
Extraction of numerical residues in families of
levelings

Wonder Alexandre Luz Alves, Alexandre Morimitsu, Joel Sánchez Castro and Ronaldo Fumio Hashimoto
Department of Computer Science, Institute of Mathematics and Statistics,

University of São Paulo, São Paulo, Brazil
wonder@ime.usp.br

Abstract—This work introduces a residual operator called
ultimate attribute leveling. We also present an efficient algorithm
for ultimate attribute leveling computation by using a structure
called tree of shapes. Our algorithm for computating ultimate
attribute leveling is based on the fact (proved in this work) that
levelings can be obtained by pruning nodes from the tree of
shapes. This is a novel result, since so far it is known that levelings
can be obtained from component trees. Finally, we propose
the use of ultimate attribute leveling with shape information
to extract contrast using a priori knowledge of an application.
Experimental results applied to text location show the potentiality
of using ultimate attribute leveling with shape information for
solving problems in image processing area.
Keywords-residual morphological operator; ultimate attribute
opening; ultimate attribute closing; ultimate attribute leveling.

I. INTRODUCTION

Mathematical Morphology (MM) is a theory that studies
mappings between complete lattices [1], [2]. In particular,
mappings on the set of all gray level images FD defined
on domain D ⊂ Z2 are of special interest in MM and they
are called operators. Given two operators, say ψ and ϕ, the
operator obtained by the difference between them, that is,
r = ψ − ϕ, is known as residual operator. In the literature,
it is possible to find many applications of residual operators
in Image Processing: morphological gradients (which are the
residue of a dilation and an erosion, i.e., δ − ε), white top
hats (which are the residue of the identity operator and an
opening, i.e., ι−γ); and black top hats (which are the residue
of a closing and the identity operator, i.e., φ− ι) are examples
of residual operators.

The residual operator can be extended to a family of op-
erators {ψi} and {ϕi} as the supremum of residual operators
{ri : ri = ψi − ϕi}, i.e., r = supi{ri} [3]. For example,
the ultimate opening is defined as the supremum of residual
operators when ψi and ϕi are consecutive openings, i.e., ri =
γi − γi+1 [3]. These residual operators have been extended
to extract residues of families of connected operators [4],
[5], [6]. At first, Retornaz and Marcotegui [6] proposed the
ultimate attribute opening for scene text localization. Then,
Fabrizio and Marcotegui [4] developed an efficient algorithm
for computing ultimate attribute opening using component
trees [7]. Later, Hernández and Marcotegui [8] added shape
information to extract residues from ultimate atribute opening.

Differently from the works [4], [6], [8], Meyer [5] proposed
to extract residues from a family of levelings obtained by
using erosions and dilations as markers. The obtained levelings
produce positive and negative residues (which is not the case
for the ultimate opening). In this way, Meyer [5], in contrast
to Beucher [3], treats separately the positive and negative
residues. In this work, we call this residual operator as ultimate
leveling.

Given the above considerations, in this work, we provide
several original results: (i) we prove that we can obtain
levelings from tree of shapes [9] and we call them attribute
leveling (it is already known in the literature that we can
extract levelings from component trees); (ii) we propose an
efficient algorithm for computing ultimate attribute leveling
which is an extension of the algorithm for computing ultimate
attribute opening presented by Fabrizio and Marcotegui [4]
(differently to latter work, our algorithm can also use tree of
shapes to compute ultimate attribute leveling); (iii) we added
shape information to the ultimate attribute leveling (differently
to the work of Hernández and Marcotegui [8] which added
shape information to ultimate attribute opening).

The remainder of this paper is structured as follows. For
the sake of completeness, Sections II, III and IV briefly
recall some definitions and properties of image representation
by tree structures, connected filters, and constrast extraction
using residues, respectively. In particular, Section III provides
the first original result of this work. The other original
contribution of this paper is given in Section V, where we
introduce the ultimate attribute leveling and present an efficient
algorithm for its computation. In Section VI, we present the
third contribuition of this work: the ultimate attribute leveling
with shape information. Experimental results are shown in
Section VII, and finally, Section VIII concludes this work and
presents some future research direction.

II. IMAGE REPRESENTATION USING TREE STRUCTURES

There are many different ways of building trees that rep-
resent a given image, such as component trees [7], tree of
shapes [9] and binary partition trees [10]. Each of these
structures is able to fully reconstruct the image using its
hierarchy and information stored in the nodes of the tree,
which varies according to the chosen tree.

The main advantage of using such representations is that
the hierarchy of the tree is directly related to some kind of

Input image
Filtered

image
Tree

Pruning

ReconstructionConstruction

Figure 1. Image representation by tree structures.

relation between the regions of the image. Modifications in the
nodes of the trees will imply modifications of regions once the
image is reconstructed from the modified tree. This allows, for
example, an efficient computation of regions simplifications of
the original image since this can be done by simply pruning
nodes of the tree and reconstructing the image from the pruned
tree (see Fig. 1).

