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Abstract—Modeling human behavior and activity patterns
for recognition or detection of anomalous events has attracted
significant research interest in recent years, particularly among
the video surveillance community. An anomalous event might
be characterized as an event that deviates from the normal or
usual, but not necessarily in an undesirable manner, e.g., an
anomalous event might just be different from normal but not
a suspicious event from the surveillance stand point. One of
the main challenges of detecting such events is the difficulty
to create models due to their unpredictability. Therefore, most
works model the expected patterns on the scene, instead, based on
video sequences where anomalous events do not occur. Assuming
images captured from a single camera, we propose a novel
spatiotemporal feature descriptor, called Histograms of Optical
Flow Orientation and Magnitude (HOFM), based on optical
flow information to describe the normal patterns on the scene,
so that we can employ a simple nearest neighbor search to
identify whether a given unknown pattern should be classified
as an anomalous event. Our descriptor captures spatiotemporal
information from cuboids (regions with spatial and temporal
support) and encodes both magnitude and orientation of the
optical flow separately into histograms, differently from previous
works, which are based only on the orientation. The experi-
mental evaluation demonstrates that our approach is able to
detect anomalous events with success, achieving better results
than the descriptor based only on optical flow orientation and
outperforming several state-of-the-art methods on one scenario
(Peds2) of the well-known UCSD anomaly data set, and achieving
comparable results in the other scenario (Peds1).

Keywords-Anomalous event detection; spatiotemporal feature
extraction; optical flow; histograms of oriented optical flow;
smart surveillance.

I. INTRODUCTION

Smart surveillance has obtained increasing attention of the
research community and funding due to increased global
security concerns regarding effective monitoring of public
places, such as airports, railway stations, shopping malls,
crowded sport arenas and military installations. Ideally, one
would be interested in knowing whether suspicious activities
are unfolding in the scene, however, it is extremely difficult
to design activity recognition approaches without specific
knowledge of the scene and the target activities [1]. Therefore,
researchers have developed approaches to locate and recognize
anomalous events and possibly hazardous human motions
using only the knowledge regarding the normal behavior at
a given location, without requiring an extensive knowledge of
the scene.

Jiang et al. [2] define anomaly detection as the identification
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Fig. 1. Different scenarios that might be analyzed through anomalous event
detection.

of motion patterns that do not conform to the expected
behavior in the video 1. They also define anomaly as rare or
infrequent behavior compared to all other behaviors. However,
the identification of this concept requires semantic information
and subjective knowledge regarding the scene and the expected
behavior. Nonetheless, unknown patterns, in most cases, are
very difficult to represent in automatic recognition models.
Therefore, the modeling usually is built for the usual recurring
patterns found in the scene and when there is no fitting to
any usual pattern, one concludes a given event as anomalous.
Figure 1 illustrates some examples of environments where
anomalous events may take place. Even in such crowded
scenarios, humans are able to identify anomalies. However,
it is very difficult to define rules to describe them due to their
unpredictability and large variance.

Since it is impossible to model every anomalous event, we
must define ways of describing normal motion patterns for
different regions of the scene to be able to recognize when

1The term anomalous events is sometimes referred to as abnormal events in
the literature. We opted for using the term anomalous event because abnormal
might refer to a unusual event in a way that is undesirable, which is not our
case since we do not have enough semantic information to know whether a
given event is suspicious or just different from a normal recurring pattern, for
instance.



such patterns are absent to classify them as anomalous events.
With that in mind and based on common anomalous events
such as pedestrians moving with excessive speed, spatial
anomaly (intruders in restricted areas or unusual locations),
and presence of non-human objects in unusual locations [3].
We define four characteristics to be used as clues to describe
normal motion patterns in a particular region of the scene:
i) velocity - speed of moving objects; ii) orientation - common
flow of the objects; iii) appearance - texture of the objects;
and (iv) density - number of moving objects.

To build a representation for normal events in the scene
that captures the aforementioned desirable characteristics, we
propose a spatiotemporal feature descriptor based on both
orientation and velocity inspired by the work of Chaudhry et
al. [4], which captures information based on the optical flow
orientation and provides the Histogram of Oriented Optical
Flow (HOOF). However, they do not capture any information
regarding velocity of the moving objects. On the other hand,
our novel feature descriptor, called Histograms of Optical
Flow Orientation and Magnitude (HOFM), captures not only
the orientation, but also the magnitude of the flow vectors,
which provide information regarding the velocity of the mov-
ing objects and improves considerably the representation of
the normal events.

