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Abstract—Image representation based on superpixels has be-
come indispensable for improving efficiency in Computer Vision
systems. Object recognition, segmentation, depth estimation, and
body model estimation are some important problems where su-
perpixels can be applied. However, superpixels can influence the
efficacy of the system in positive or negative manner, depending
on how well they respect the object boundaries in the image.
In this paper, we improve superpixel generation by extending a
popular algorithm — Simple Linear Iterative Clustering (SLIC)
— to consider minimum path costs between pixel and cluster
centers rather than their direct distances. This creates a new
Image Foresting Transform (IFT) operator that naturally defines
superpixels as regions of strongly connected pixels by choice of
the most suitable path-cost function for a given application. Non-
smooth connectivity functions are also explored in our IFT-SLIC
approach leading to improved performance. Experimental results
indicate better superpixel extraction using the proposed approach
as compared to that of SLIC.

Keywords-Simple Linear Iterative Clustering; Image Foresting
Transform; Superpixel; unsupervised segmentation.

I. INTRODUCTION

Unsupervised over-segmentation of an image, commonly

called superpixels, is a convenient way to partition an im-

age into relevant regions that can together represent objects.

This partition can greatly reduce the computational time of

the algorithms, by replacing the rigid structure of the pixel

grid [1]. A superpixel can be defined as a compact region

of similar and connected pixels, which locally represent a

same image structure. The similarity measure can be defined in

numerous ways, by using intensity, color, texture and position

as features. Since the pixels contained in the same superpixel

are considered equal by definition, superpixels primitives have

some advantages over simple pixel primitives, like computa-

tional efficiency, since that the number of primitives are greatly

reduced at the superpixel level. This brings great opportunities

to alleviate Computer Vision pipelines overhead.

Despite the efficiency gain, a superpixel image representa-

tion can greatly affect, positively or negatively, the efficacy of

the algorithms. Hence, it is crucial that the superpixels respect

the object boundaries in the image, such that one object can be

precisely defined by a set of superpixels. A good superpixel

generation algorithm should possess the following desirable

properties [1]:

1) Ability to adhere to image boundaries: The methods

must respect and preserve the local structures presented

in the image, since the objective of a superpixel is to

represent some object or its parts in an image;

2) Flexibility in the number of superpixels it generates:

The methods should ideally allow the customization of

the desired number of superpixels, in order to prevent

undersegmentation — i.e., segmenting the image in too

few regions, so one superpixel would eventually contain

two or more objects;

3) Efficiency: They need to be generated in the fastest way

possible, so they don’t add too much overhead to the

rest of the pipeline limiting its benefits, and they must

be straightforward to extend to higher dimensions;

4) Hard segmentation: The superpixels should not overlap

each other. Each pixel must be assigned to a single

superpixel;

5) Compactness: Superpixels should be constrained to

have uniform size and shape. The ability to control the

compactness of the superpixels is important. Compact,

regular superpixels are often desirable because their

bounded size and few neighbors form a more inter-

pretable graph and can extract more locally relevant

features.

In this paper, we extend one of the most popular superpixel

generation algorithms, called Simple linear iterative clustering

(SLIC) [1], in an Image Foresting Transform (IFT) [2] frame-

work. This extension gives us a greater freedom to utilize it in

a wider variety of scenarios, by choice of a more suitable path-

cost function for each given application. We call this extension

IFT-SLIC. SLIC essentially adapts the k-means algorithm for

superpixel generation. Since k-means is based on the direct

distances between pixel and cluster centers, similar pixels



may not group into one compact region, even locally, and

the problem is somehow addressed in SLIC. We change the

distance function to be the minimum path cost in a derived

image graph, such that superpixels are naturally defined as

compact regions of strongly connected pixels. This result,

not only improves the quality of the superpixels according

to the aforementioned properties, but also reduces superpixel

generation to the choice of a suitable path-cost function for

a given application, and we exemplify that for natural and

medical image segmentation. In the context of unsupervised

segmentation of images, the methods by IFT usually consider

only smooth functions [3]. The proposed version of IFT-

SLIC also breaks new ground by considering non-smooth

connectivity functions, which are more adaptive to cope with

problems of inhomogeneity [4], and can fit to the image

features more effectively.