A. Component Trees

Given an image f : Df ⊂ Z2 → {0, 1, ..., 255}, we define
X µ(f) = {p ∈ Df : f(p) ≤ µ} as the upper level set at
value µ. Likewise, the set Xλ(f) = {p ∈ Df : f(p) ≥ λ}
will be defined as the lower level set at value λ. These
level sets are nested and, consequently, the family of upper
(resp. lower) sets is increasing (resp. decreasing). Therefore,
∀α, β ∈ {0, 1, . . . , 255}, such that α < β, Xα(f) ⊆ Xβ(f)
and Xα(f) ⊇ X β(f). The image f can be reconstructed
using either the family of lower or upper sets [9]. In fact,
∀x ∈ Df ,

f(x) = sup{λ : x ∈ Xλ(f)} = inf{µ : x ∈ X µ(f)}.

Let L(f) be the family of lower connected com-
ponents (CCs) of level sets (i.e. L(f) = {C :
C is a CC of Xλ(f), 0 ≤ λ ≤ 255}) and let U(f) be
the family of CCs of upper level sets (i.e. U(f) = {C :
C is a CC of X µ(f), 0 ≤ µ ≤ 255}). Then, the pair ordered
consisting of the family of CCs of lower (resp., upper) level
sets and the usual set inclusion relation (L(f),⊆) (resp.
(U(f),⊆)) induces a tree structure. This leads us to Def. 1,
and consequently to Prop. 1.

Definition 1. Let (T ,�) be an ordered set. We say that �
induces a tree structure in T if the two conditions hold:

1) ∃R ∈ T such that ∀N ∈ T , N � R. In that case we
shall say that R is root of tree.

2) ∀A,B,C ∈ T , if A � B and A � C then either B � C,
or C � B. In that case, we shall say that B and C are
nested.

Proposition 1. Both (L(f),⊆) and (U(f),⊆) are trees.

Thus, its nodes Cλ,k (resp., Cµ,k) represent the k-th CCs
of Xλ(f) (resp. X µ(f)) and two nodes Cλ,k and Cλ′,k′ (resp.,
Cµ,k and Cµ

′,k′) are linked by an edge if, and only if,
@Cλ′′,k′′ ∈ L(f) (resp., @Cµ′′,k′′ ∈ U(f)) such that either
Cλ,k ⊆ Cλ′′,k′′ ⊆ Cλ′,k′ (resp., Cµ,k ⊆ Cµ

′′,k′′ ⊆ Cµ
′,k′), or

Cλ′,k′ ⊆ Cλ′′,k′′ ⊆ Cλ,k (resp., Cµ
′,k′ ⊆ Cµ′′,k′′ ⊆ Cµ,k).

f

X0 X 2

X1 X 1

X2 X 0

C0,0

C1,0

C1,1

C2,1

C2,0

C2,0

C1,0

C1,1

C0,0

C0,0

C1,0

C1,1

C2,0

C2,1

C2,0

C1,0

C1,1 C0,0

max-tree min-tree

Figure 2. Example of component trees. At the top-center is the input image
f ; the left and right columns are, respectively, the CCs of the levels sets Xλ

and Xµ; and at the bottom are the trees: max-tree and min-tree.

In this representation, regional maxima (resp. minima) of
the image f are represented by leaf nodes and for this reason
this tree is also known as max-tree (resp. min-tree). Fig. 2
shows an image f , their respectives level sets Xλ(f) and
X µ(f), the CCs Ci,j ∈ L(f) and Ci,j ∈ U(f) and the trees.
The algorithms for the component trees construction can be
found in [4], [7].

B. Tree of shapes

Let P(Df) denote the powerset of the domain of an image
f . Let sat : P(Df) → P(Df) be the operator for filling
holes and SAT (f) = {sat(C) : C ∈ L(f) ∪ U(f)} be the
family of CCs of the upper and lower level sets without holes.
The elements of SAT (f), called shapes, are nested by an
inclusion relation and thus the pair (SAT (f),⊆), induces the
tree of shapes [9], [11], [12], which leads to Prop. 2. It is
worth noting that in this tree, the leaves coincide with regional
extrema (minima and maxima) of the image.

Proposition 2. The ordered set (SAT ,⊆) is a tree.

It was shown that it is possible to build a tree of shapes
of an image by merging its max-tree and min-tree [9], [11],
[13]. The algorithm performs as follows: initially, both the
min-tree and the max-tree of the input image are computed,
but during this computation, a pixel belonging to each hole is
stored. After, for each CC of min-tree Cµ,k ∈ U(f) that has

C1,0 C2,0 C0,0 C1,1 C2,1

sat(C1,0) sat(C2,0) sat(C0,0)

sat(C1,1) sat(C2,1)

Figure 3. An example of tree of shapes of the input image shown in Fig. 2.

one or more holes, we seek in the max-tree, the CCs that fill
the holes of Cµ,k. After that, all the holes of the min-tree are
filled, we fill the holes of the CCs of the max-tree with the
CCs of min-tree [9].