In our approach, the HOFM is extracted from cuboids
sampled over several frames from non-overlapping spacial
regions. During the learning stage, where, only videos con-
taining normal events are presented, we extract and store the
HOFM feature vectors for each spatial region, generating a
set of “normal patterns”. Then, during the testing stage, after
extracting HOFM, a nearest neighbor search is performed
considering only that particular region and, according to the
distance to the best matching pattern, the event taking place
at the particular location and time might be classified as
anomalous.

According to experimental results, the proposed descriptor
combined with a simple nearest neighbor search is able to
detect anomalous events accurately. The achievements of the
HOFM employment are two-fold: i) it outperforms the results
achieved by HOOF, which considers only the orientation
extracted by the optical flow; and ii) it obtains better results
than several state-of-the-art methods on the well-known UCSD
anomaly data set [5]. Very accurate results have been achieved
even though a simple nearest neighbor search is applied to
identify anomalous events. This demonstrates the high quality
of the novel feature descriptor, the HOFM.

II. RELATED WORKS

Detection of anomalous events generally falls into two
categories: trajectory analysis and motion analysis. While the
former is based on object tracking and typically requires an
uncrowded environment to operate, the latter is better suited
for crowded scenes by analyzing patterns of movement rather
than attempting to distinguish objects [3], [6] individually. The
difficulty of the former approach increases proportionally to
the number of individuals in the scene [7], [8].

To represent anomalous events, most of researches use mix-
tures of models, where most typical layout contains description
scene step and predict or classifier step. In representation
step, the majority of research use dense feature representation,
such as gradient based features [9], mixture of dynamic
textures [10], contextual information [2], [11] and multiple
information based in optical flow [3], [6]. Other type of
representation exploits maps of saliency information, such as
in [12] and in [13], where a Lagrangian particles map is used
to segment the crowds. The main advantages of the methods
described in this paragraph are that they have a fixed number
of features and are easily to set in classifiers or predictors. On
the other hand, the disadvantage is that they depend much of
the prior information, such as camera location.

To modeling the events, the majority of techniques used are
based in Gaussian mixture models (GMM) and hidden Markov
models (HMM). In [9], a multi-level hidden Markov model
is used to predict the anomalous events in specific regions
of the crowd. In [14], [15], [16], Markov models allow the
analysis of the scene. The expectation maximization algorithm
has been also employed as predictor for anomaly [17]. Another
statistical model was employed in [18], where each pixel
has a estimated probability to belong to foreground (there
is no movement at that particular location), then by using
inference techniques, it determines whether a pixel is an
anomaly signal. In [19], a robust approach uses a hierarchical
mixture of dynamic textures to describe the frame. Despite
stated in several papers that models based on the trajectory of
crowds are hard to accomplish, Shao et al. [20] proposed a
model based in group profiling that is pretty different from
common models in the literature. Their model is based in
group modeling, where a map of four descriptors define the
anomalies. Then, such information is quantized using a bag of
words technique and the events are classified as anomalous or
not using a support vector machine (SVM).

III. PROPOSED APPROACH

In this section we present our approach for anomaly de-
tection, illustrated in Figure 2. During the training phase, our
approach extracts a novel spatiotemporal feature descriptor,
called Histograms of Optical Flow Orientation and Magnitude
(HOFM), to capture the moving patterns from non-overlapping
regions in the video. Such descriptors are stored to be used
as instances of normal events (the training video sequences
contain only normal events). Then, during the test phase,
incoming patterns for each region are compared to the respec-
tive stored patterns using a nearest neighbor search approach.
Those patterns presenting a significant difference compared to
all the stored one are considered as anomalous.

A. Histograms of Optical Flow Orientation and Magnitude

Initially, our model divides the videos in non-overlapping
n×m×t regions, referred to as cuboids. Then, for each cuboid,
it builds an orientation-magnitude representation. We present
our feature descriptor in Section III-A3, but first we describe
the histograms of oriented optical flow (HOOF) [4] and the
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Fig. 2. Diagram illustrating the proposed approach to detect anomalous events.

sampling approach used to estimate the optical flow to avoid
computing it for every pixel in the image. The Histograms of
Optical Flow Orientation and Magnitude (HOFM) is an exten-
sion of the histograms of oriented optical flow (HOOF) [4].