The rest of the paper is organized in the following manner:

In Section II, we discuss some previous methods, showing

their strengths and limitations. Section III shows the origi-

nal Simple linear iterative clustering (SLIC) and the Image

Foresting Transform (IFT). The proposed extension of SLIC,

named as IFT-SLIC, is presented in Section IV. In Section V,

we discuss the experimental results. The paper is concluded

in Section VI with an outline for directions of future research.

II. RELATED WORK

Superpixel generation is a vastly studied area, especially due

to the fact that every segmentation algorithm can potentially

generate superpixels.

Mean Shift and Quick Shift [5] are examples of mode-

seeking algorithms that are used to generate superpixels [6]

even though their main purpose is to generate a direct seg-

mentation of the image. Mean Shift works by recursively

moving data points in the pixel feature space until it reaches

a dome of a density function, similarly, Quick Shift creates a

tree of nearest-neighbor data points that increase the density

value to reach the dome. However, these methods do not offer

an explicit control over the amount of superpixels or their

compactness.

The graph based segmentation approaches in [7] and [8]

can also be used for extraction of superpixels. The method

in [7] uses minimum spanning tree whereas the approach in [8]

is based on normalized cuts. However, it has been observed

that [7] produces superpixels with very irregular shapes and

sizes and [8] is one of the slowest methods for the extraction

of superpixels.

Another non-specialized algorithm used for superpixels is

the classic Watershed [9]. As its name suggests, the idea

is to create various watersheds by simulating a flooding

process, starting from the local minima of the gradient of

the image [10]. Each catchment basin represents a connected

component in the segmentation, which consequently represents

a superpixel as well. The problem with the above algorithm

is that it does not offer any way to directly control the size or

compactness of the superpixels, thereby violating Properties

2 and 5. Nevertheless, Property 2 could be amended by

the usage of extinction values from a component tree [11].

Other methods treat data clustering as an Optimum-Path Forest

(OPF) problem [3]. This corresponds to a dual definition of

the IFT-Watershed [10], but running on a different graph and

starting from the local maxima of a density function.

Other authors focus specifically on superpixels output, as

in [12], where a geometric-flow-based algorithm is proposed.

This algorithm organizes its superpixels in a lattice-like struc-

ture. Superpixels are generated by a curve evolution of a

set of seeds points, regularly placed onto the image. Using

some constraints, this process obtains superpixels that fulfill

all the superpixel properties. However, according to Achanta

et al. [1], the Turbopixel method [12] is among the slowest

algorithms examined and exhibits relatively poor boundary

adherence. Some papers, like [13], [14] and [15], generate

superpixels in a certain geometrical order which creates a

real regular lattice. The advantage of having a lattice is

that the generated superpixels have the same relationship to

its neighbors as simple pixels, simplifying its adaptation to

methods which take advantages of neighborhood analysis. This

lattice structure differs from the one in [12] which lacks a

well-defined neighborhood.

III. TECHNICAL BACKGROUND

A. SLIC Algorithm

Simple linear iterative clustering (SLIC) [1] adapts a k-

means clustering approach to efficiently generate superpixels.

SLIC superpixels correspond to clusters in the labxy feature

space. It has two parameters, the desired number of approx-

imately equally sized superpixels k, and a parameter m to

offer control over their compactness. Its complexity is linear

in the number of pixels N , and independent of the number of

superpixels k.

For color images, the SLIC algorithm has the following

steps:

• Firstly, the input image is converted to the CIELAB
color space.

• Then, a total of k′ 1 initial cluster centers Ci =
[li ai bi xi yi]

T are sampled on a regular grid spaced

S =
√

N/k pixels apart.