The min-tree and max-tree are non-redundant representa-
tions and each contains all the pixels of the image domain [7].
Then, we can have duplicated pixels in the tree. Therefore,
the last step of the algorithm consists of rebuilding a non-
redundant tree of shapes by eliminating those duplicated pixels
from its nodes. Fig. 3 shows the saturated CCs of the image
f presented in Fig. 2 and its respective tree of shapes.

III. CONNECTED FILTERING

As previously stated, the main advantage of using a tree
structure to represent an image is that it can be used to perform
filtering efficiently. But this filtering must be based on some
criterion and this requires some information to be stored in the
tree nodes.Many different kinds of information can be used,
and we call them attributes. Formally, an attribute is a function
κ : P(Df) → R+ and it can represent node information
such as area, volume, height, width, circularity. Filtering an
image by using an attribute can be done by simply pruning
tree nodes that satisfy a certain criterion (for example, nodes
whose attribute value is lower than a given threshold).

Definition 2. Let Tf be the tree of an image f , then a pruning
of Tf is the operation of removing all nodes N in Tf that
satisfy a certain criterion onN . Furthermore, the pixels stored
in N are taken to the first preserved ancestor starting from
N to the root.

Some attributes can be increasing, i.e., if A,B ∈ P(Df)
and A ⊆ B, then κ(A) ≤ κ(B). If the chosen tree is the
max-tree (resp. min-tree), then the resulting filter by increasing
attributes is the operator called attribute opening (resp., clos-
ing) [7], whereas if it is the tree of shapes, filtering results in
a filter by self-dual attributes or grain filter [9], since it gives
symmetrical treatment to extrema regions.

Definition 3. A connected operator maps an image f into an
image g such as the following relation is valid for all pairs of
neighboring pixels: ∀(p, q) neighbors, f(p) = f(q)⇒ g(p) =
g(q).

A connected operator equivalently satisfies the following rela-
tionship: ∀(p, q) neighbors, if g(p) 6= g(q) then f(p) 6= f(q).
It is easy to check that the attribute opening is a connected
operator: if two neighboring pixels (p, q) satisfy f(p) = f(q),
then we have p and q belonging to the same level set and
therefore to the same CC. Then, these two pixels will be in the
same node and they have the same gray level, i.e., g(p) = g(q).

A. Levelings

Meyer [14], [15] extensively studied connected operators
specializations. One of these specializations, known as level-
ings, are powerful simplifying filters that preserve contours
and extend flat zones of an image.

Definition 4. A leveling operator maps an image f into an
image g such that the following relation is valid for all pairs
of neighboring pixels, i.e., ∀(p, q) neighbors:

g(p) > g(q)⇒ f(p) ≥ g(p) and g(q) ≥ f(q).

Levelings are increasing operators, since f(p) ≥ g(p) >
g(q) ≥ f(q)⇒ f(p) > f(q). Moreover, it is possible to show
that if g is the result of filtering using increasing attributes
from the max-tree, min-tree or tree of shapes built from an
image f , then g is a leveling of f .

Theorem 1. Let f be an image and consider the tree (max-
tree, min-tree or tree of shapes) that represents f . Consider
that the tree was filtered by an increasing attribute and this
pruned tree was reconstructed into an image g. Then, g is a
leveling of f .

Proof: To prove that g is a leveling of f , we need to prove
that the leveling definition holds for every pair of neighboring
pixels within the domain of the image.

This property can be easily proved if the tree used is a
component tree: assume, for instance, that a max-tree is being
used. Let Cf (p) be the node of Tf that represents the smallest
CC that contains the pixel p. By definition, Cf (p) is a CC of
Xf(p)(f). Also, let Cg(p) be the node representing the smallest
CC that contains p in Tg , where Tg is the tree obtained by
pruning Tf . Since pruning the tree can only eliminate nodes,
it is clear that Cf (p) ⊆ Cg(p).

Consider a pair (p, q) of neighboring pixels. If f(p) = f(q),
then Cf (p) = Cf (q), since their gray levels are equal and p and
q are neighbors. Then, any pruning in the tree either would
keep or eliminate Cf (p) from the reconstructed image but, in
both cases, the nodes Cg(p) and Cg(q) will be the same node,
implying g(p) = g(q), which satisfies the leveling definition
because the hypothesis g(p) > g(q) is false.

Now, consider f(p) 6= f(q). Without loss of generality, sup-
pose f(p) > f(q). Then, by definition, Cf (p) ⊆ Xf(p)(f) ⊂
Xf(q)(f). Consequently, Cf (p) ⊆ Cf (q), since Cf (q) is a
maximal set of Xf(q)(f) that contains the neighboring pixels
p and q. If neither of these nodes is pruned, then we have
f(p) = g(p) > g(q) = f(q), which can be easily seen that sat-
isfies the leveling definition with some algebric manipulations.
If both nodes are pruned, then Cg(q) must contain both p and q,

since Cf (q) ⊆ Cg(q) and Cf (q) already contained these pixels,
implying Cg(p) = Cg(q) ⇒ g(p) = g(q). The only other
possibility is the case when only Cf (p) is pruned (if Cf (q)
is pruned, Cf (p) will also be, since Cf (p) ⊆ Cf (q)). In this
case, we will have that Cf (p) ⊆ Cg(p) ⊆ Cg(q) = Cf (q). If
Cg(p) = Cg(q) then g(p) = g(q) and there is nothing to prove.
Otherwise, Cg(p) ⊂ Cg(q) ⇒ f(p) ≥ g(p) > g(q) = f(q),
which also satisfies the leveling definition.