1) Histograms of Oriented Optical Flow: The extraction
of HOOF provides a histogram hb,t = [ht,1, ht,2, ...., htB ] at
each time instant t, for each block b in the frame, in which
each flow vector is binned according to its primary angle from
the horizontal axis and weighted according to its magnitude.
Thus, every optical flow vector, v = [x, y]T , with direction
θ = tan−1( yx ) and in the range

− π

2
+ π

b− 1

B
≤ θ < −π

2
+ π

b

B
(1)

contributes with its magnitude m =
√
x2 + y2 to the i-th bin

of the histogram, where 1 ≤ i ≤ B, for a total of B bins.
In this way, the histogram representation is independent of
the (left or right) motion direction due to the original HOOF
bins according to the primary angle, and the smallest signed
angle between the horizontal axis and the vector. Finally, the
histograms are normalized. Figure 3 illustrates the procedure.

2) Optical Flow Extraction: The proposed spatiotemporal
feature descriptor uses as input the optical flow. Extracting it
for the whole image may be computationally expensive [3],
hence, to avoid computing optical flow for each pixel on the
image, we first create a binary mask using image subtraction
between the frame Ij and the frame Ij+t. Given a threshold d,
if the resulting difference is less than d, the pixel is discarded;
otherwise, this pixel p is set to its corresponding local cuboid
Ci. Thus, each cuboid has a set of moving pixels. For each

Fig. 3. Histogram composed by four bins, B = 4 [4].

p ∈ Ct
i , we compute the optical flow. For that, we use Lucas-

Kanade-Tomasi pyramidal implementation [21], where p′ is
the optical flow result for pixel p. The pixel p′ corresponds to
pixel p in Ct

i .

3) Proposed Feature Descriptor - HOFM: Now, we present
our proposed descriptor. As mentioned earlier, it uses optical
flow information (orientation and magnitude) to build the
feature vector for each cuboid. To do this, we define a matrix
FS×B , where S is the number of orientation ranges and B the
number of HOOF magnitude ranges. Similarly to the original
HOOF, we build a feature matrix based on the orientation
of the vector, but also using the information of magnitude
provided by the vector field resultant of optical flow (note that
the magnitude of the optical flow indicates the velocity that the
pixel is moving). Thus, given pixels p(x, y, t) and p′(x, y, t)
that belongs to cuboid Ct

i , the vector field −→v between p and
p′ is composed by magnitude m and orientation θ. In this way
for each cuboid at time t, we compute the matrix feature F
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Fig. 4. Example of Feature vector extraction using Velocity - magnitude descriptor. Figure (a) illustrates the resultant matrix of optical flow from a cuboid
with (4, 4, 2) dimensions. Figure (b) shows a matrix presenting four magnitude ranges: {(0, 20], (20, 40], (40, 60], (60,∞)}, named SR1, SR2, SR3,
SR4. All magnitude are represented by colors blue, green, orange and red, respectively. Moreover, this figure also presents four ranges for orientations:
{(0, 90], (90, 180], (180, 270], (270, 360]}, named as OC 1, OC 2, OC 3, OC 4.

using Equation 2.

F (s, b) =
∑
−→v→Ct

i

 1 if (s = mod(m,M)) and
(b = mod(θ,B))

0 otherwise
, (2)

where s ∈ {1, 2..S} and b ∈ {1, 2..B} denote orientation and
magnitude ranges, respectively. The spatiotemporal descriptors
are computed for each cuboid Ct

i .
Figure 4 presents a brief example of HOFM feature con-

struction. Figure 4(a) illustrates the resultant matrix of optical
flow from a cuboid C. Figure (b) shows a matrix presenting
four magnitude and orientation ranges. Each pixel in the
cuboid C increments the occurrence of a determinate bin in the
matrix histogram. In this way, our feature vector can be seen as
a matrix, where each line corresponds to a determinate orien-
tation range, and each column corresponds to the magnitude
ranges. For instance, the pixel in the example has (50, 17),
orientation and magnitude values, this pixel increments the
value in M1×1, since the angle 50 is in OC1 range and its
speed is between (0, 20], corresponding to first column. Note
that, here, we just used t = 2. In case of t > 2, there
will be more optical flow results per each image pairs, e.g.,
t = 4 yields three optical flow images. This situation does
not modifies the main presented idea, because here we use
information of the pixel in each optical flow result, i.e., that
each pixel in the cuboid provides information for a determinate
bin in the feature vector regarding the same cuboid.

A

B

Fig. 5. Nearest neighbor search. Anomalous event pattern is represented by
case of point A and a normal event pattern by case of point B.

