU implementation, we ran the experiments using three
different error tolerances for our algorithm: ε = 0.01, 0.005,

and 0.001. We then counted the number of rays in the final
image for which the error exceeded the tolerance. In principle,
these numbers should be zero but, as we have mentioned,
numerical error evaluation has inaccuracies by itself and we
limit the step to hmin. Nevertheless, our algorithm produced
quite accurate results overall. For comparison, we also counted
the number of rays above the same limit for the different
sampling distances of Riemann summation. As expected, the
error decreases as one decreases the step size. However, it is
not possible to reach accurate results without using prohibitive
computational costs while employing constant step sizes. The
results are summarized in Table I for the Bonsai model and in
Table II for the BluntFin model. Figures 4 and 5 show these
results in histograms for better comparison, considering the
Bonsai and BluntFin models with tolerance set to 0.001.
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Fig. 4. Histograms for the Bonsai dataset with ε = 0.001.
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Fig. 5. Histograms for the BluntFin dataset with ε = 0.001.



TABLE I
PERCENTAGE (%) OF RAYS THAT EXCEEDED THE TOLERANCE ERROR FOR THE BONSAI DATASET.

E > 0.01 E > 0.005 E > 0.001
R G B A R G B A R G B A

Riemann (h = 0.5) 0.1139 1.8150 0.0000 12.7660 2.3645 7.6170 0.0000 23.8579 12.4298 37.5244 0.0103 41.1368
Riemann (h = 0.4) 0.0175 0.4904 0.0000 9.4858 0.9548 5.4722 0.0000 20.4068 11.2178 33.7134 0.0063 39.6303
Riemann (h = 0.3) 0.0072 0.0184 0.0000 7.1827 0.0883 2.9643 0.0000 15.4645 9.4006 27.5841 0.0036 37.5796
Riemann (h = 0.2) 0.0027 0.0000 0.0000 3.0763 0.0121 0.4016 0.0000 9.2177 6.2181 18.4700 0.0000 33.0420
Riemann (h = 0.1) 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 2.3614 0.8328 6.7640 0.0000 22.6212

Coupled 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0022 0.0000 0.1210
Decoupled 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0022 0.0000 0.1201

TABLE II
PERCENTAGE (%) OF RAYS THAT EXCEEDED THE TOLERANCE ERROR FOR THE BLUNTFIN DATASET.

E > 0.01 E > 0.005 E > 0.001
R G B A R G B A R G B A

Riemann (h = 0.5) 0.2778 0.6842 0.1819 0.0720 0.7353 2.2449 1.0645 1.2796 2.8620 8.5591 43.3564 44.7088
Riemann (h = 0.4) 0.1670 0.2472 0.0235 0.0007 0.5306 1.2688 0.4083 0.5261 2.2554 7.7481 40.7159 42.8427
Riemann (h = 0.3) 0.0179 0.0559 0.0000 0.0000 0.2625 0.4228 0.0477 0.0910 1.5581 6.3671 28.4687 37.2324
Riemann (h = 0.2) 0.0000 0.0007 0.0000 0.0000 0.0436 0.0261 0.0000 0.0000 1.0011 3.9641 4.0547 8.9189
Riemann (h = 0.1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2640 0.6786 0.0738 0.9921

Coupled 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 0.0000 0.0000 0.0000 0.0015 0.0917 0.0097
Decoupled 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 0.0000 0.0000 0.0000 0.0000 0.0910 0.0089

TABLE III
CPU TIME TO RENDER A FRAME (IN SECONDS).

BluntFin Bonsai Teapot Engine

Riemann h = 0.5 6.53 16.23 17.97 8.86
Riemann h = 0.4 8.05 20.03 21.77 10.91
Riemann h = 0.3 10.52 26.31 27.87 14.33
Riemann h = 0.2 15.47 38.94 40.17 21.23
Riemann h = 0.1 30.33 76.80 76.55 41.70

Coupled ε = 0.01 9.05 20.03 17.22 9.36
Decoupled ε = 0.01 9.22 20.14 17.25 9.45

Coupled ε = 0.005 9.30 23.61 18.61 10.53
Decoupled ε = 0.005 9.55 23.72 18.66 10.67

Coupled ε = 0.001 10.94 38.19 23.33 15.25
Decoupled ε = 0.001 11.28 38.30 23.39 15.34

For a performance analysis, we ran experiments with both
the CPU and the GPU implementations. Table III reports
the average time for rendering a frame on the CPU for
several frames at the view angle, as illustrated in Figure 3. As
can be seen, our method presents overall better performance,
specially if we consider the increased accuracy. In fact, the CPU
architecture favors the implementation of adaptive algorithms.