So far, it was shown that, for any case and for any pair of
neighboring pixels, the leveling definition still holds. Similar
arguments can be used to prove that proposition when a min-
tree is used.

The complete proof for the case of tree of shapes is more
difficult and then only some insights will be given. Let Sf (p)
be the node of a tree of shapes Tf that represents the smallest
CC that contains p and suppose two neighboring pixels (p, q).
If f(p) = f(q) then Sf (p) = Sf (q), since their gray levels are
equal and p and q are neighbors. This implies g(p) = g(q),
which satisfies the leveling definition because the condition
g(p) > g(q) is false.

Now, consider f(p) 6= f(q). Then, we have two cases: either
Sf (p) ⊂ Sf (q) or Sf (p) ∩ Sf (q) = ∅ (see Theorem 2.16 in
[13]).
• If Sf (p) ⊂ Sf (q) then the branch of nodes (Sf (q) =
S1,S2, ...,Sn = Sf (p)) linking Sf (q) to Sf (p) must
satisfy one of the following properties:

1) f(Si) > f(Si+1), 1 ≤ i < n, if f(q) > f(p);
2) f(Si) < f(Si+1), 1 ≤ i < n, if f(q) < f(p).

In the above property, f(Si) will denote the gray level
of the pixels of the node Si. If f(q) = f(p), then it can
be shown that p and q are not neighbors. Thanks to these
properties, if the node Sf (q) is an ancestor of the node
Sf (p), the gray level of the nodes between them follow
a hierarchy similar to the min-tree (Prop. 1) or the max-
tree (Prop. 2). Then, all the proofs used to prove that the
pruning of component trees generates leveling are also
valid.

• If Sf (p) ∩ Sf (q) = ∅ then (p, q) are not in the same
branch of the tree. In this case, there certainly exists a
node Sf (r) that is a common ancestor of both Sf (p)
and Sf (q) (in the worst case, this common ancestor
is the root, the node representing the whole image). It
can be shown that the branches linking Sf (r) to Sf (p)
and Sf (r) to Sf (q) satisfy the hierarchy of gray levels
presented in the above property. Furthermore, if one the
branches satisfies Prop. 1, the other branch must satisfy
Prop. 2. Using this fact, a relation between the gray levels
of Sf (p), Sf (q) and Sf (r) can be obtained and it is
possible to show that any pruning regarding pixels p and
q still satisfy the leveling definition.

Levelings can be nested to create a space-scale decompo-
sition of an image [16]. Suppose Tf is a tree that represents
an image f and g is the result of a filtering by increasing
attribute in Tf by a threshold λ (i.e., a pruning in Tf). Denote

area = 212 area = 212 area = 212

area = 849 area = 849 area = 849

tree of shapes min-tree max-tree

input image

Figure 4. Simplifications of images by levelings.

by Tg this pruned version of Tf . Likewise, consider the tree
Th pruned obtained by a filtering of an increasing attribute in
Tg by a threshold λ+ 1.

Hence, by Theo. 1, we have h is a leveling of g and g is a
leveling of f . Then, from Def. 4, we have that for all pairs
of neighboring pixels (p, q), h(p) > h(q) ⇒ g(p) ≥ h(p) >
h(q) ≥ g(q)⇒ f(p) ≥ g(p) ≥ h(p) and h(q) ≥ g(q) ≥ f(q),
showing that h is also a leveling of f . This shows that the
tree generates a family of levelings that further simplifies the
image f , thus constituting a morphological scale space with
the follwing features [5], [16], [17].

• Simplification: from one scale to the next, a real simpli-
fication takes place.

• Causality: coarser scales can only be caused by what
happened at finer scales.

• Fidelity: It does not create new structures at coarser
scales, in other words, each regional minima (resp. max-
ima) of the leveling contains a regional minima (resp.
maxima) of the reference image [14].

This leads us to the following proposition:

Proposition 3. Let Tf be a tree (max-tree, min-tree or tree
of shapes) that represents the image f and fλ the filtered
image by an increasing attribute of value λ ≥ 0. Then,
(fλ, fλ+1, ..., fλ+n) is a space-scale of levelings such that
fλ+k is a leveling of fλ+l for all 0 ≤ l ≤ k.

Fig. 4 show examples of simplifications obtained by level-
ings using min-tree, max-tree and tree of shapes.