B. Detection of Anomalous Events

The main idea for the classification step is to search for
some pattern which is similar to the incoming pattern. Figure 5
illustrates this step by using blue points to represent patterns
we have learned and orange points to represent the incoming
patterns. If the incoming pattern is likely enough to some of
the known patterns, then it is considered as a normal pattern
(case of point B), otherwise, if the incoming pattern is not



(a) Sample from Peds1. (b) Sample from Peds2.

Fig. 6. Two scenarios provided by the UCSD Anomaly Detection Dataset [5].

Algorithm 1 Anomaly detection with nearest neighbor search.
1: procedure NEAREST NEIGHBOR(P,C)
2: P is incoming pattern for cuboid i
3: C is a set o learned patterns for cuboid i
4: for w = 1 to W do . W number of learned patterns
5: d← dist(Cw, P ) . Euclidean Distance
6: if d < τ then
7: return True
8: return False

close to any learned patterns, it will be considered as an
anomalous event (case of point A).

In the recognition step, for each cuboid, we use the descrip-
tors computed during learning to classify an incoming pattern
P , at the same spatial location of the cuboid, as anomalous
or normal. The steps for the classification process are shown
in Algorithm 1. This algorithm returns False when none of
the patterns seen during training are similar to the incoming
pattern P , therefore, classifying P as an anomaly.

IV. EXPERIMENTAL RESULTS

The experiments are divided in two parts. The first part
shows a comparison of our proposed feature, HOFM, with
the classical histograms of oriented optical flow (HOOF).
Then, the second part compares our results with other methods
published in the literature. The model was developed using the
Smart Surveillance Framework (SSF) [22], built upon OpenCV
using C/C++ programming language.
Experimental setup. We assess the performance of our
approach in the well-known UCSD Anomaly Detection
Dataset [5]. UCSD is an annotated publicly available dataset
for the evaluation of abnormal detection and localization in
crowded scenarios overlooking pedestrian walkways [10]. The
dataset was acquired with a stationary camera with frames
of 238 × 158 pixels and at a frame rate of 10 frames per
second. Anomalous events are due to either (i) the circulation
of non-pedestrian entities in the walkways, or (ii) anomalous
pedestrian motion patterns.

TABLE I
ANOMALY DETECTION AUC AND EER (%) COMPARISON OF HOFM AND

HOOF ON THE UCSD DATASET.

Peds1 Peds2
Approach AUC EER (%) AUC EER (%)

HOOF 0.515 49.1 0.611 40.1

HOFM 0.715 33.3 0.899 19.0

The UCSD videos are divided into two scenarios: Peds1 and
Peds2, each captured by a camera at a different location, as can
be seen in Figure 6. The videos recorded from each scenario
were split into various video sequences (clips) each of which
has around 200 frames. The number of training sequences are
27 and 16 for Peds1 and Peds2, respectively. The criterion used
to evaluate anomaly detection accuracy was based on frame-
level, as most of the works, in which the algorithm predicts
which frames contain anomalous events and those predictions
are compared to the ground-truth annotations.

As described in Section III, our anomaly detection approach
has two main parameters: (i) the threshold τ , for the nearest
neighbor search; and (ii) the cuboids size (n×m× t). Here,
we varied the τ value to generate the ROC curves, the equal-
error rate (EER) and the area under curve (AUC). In addition,
we experimentally set a fixed the cuboid size to 30× 30× 5.

Feature descriptor evaluation. Table I shows the results of
our experiments over the UCSD dataset in comparison with the
classical histograms of oriented optical flow (HOOF) feature
descriptor. It is clearly noticeable that our proposed feature,
the HOFM, outperforms HOOF. This can be understood by
the fact that HOOF features are based only on the direction
information, disregarding velocity information (capture by the
magnitude of the optical flow), which is an important aspect
for anomaly detection. The ROC curves for each scenario are
shown in Figure 7.

Comparison to other anomaly detection approaches. Ta-
ble II shows our results and the ones reported on the literature
considering the UCSD dataset. On Peds1 scenario, our method
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Fig. 7. ROC curves and the AUC (in parenthesis) achieved by the HOFM (Ours) and HOOF feature descriptors for the UCSD Anomaly Detection Dataset
employing the same nearest neighbor search for classification for both feature descriptors.

TABLE II
ANOMALY DETECTION AUC AND ERR (%) RESULTS OF HOFM AND OTHER PUBLISHED RESULTS ON UCSD DATASET. THE RESULTS WERE OBTAINED

FROM [19] WITH THE ADDITION OF OUR RESULTS.