• Optionally, the centers may be moved to the lowest

gradient position in a 3 × 3 neighborhood, to avoid

initialization in a noisy pixel.

• Next, in the assignment step, each pixel is associated with

the nearest cluster center according to a distance measure

D, but considering only the centers whose search region

of 2S × 2S pixels overlaps its location.

• After that, an update step adjusts the cluster centers to be

the mean [l a b x y]T vector of all the pixels belonging

to the cluster.

• The assignment and update steps are then repeated for a

total of 10 iterations.

1SLIC does not guarantee the exact number k of desired superpixels. Only
k′ initial centers are actually used, where k′ is an approximate value of k
(k′ ≈ k), according to their source code.



• At the end, some disjoint pixels that do not belong to

the same connected component as their cluster center

may remain. Therefore, a post-processing step to enforce

connectivity is applied, by assigning a distinct label to

each connected component 2.

The distance measure D is given by:

D =

√

dc
2 +

(

ds
S

)2

m2 (1)

where m gives the relative importance between color distance

(dc) and spatial distance (ds). When m is large, the resulting

superpixels are more compact, whereas, when m is small, we

have a better adhesion to the image boundaries, but with less

regular size and shape.

B. Image Foresting Transform (IFT)

An image can be interpreted as a graph G = (I,A) whose

nodes are the image pixels in its image domain I ⊂ Zn, and

whose arcs are the pixel pairs (s, t) in A (e.g., 4-neighborhood,

or 8-neighborhood, in case of 2D images). The adjacency

relation A is a binary relation on I. We use t ∈ A(s) and

(s, t) ∈ A to indicate that t is adjacent to s.

For a given image graph G = (I,A), a path πt =
〈t1, t2, . . . , tn = t〉 is a sequence of adjacent pixels with

terminus at a pixel t. A path is trivial when πt = 〈t〉. A path

πt = πs · 〈s, t〉 indicates the extension of a path πs by an arc

(s, t). When we want to explicitly indicate the origin of a path,

the notation πs t = 〈t1 = s, t2, . . . , tn = t〉 may also be used,

where s stands for the origin and t for the destination node.

A predecessor map is a function P that assigns to each pixel

t in I either some other adjacent pixel in I, or a distinctive

marker nil not in I — in which case t is said to be a root

of the map. A spanning forest is a predecessor map which

contains no cycles — i.e., one which takes every pixel to nil
in a finite number of iterations. For any pixel t ∈ I, a spanning

forest P defines a path πP
t recursively as 〈t〉 if P (t) = nil,

and πP
s · 〈s, t〉 if P (t) = s 6= nil.

A connectivity function computes a value f(πt) for any path

πt, usually based on arc weights. A path πt is optimum if

f(πt) ≤ f(τt) for any other path τt in G. By taking to each

pixel t ∈ I one optimum path with terminus t, we obtain

the optimum-path value V (t), which is uniquely defined by

V (t) = min∀πt in G{f(πt)}. The Image Foresting Transform

(IFT) [2] takes an image graph G = (I,A), and a path-value

function f ; and assigns one optimum path πt to every pixel

t ∈ I such that an optimum-path forest P is obtained — i.e.,

a spanning forest where all paths are optimum. However, f
must be smooth [2], otherwise, the paths may not be optimum.

The cost of a trivial path πt = 〈t〉 is usually given by

a handicap value H(t), while the connectivity functions for

2Moreover, according to their source code, if a certain component is too
small, it is merged with a previously found adjacent component. So, the
initial number k′ of superpixels changes in the end as segments are added or
removed.

non-trivial paths follow a path-extension rule. For example:

fmax(πs · 〈s, t〉) = max{fmax(πs), w(s, t)} (2)

fsum(πs · 〈s, t〉) = fsum(πs) + w(s, t) (3)

feuc(πr s · 〈s, t〉) = ‖t− r‖2 (4)

where w(s, t) ≥ 0 is a fixed arc weight.