IV. CONTRAST EXTRACTION USING NUMERICAL RESIDUES

In this section, we present the ultimate attribute opening
(resp. closing) [4], [8], [6], [18], [19] and the method of
residues extraction proposed by Meyer [5]. They compose the
background of the proposed method.

A. Ultimate attribute opening

The ultimate attribute opening θ(f) = (Rθ(f), qθ(f))
(resp., closing) of an image f ∈ FD is given by two operators
Rθ : FD → FD and qθ : FD → FD defined as follows:

Rθ(f) = sup{rλ(f) : rλ(f) = ρλ(f)− ρλ′(f)},

[qθ(f)](x) = max{λ+ 1 : [rλ(f)](x) = [Rθ(f)](x) > 0},

where ρλ and ρλ′ are, respectively, the consecutive attribute
openings γλ and γλ+1 (resp., the attribute closings φλ+1 and
φλ) with attribute value λ. Note that γλ+1(f) ≤ γλ(f) (resp.
φλ+1(f) ≥ φλ(f)). For this reason, the residues given by
Rθ(f) always have non-negative values.

An attribute opening γλ can be computed in a max-tree by
removing nodes Ch,k whose attribute κ(Ch,k) < λ. In fact,
Fabrizio and Marcotegui [4] has proposed a fast implementa-
tion of the ultimate attribute opening using max-tree. As γλ
is obtained by pruning nodes from the tree, the residue rλ
(i.e., γλ − γλ+1) can be calculated as the difference between
the gray level of the removed nodes by pruning and the gray
level of their respective parent nodes if their attribute values
are different. If they are equal, both are removed by the same
attribute opening and the residue is computed as the difference
of graylevels of the removed node and its first ancestor node
with a different attribute value, that is

rλ(Ch,k) =

 h− h′ , if κ(Ch,k) 6= κ(Ch′,k′),
h− h′+

rλ(Ch′,k′) , otherwise.

where Ch′,k′ is the parent node (note that, Ch,k ⊂ Ch′,k′ and
h′ < h).

This algorithm uses a top-down approach: the residue of the
parent node is calculated; it is then propagated to the child
nodes. Every child node compares its residue with the residue
of the parent node and keeps the maximum of these two values
in Rθ. At the same time, it also stores qθ, the attribute value
of κ(Ch,k)+1 that generated the maximum residue. After this
step, each child node becomes a parent node and the process
is repeated.

B. Residues using a family of levelings

Meyer, in [5], proposed the extraction of residues of a family
of levelings obtained by using families of anti-extensive ero-
sions ελ and of extensive dilatations δλ of size λ as markers.
More formally, given an image f , the family of levelings is
obtained from: lλ(f) = lev(lev(lλ−1, ε

λ(f)), δλ(f)), where
l0 = f and lev : FD × FD → FD is the operator that, when
applied to f and g (i.e., lev(f, g)), transforms the marker g
into a leveling of f (for more details, see [5], [14], [15]).

The difference between two consecutives levelings produces
a residue with positive r+

λ = [0 ∨ (lλ − lλ−1)] and negative
r−λ = [0 ∨ (lλ−1 − lλ)] parts, where ∨ denotes the supremum
operation. Then, the maximum residues are extracted through-
out the decomposition of the image, separating the positive R+

θ

and negative R−θ parts:

R−θ (f) = sup{r−λ (f) : r−λ (f) = [0 ∨ (lλ−1(f)− lλ(f))]},

input image R±θ randomized q±θ

R−θ randomized q−θ R+
θ randomized q+

θ

Figure 5. Example of ultimate attribute leveling.

R+
θ (f) = sup{r+

λ (f) : r+
λ (f) = [0 ∨ (lλ(f)− lλ−1(f))]}.

If N is the number of pixels (N = |Df |), an implementation
for extraction of residues (referred here as the naive algorithm)
obtained by the above definitions needs to calculate, for every
λ, an erosion ελ (complexity O(λN)); a dilation δλ (com-
plexity O(λN)); two lev (complexity O(λN)) transforms; and
positive and negative residues (complexity O(N)). Then, as λ
is the maximum amount of pixels, the computation of these
residues is, in the worst case, O(N2).

V. ULTIMATE ATTRIBUTE LEVELING

As original contribution of our work, we present in this
section a residual operator, called ultimate attribute leveling.
We also present an efficient algorithm for computing it based
on the tree of shapes. This algorithm is a combination of the
positive and negative residues extracted from levelings [5] with
the recent results of ultimate attribute opening [4], [6], [8],
[18], [19].

The family of levelings used by Meyer, to extract the
residues, has as characteristic the simplification of the image
by regional extrema. Thus, one can obtain similar simplifi-
cations using a family of levelings obtained by pruning the
tree of shapes (see Prop. 3). Therefore, the filtered image is
simplified by regional extrema, since the nodes of the tree
represent regional extrema of the image. Moreover, we can
select the CCs for extraction of residues by changing the
type of increasing attribute from tree and still obtain the same
characteristic.