The challenge resides in developing an efficient adaptive
algorithm on the GPU. In contrast to the CPU, the SIMD
GPU architecture favors the implementation of the Riemann
summation: all threads perform exactly the same computations.
In the adaptive approach, different threads (rays) need different
step sizes, making it difficult to take full advantage of the
GPU parallel processing power. Table IV shows the achieved
performance expressed in frames per second. As can be seen,
the Riemann summation algorithms present better performance.

TABLE IV
GPU PERFORMANCE EXPRESSED IN FPS.

BluntFin Bonsai Teapot Engine

Riemann h = 0.5 603 68 149 156
Riemann h = 0.4 494 55 120 126
Riemann h = 0.3 390 42 91 96
Riemann h = 0.2 270 28 62 65
Riemann h = 0.1 143 14 32 34

Coupled ε = 0.01 415 31 83 81
Decoupled ε = 0.01 383 31 80 76

Coupled ε = 0.005 367 23 68 63
Decoupled ε = 0.005 335 22 66 59

Coupled ε = 0.001 226 9 34 29
Decoupled ε = 0.001 205 9 33 28

We then ran an additional experiment: we repeated the
experiment for the Bonsai dataset with ε = 0.001, but now
considering hmin = 0.4, and hmax = 4.0. Since each step in
Simpson’s rule subdivides the interval at four equidistant
samples, we still expect to have better accuracy than Riemann
summation with h = 0.1, while increasing the performance of
our method, specially for the GPU implementation. In fact, as
can be seen in Table V, this parameter configuration made our
adaptive method competitive in terms of performance, while
still delivering better accuracy, as shown in Table VI.

To illustrate the variation of step size along the rays, we
tracked a ray while rendering the Bonsai model, setting ε =
0.01, hmin = 0.4, and hmax = 4.0. Figure 6 plots the evaluation
of the alpha channel showing the samples taken by our adaptive
method. As expected, the method takes larger steps in regions
of low variation and smaller in regions of high variation.
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Fig. 6. Adaptive steps for the alpha channel evaluation of a ray in the Bonsai dataset.

TABLE V
CPU AND GPU PERFORMANCE FOR THE BONSAI DATASET

USING hmin = 0.4 AND hmax = 4.0.

CPU (s) GPU (fps)

Riemann h = 0.1 76.80 14

Coupled ε = 0.001 26.77 19
Decoupled ε = 0.001 26.91 18

TABLE VI
PERCENTAGE (%) OF RAYS THAT EXCEEDED THE TOLERANCE ERROR FOR

THE BONSAI DATASET WITH ε = 0.001, hmin = 0.4, AND hmax = 4.0.

E > 0.001
R G B A

Riemann (h = 0.1) 0.8328 6.7640 0.0000 22.6212

Coupled 0.0022 0.0453 0.0000 0.4738
Decoupled 0.0027 0.0430 0.0000 0.4675

V. CONCLUSION

In this paper, we considered the evaluation of the volume
rendering integral. We argued that an adaptive procedure is
needed to keep overall error under a predefined tolerance. We
proposed an iterative method to evaluate the volume rendering
integral using the adaptive Simpson’s rule. We also discussed
and presented strategies to control the step size of both the
internal and the external integrals in consonance.

Our computational experiments have shown that the proposed
approach works as desired, maintaining accuracy under control.
Regarding performance, our CPU implementation proved to
run faster than Riemann summation strategies, while delivering
much higher accuracy. The GPU implementation, on the other
hand, performs worse than Riemann summation in general, but
we have demonstrated that it can be tuned to be competitive,
while presenting better accuracy. In fact, as expected, the
proposed adaptive procedure allows us to balance accuracy and
efficiency automatically by parameter tuning.

We are currently working on extending our method to
unstructured meshes. As future work, it would be interesting to
apply perceptual principles to better control the quality of the
rendered images. How does the internal error tolerance affect
the final image? How to better evaluate the perceptual error?

Finally, it would be interesting to incorporate other illumination
models, such as ambient occlusion, in the error estimation.
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