Peds1 Peds2
Approach AUC ERR (%) AUC ERR (%)

MDT-temporal [19] 0.825 22.9 0.765 27.9
MDT-spatial [19] 0.600 43.8 0.750 28.7

Published MPPCA [16] 0.674 35.6 0.710 35.8
results Force Flow [17] 0.688 36.5 0.702 35.0

Adam (LMH) [6] 0.634 38.9 0.581 45.8

Our HOFM 0.715 33.3 0.899 19.0results

achieved an equal error rate (EER) of 33.3% and an AUC of
0.715, being competitive to most of the reported methods on
the literature. On the other hand, on Peds2, we achieved an
EER of 19.0% and AUC of 0.899, outperforming all reported
results2. The ROC curves for the two scenarios are shown in
Figure 8.

Discussion. Here, we investigate the cases where our method
failed. Most of the undetected anomalous frames correspond to
very challenging cases, such as a skateboarder or a wheelchair
going in an almost similar velocity of the pedestrians and with
partial occlusions, as shown in Figures 9(b) and 9(c). These
errors occurred during sequences 21 and 12 of Peds1 and
Peds2, respectively. An additional reason is that our proposed
feature does not capture texture information. Figure 10 shows
the ROC curves for each scenario with and without these
video sequences. We can see that without such sequences, our
approach achieved better results.

Another important aspect to be considered is the anoma-

2Li et al. [19] also evaluated H-MDT with CRF-filtering achieving
EER = 18.5%, which is very similar to our result on Peds2 scenario
(EER = 19.0%). However, the authors of [19] did not provide the AUC value
(neither on their paper nor upon request through personal messages).

lous type to be considered. In this work, we introduce four
characteristics that may lump together most types of anomaly.
However, we use just two of them (velocity - captured by
the optical flow magnitude, and orientation - captured by the
optical flow orientation) because they are simple (computa-
tionally) to obtain, which is demanded in the case of real time
applications. Although our model considers only these two
characteristics, we still were able to achieve accurate results
when compared to state-of-the-art approaches.

We also need to consider the variability of the anomalous
concept. This aspect may be observed during the testing phase
on the UCSD dataset. For instance, some locations may report
no movement patterns on the training sequences, but on the
testing people might appear in those regions, which should be
considered as an anomaly since such patterns were not present
in training. However, the ground truth annotations of the
UCSD only label objects with different speed or appearance
as anomaly, but ignores places or orientations, labeling such
instances as normal patterns. Figure 9(d) illustrates one of such
cases. In this instance, the marked location is never occupied
by pedestrians during training, however pedestrians appear
during testing, which should be considered as anomalous.
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Fig. 8. ROC curves and the AUC (in parenthesis) for the UCSD Anomaly Detection Dataset (plot obtained from [19] with the addition of our results).
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Fig. 9. Some examples analyzed through anomaly detection.

However, even though our method classifies that location as
anomalous, the ground truth considers it as a normal case,
generating a false positive.

V. CONCLUSIONS AND FUTURE WORKS

In this work, we introduced a new method to detect
anomalous events in crowd scenes. Moreover, we proposed
a novel descriptor approach based on optical flow information
estimated from the scene, called Histograms of Optical Flow
Orientation and Magnitude (HOFM). Besides of measuring
orientation based on temporal information, the proposed fea-
ture descriptor also extracts velocity information provided
by the magnitude of the flow vectors. We experimentally
compared the performance of the proposed descriptor to the

classical histograms of oriented optical flow (HOOF) and
achieved great improvements.

We evaluated the performance of our approach compared
to other published results on the UCSD Anomaly Detection
dataset, a well annotated publicly available dataset for the eval-
uation of anomaly detection. As shown on the experimental
results, our approach obtained the highest AUC values when
compared to state-of-the-art methods in the Peds2 scenario.
Results also yielded comparable results in the Peds1 scenario.

The results demonstrated the suitability of the proposed
HOFM to the anomaly detection problem. Such suitability
becomes even more emphasized due to the fact that we
are employing a simple nearest neighbor search to classify
incoming patterns, as opposed to other approaches that employ
very sophisticated classification and modeling techniques.

It is also important to report the difficulty to find challenging
datasets for detection of anomalous events in crowded scenes.
Few datasets have been reported e.g., [6] and [23], but these
have various limitations in terms of size, saliency of the
anomalies and evaluation criteria, emphasizing the need for
more evaluation datasets.

Future directions include the evaluation of the proposed
feature regarding processing time and evaluation of the pro-
posed approach on other video classification problems. In
addition, we intend to improve our results by exploiting further
parameter setups, such as the evaluation of different number
of magnitude and orientation bins.
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