Combining the ultimate attribute opening with the ideas
of Meyer, we have the ultimate attribute leveling R±θ (see
example in Fig. 5), where primitives are levelings obtained
from the tree of shapes and so, following Meyer, separating
positive and negative residues. More formally, the ultimate
attribute leveling R±θ (f) = (R±θ (f), q±θ (f)) of an image
f ∈ FD is given by two operators R±θ : FD → FD and
q±θ : FD → FD defined as follows:

[R±θ (f)](x) = max{[R−θ (f)](x), [R+
θ (f)](x)},

[q±θ (f)](x) =

{
[q+
θ (f)](x) , if [R+

θ (f)](x) > [R−θ (f)](x),
[q−θ (f)](x) , otherwise,

where

R−θ (f) = sup{r+
λ (f) : r+

λ (f) = [0 ∨ lλ(f)− lλ+1(f)]},

R+
θ (f) = sup{r−λ (f) : r−λ (f) = [0 ∨ lλ+1(f)− lλ(f)]},

[q+
θ (f)](x) = max{λ+ 1 : [r+

λ (f)](x) = [R+
θ (f)](x) > 0},

[q−θ (f)](x) = max{λ+ 1 : [r−λ (f)](x) = [R−θ (f)](x) > 0}.

Now, we present an efficient algorithm for ultimate leveling
computation using tree of shapes. This algorithm is based on
the algorithm presented by Fabrizio and Marcotegui [4] to
compute the ultimate opening using max-tree and the concept
of gradual transition shown in [19]. The efficiency of our
algorithm is based on computing positive and negative residues
using the tree of shapes; levelings properties; and recent results
of the ultimate attribute opening.

Algorithm 1: Compute the ultimate attribute leveling.
Input: A tree of shapes T ; the maximum filter criterion

MAX and value ∆ of the gradual transition.
Output: Images: R−θ , R+

θ , R±θ , q+
θ , q−θ , q±θ .

Data: Auxiliar vectors: r+, r−, q+
r , q−r .

1 for i from 1 to number of nodes of T do
2 r+(i) = r−(i) = q+

r (i) = q−r (i) = −1;

3 Let Cλ,0 be the root of T
4 foreach node Ci child of Cλ,0 do
5 ComputeUAL(r+, r−, q+

r , q−r , Ci, λ, MAX, ∆);

6 foreach pixel p ∈ Df do
7 Let k be the index of smallest CC (node) Cλ,k that

contains p.
8 R−θ (p) = r−(k); R+

θ (p) = r+(k);
9 q+

θ (p) = q+
r (k); q−θ (p) = q−r (k);

10 R±θ (p) = max{R+
θ (p), R−θ (p)};

11 if R+
θ (p) > R−θ (p) then

12 q±θ (p) = q+
θ (p);

13 else
14 q±θ (p) = q−θ (p);

Alg. 2 (used by Alg. 1) needs as input a tree of shapes. This
tree can be built by merging the max-tree and the min-tree with
complexity O(N log(N)) [9], [11] as described in Section II.
Once the tree of shapes is built, we execute Alg. 1, where,
firstly, vectors are created to store the maximum residues and
their associated values. Then, for each child Ci of the root
(Cλ,0) of the tree, Procedure ComputeUAL (Alg. 2) is called,
where it initiates the tree computation starting from node Ci.

Since Procedure ComputeUAL visits each node of the tree
of shapes exactly once and the number of nodes of the tree
is at most the number of pixels in the image, ComputeUAL
is executed O(N) times. Afterwards, the algorithm generates
images of the ultimate attribute leveling from the output of the
Algorithm ComputeUAL, visiting each pixel exactly once, so
the complexity of the Alg. 1 is O(N). Therefore, to extract
the ultimate attribute leveling, we build the tree of shapes with
complexity O(N log(N)) and compute the residues (Alg. 1)
with complexity O(N). Thus, the complexity of the proposed
algorithm is O(N log(N)) +O(N) = O(N log(N)).

Algorithm 2: ComputeUAL(Vector r+, Vector r−, Vector
q+
r , Vector q−r , node Cλ,k, Integer prevLevel, Integer MAX,

Integer ∆)
Output: Vectors: r+, r−, q+

r , q−r .
Data: Auxiliar Integers: attr+, attr−, res+, res−, level.

1 Let Cλ′,k′ be the parent node of Cλ,k.
2 if |κ(Cλ′,k′)− κ(Cλ,k)| ≤ ∆ then
3 level = prevLevel;

4 else
5 level = λ′

6 if κ(Cλ,k) > MAX then
7 res+ = res− = attr+ = attr− = 0;

8 else
9 res+ = max{0, λ - level};

10 res− = max{0, level - λ};
11 if r+(k′) ≥ res+ then
12 attr+ = q+

r (k′);

13 else
14 attr+ = κ(Cλ,k) + 1;

15 if r−(k′) ≥ res− then
16 attr− = q−r (k′);

17 else
18 attr− = κ(Cλ,k) + 1;

19 r+(k) = max{ r+(k′), res+};
20 r−(k) = max{ r−(k′), res−};
21 q+

r (k) = attr+; q−r (k) = attr−;
22 foreach node Ci child of Cλ,k do
23 ComputeUAL(r+, r−, rq+, rq−, Ci, level, MAX, ∆);

Fig. 6 shows that our algorithm is more efficient when
the value of MAX (maximum value to calculate residues) in-
creases. In this experiment, we used a machine with processor
Intel i7 of 2.7GHz and 8GB RAM.