Recently, methods based on Image Foresting Transform

(IFT) with non-smooth connectivity functions have been used

successfully in the context of supervised image segmenta-

tion [16], [17], [18], [4]. Non-smooth functions comprise a less

restricted class of connectivity functions, allowing advances,

such as the incorporation of boundary polarity [16], [17], the

use of shape constraints [18], and the better handling of images

with inhomogeneity problems [4], but practically there are

no studies of their application in the context of unsupervised

segmentation of images.

IV. IFT-SLIC

Similar to SLIC, we start with the same selection of k′ initial

cluster centers Ci = [li ai bi xi yi]
T , which are sampled on a

regular grid spaced S =
√

N/k pixels apart.

The main difference with SLIC lies in the assignment step.

Instead of using an adaptive k-means clustering approach,

we consider the computation of an IFT with the non-smooth

connectivity function fD, which is based on the path-cost

function f∑ |△I| from [4] that uses the sum of the absolute

value of relative intensities. These functions are justified by

the theoretical and experimental resutls presented in [4]3.

The initial cluster centers Ci = [li ai bi xi yi]
T de-

fine a set of seeds S , such that for each pixel r ∈ S at

coordinate (xr, yr), we have a corresponding cluster center

Cj = [lj aj bj xj yj ]
T and (xj , yj) = (xr, yr).

Note that the path-cost function fD plays the same role as

the distance measure D in the SLIC.

fD(πt = 〈t〉) =

{

0 if t ∈ S
+∞ otherwise

fD(πr s · 〈s, t〉) = fD(πs) + (‖I(t)− Ir‖ · α)
β
+ ‖s, t‖

where I(t) is the color vector at pixel t, i.e., I(t) = [lt at bt]
T ,

and Ir is the color vector of the cluster center of seed r (i.e.,

Ir = [lj aj bj ]
T where Cj = [lj aj bj xj yj ]

T and r is at the

coordinate (xj , yj)).
At the end of the assignment step, each cluster/superpixel

will be represented by its respective tree in the spanning forest

(i.e., the predecessor map P ) computed by the IFT.

After that, an update step adjusts the cluster centers. Dif-

ferently from SLIC, which considers the mean [l a b x y]T

vector of all the pixels belonging to the cluster, we take for

the (x, y) the coordinate of the cluster’s pixel closest to the

mean position. The idea is to avoid the selection of an updated

position that lies outside its cluster.

3For instance, the functions fD and f∑ |△I| are more adaptive to cope
with problems of inhomogeneity, which are common in MR images of 3
Tesla [4].



The assignment and update steps are then repeated for

a total of 10 iterations. IFT-SLIC does not require a post-

processing step as the connectivity is already guaranteed by

design. Furthermore, IFT-SLIC can be computed in linear

time with respect to the number of pixels N , and its time

complexity is independent of the number of superpixels k.

A. Implementation issues

In order to reduce the computation time needed for our

method, we use the following implementation strategy, using

differential image foresting transforms [19].

Let Ct
i = [lti ati bti xt

i yti ]
T be the ith cluster center at

iteration t. During the consecutive IFT computations, we only

recompute the cluster center for Ct+1

i if:

‖[lti a
t
i b

t
i]− [lt+1

i at+1

i bt+1

i ]‖ > ǫc

or

‖[xt
i y

t
i ]− [xt+1

i yt+1

i ]‖ > ǫs

The centers marked for recomputation have their trees re-

moved by running the DIFT-TREE REMOVAL algorithm [19],

and their new seed positions are added to the seed set, to

compute new trees, which may invade the influence zones of

other roots. When a tree is removed from the forest, its pixels

become available for a new dispute among the remaining roots.

V. EXPERIMENTS AND RESULTS

Instead of comparing the methods for a fixed configuration

of their parameters, we show the accuracy values of SLIC 4

and IFT-SLIC for a wide range of their parameters. This type

of approach provides a more impartial performance analysis

as any bias towards poor selection of parameters is removed.