Figure 6. Execution time

VI. EXTENDED ULTIMATE ATTRIBUTE LEVELING BY
SHAPE INFORMATION

The extraction of numerical residues based on connected
operators has been combined with a specific priori shape [8],
[18]. In particular, the ultimate attribute opening, would be
later, extended by Hernández and Marcotegui in [8], [18],
where the residues of rλ is combined with a similarity function
based on the characteristics of CCs in images. Based on the
ideas of Hernández and Marcotegui, we propose the ultimate
attribute leveling with shape information.

A. Shape information

In this section, we define our shape similarity measure in
order to combine prior shape knowledge with the ultimate
attribute leveling operator. The shape definition has been
widely studied in the literature [20]. In our context, given an
image f , we are interested in comparing two CCs (shapes)
Ci,k, Cj,k′ ∈ SAT (f) via a similarity function ψ defined as
follows.

Definition 5. A similarity measure between two shapes, Ci,k
and Cj,k′ in SAT (f), is defined as a function ψ : SAT (f)×
SAT (f)→ [0, 1] ∈ R verifying the following conditions [8],
[20]:

• Identity: ψ(Ci,k, Ci,k) = 1.
• Uniqueness: ψ(Ci,k, Cj,k′) = 1 implies Ci,k = Cj,k′ .
• Symmetry: ψ(Ci,k, Cj,k′) = ψ(Cj,k′ , Ci,k).

B. Ultimate attribute leveling with shape information

Following Hernández and Marcotegui in [8], we propose to
consider a shape factor function ψ(Ci,k, Cref) to a reference
shape Cref within the residue computation. As Cref is fixed,
ψ(Ci,k, Cref) is denoted by ψ(Ci,k).

As the residue of a CC Ci,k ∈ SAT (f) is computed
by rλ(Ci,k) then the residue with shape information can be
obtained by rΩ

λ (Ci,k) = ψ(Ci,k)·rλ(Ci,k). Now, we define the
ultimate attribute leveling with shape information, as follows:

[RΩ±
θ (f)](x) = max{[R−θ (f)](x), [R+

θ (f)](x)},

[qΩ±
θ (f)](x) =

{
[q+
θ (f)](x) ,if [R+

θ (f)](x) > [R−θ (f)](x),
[q−θ (f)](x) ,otherwise,

where

R−θ (f) = sup{rΩ+
λ (f) : rΩ+

λ (f) = ψ(Cλ,k) · r+
λ (f)},

R+
θ (f) = sup{rΩ−

λ (f) : rΩ−
λ (f) = ψ(Cλ,k) · r−λ (f)},

[q+
θ (f)](x) = max{λ+ 1 : [rΩ+

λ (f)](x) = [R+
θ (f)](x) > 0},

[q−θ (f)](x) = max{λ+ 1 : [rΩ−
λ (f)](x) = [R−θ (f)](x) > 0}.

C. Example of shape information

In order to compare two shapes, we follow [8] to define
a similarity function via shape descriptors. Thus, we use the
simplest shape descriptors: geometric features (height, width,
etc) and their relations (fill ratio, circularity, moments, etc),
e.g.:

ψcircle(Ci,k) = 4π
Area(Ci,k)

Perimeter(Ci,k)2
,

or

ψrectangle(Ci,k) =
Area(CRoti,k)

Width(CRoti,k)×Height(CRoti,k)
,

where CRoti,k is a rotated version of Ci,k in the direction of its
major axis.

Furthermore, we can use heuristics of a given problem, to
determine a shape factor function. Such as the heuristics to
the text localization problem [21]:

ψtext(Ci,k) =
ψarea(Ci,k)ψhole(Ci,k)ψrect(Ci,k)ψrate(Ci,k)ψcolor(Ci,k),

where:
ψarea(Ci,k) =

{
1 , if 50 ≤ Area(Ci,k) ≤ Area(f/2),
0 , otherwise,

ψhole(Ci,k) =

{
1 , if Hole(Ci,k) ≤ 3,
0 , otherwise,

ψrect(Ci,k) =

{
1 , if 0.35 ≤ ψrectangle(Ci,k) ≤ 0.9,
0 , otherwise,

ψrate(Ci,k) =

{
1 , if max{Width(Ci,k),Height(Ci,k)}

min{Width(Ci,k),Height(Ci,k)} ≤ 4,

0 , otherwise,

ψcolor(Ci,k) =

{
1 , if V ar(Ci,k) ≤ 15,
0 , otherwise,

where Hole(Ci,k) is the number of holes in Ci,k; V ar(Ci,k)
is the variance of the gray levels of pixels of Ci,k (same
type) in the input image. Of course, one can use a classifier
to estimate the thresholds of ψtext (as was done by [21]).