To measure the ability of the methods to adhere to im-

age boundaries, we considered datasets with corresponding

ground-truths. The superpixels by SLIC and IFT-SLIC are

computed, and we assign to each superpixel the most frequent

label of the ground truth occurring in its interior. The resulting

segmentation is then compared to the ground-truth data using

the Dice coefficient. Figure 1 illustrates this process step by

step. We present the accuracy results, employing the mean

performance curve involving three 2D datasets.

In the first experiment, we used the test set of 50 natural

images of the public GrabCut dataset [20]. For the second

dataset, we conducted quantitative experiments, using a total

of 40 image slices of 10 thoracic CT studies to segment the

liver (Figure 2). In the third experiment, we performed the

segmentation of the talus bone, using 40 slices from MR

images of the foot (Figure 3). In the case of medical images,

the ground truth data was obtained from an expert of the

radiology department at the University of Pennsylvania.

Figures 5, 6, and 7 show the mean accuracy curves for the

three datasets for different superpixel sizes A, such that the

input parameter k is set as k = N/A. For the talus bones we

4We used the source code of SLIC superpixels available at http://ivrg.epfl.
ch/research/superpixels

(a) SLIC (m = 18)

(b) IFT-SLIC (α = 0.08)

Fig. 2. A liver from a CT thoracic study. Superpixel results by: (a) SLIC ,
and (b) IFT-SLIC.

considered only superpixel sizes of 10× 10 and 20× 20 due

to its limited size of the images (256× 256 pixels).

For SLIC we considered 40 samples of the parameter m,

uniformly varying in the interval [2, 80], which includes its

recommended values [1], while for IFT-SLIC, we used 40
samples of α in [0.005, 0.2] and β = 12.0 for obtaining

good results. Figure 4 shows the effects on the superpixels

for different values of α. We considered ǫc = 5 and ǫs = 2.

Clearly, the accuracy decreases as we increase the super-

pixel size for both methods, but IFT-SLIC presents a better

performance compared to SLIC. In order to better elucidate the

results, in Figures 8, 9 and 10 we plot the curves of SLIC and

IFT-SLIC on a same graph, with 40 sample points ordered in

increasing order of accuracy. It is clear that IFT-SLIC presents

the highest accuracy values.

VI. CONCLUSION

In this paper, we developed an IFT based version of the

SLIC algorithm, which exploits the connectivity information

to improve the quality of the generated superpixels results.

The results clearly showed the importance of non-smooth

connectivity functions (fD) under the framework of the image

foresting transform (IFT) [2] for unsupervised segmentation.

As future work, we intend to test IFT-SLIC with other path-

cost functions. We believe that even better results could be

obtained by devising more specific path-cost functions to cope



(a) Input image (b) Ground truth

(c) SLIC superpixels (d) SLIC segmentation

(e) IFT-SLIC superpixels (f) IFT-SLIC segmentation

Fig. 1. (a-b) Input image and its ground truth. The superpixels of 40× 40 are computed by: (c) SLIC and (e) IFT-SLIC. We assign to each superpixel the
most frequent label of the ground truth occurring in its interior: (d) The SLIC result has Dice = 0.9659, and (f) IFT-SLIC has Dice = 0.9694.



(a) Input image (b) Ground truth (c) SLIC (m = 18) (d) IFT-SLIC (α = 0.05)

Fig. 3. (a-b) True segmentation of the talus in MRI slices of a foot. (c) Superpixels by SLIC. (d) Superpixels by IFT-SLIC.

(a) α = 0.01 (b) α = 0.04 (c) α = 0.08

Fig. 4. The effects of different values of α on the superpixels by IFT-SLIC. For higher values of α, we have a better adhesion to the image boundaries.
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Fig. 5. The mean accuracy curves for segmenting the GrabCut dataset for different superpixel sizes.

with the particularities of a given application. In this sense, our

framework of superpixels via IFT can open new perspectives

in the research area of image processing using graphs.
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