Another possibility is to perform matching of complex
shapes using robust methods.

VII. APPLICATION EXAMPLES

Extraction contrast, through numerical residues, has been
used successfully in various applications in a preprocessing
step such as text location [6], [21] , segmentation of building
facades [8], and restoration of historical documents [5].

A. Text localization

Contrast extraction using numerical residues have already
been used in text localization problem [6], [18], [21]. There-
fore, we selected some images with the presence of text
to apply the ultimate attribute opening and closing, ultimate
attribute leveling and ultimate attribute leveling with shape in-
formation. In Fig. 7, it can be observed that residues extracted
by ultimate attribute leveling includes the residues of ultimate
attribute opening and closing. Whereas the residues of ultimate
attribute leveling with shape information ψtext do not contain
residues of the region without the presence of text.

input image ultimate attribute opening ultimate attribute opening
(randomized qθ)

ultimate attribute closing ultimate attribute closing
(randomized qθ)

ultimate attribute leveling

ultimate attribute leveling
(randomized q±θ)

ultimate attribute leveling
with shape information

ultimate attribute leveling
with shape information

(randomized qΩ±
θ)

Figure 7. Example extraction of residues applied to text location using height
(bounding box) attribute.

VIII. CONCLUSION

The first contribuition of this paper is the introduction of
a novel type of residual operators called ultimate attribute
leveling that can be used for extracting contrast in gray level
images. Generally speaking, ultimate attribute leveling was
inspired from the definition of ultimate attribute opening and
the residues extracted from families of levelings.

Another contribuition of this work is an efficient algorithm
for ultimate attribute leveling computation based on tree of
shapes. In fact, the time complexity of this is O(N logN),
where N denotes the number of pixels of the input image.
Experimental results (see Fig. 6) show that our algorithm is
much faster than the naive algorithm.

Our algorithm for computating ultimate attribute leveling is
based on Theo. 1, which states that levelings can be obtained
by pruning nodes from tree of shapes. So far, it was known
that levelings can be obtained from component trees. So, in
this sense, Theo. 1 is also an original result of this work.

Finally, we propose the use of ultimate attribute leveling
with shape information, which allows us to extract contrast
using a priori knowledge of an application. In fact, contrast
extraction by means of numerical residues has been used

successfully in various applications, such as text location,
segmentation of building facades and binarization of historical
documents. Experimental results applied to text location show
the potentiality of using ultimate attribute leveling with shape
information.

For future research, we plan to study theoretical results of
ultimate attribute leveling.

REFERENCES

[1] H. J. A. M. Heijmans, Morphological Image Operators. Boston:
Academic Press, 1994.

[2] J. Serra, Image Analysis and Mathematical Morphology. London:
Academic Press, 1988, vol. 2: Theoretical Advances.

[3] S. Beucher, “Numerical residues,” Image Vision Comput., vol. 25, no. 4,
pp. 405–415, 2007.

[4] J. Fabrizio and B. Marcotegui, “Fast implementation of the ultimate
opening,” in Proceedings of the 9th International Symposium on Math-
ematical Morphology, ser. ISMM ’09, 2009, pp. 272–281.

[5] F. Meyer, “Levelings and flat zone morphology,” Pattern Recognition,
International Conference on, vol. 0, pp. 1570–1573, 2010.

[6] T. Retornaz and B. Marcotegui, “Scene text localization based on the
ultimate opening,” in Proceedings of the 8th International Symposium
on Mathematical Morphology and its Applications to Image and Signal
Processing, ser. ISMM ’08, vol. 1, 2007, Image processing, pp. 177–188.

[7] P. Salembier, A. Oliveras, A. O. Member, and L. Garrido, “Anti-
extensive connected operators for image and sequence processing,” IEEE
Transactions on Image Processing, 1998.

[8] J. Hernandez and B. Marcotegui, “Shape ultimate attribute opening,”
Image and Vision Computing, vol. 29, no. 8, pp. 533 – 545, 2011.

[9] P. Monasse and F. Guichard, “Fast computation of a contrast-invariant
image representation,” IEEE Transactions on Image Processing, vol. 9,
no. 5, pp. 860–872, 2000.

[10] P. Salembier and L. Garrido, “Binary partition tree as an efficient
representation for image processing, segmentation, and information
retrieval,” Image Processing, IEEE Transactions on, vol. 9, no. 4, pp.
561–576, 2000.

[11] V. Caselles, E. Meinhardt, and P. Monasse, “Constructing the tree of
shapes of an image by fusion of the trees of connected components of
upper and lower level sets,” Positivity, vol. 12, no. 1, pp. 55–73, 2008.

[12] G. Thierry, E. Carlinet, S. Crozet, and L. Najman, “A quasi-linear
algorithm to compute the tree of shapes of nd images,” in Proceedings
of the 11th International Symposium on Mathematical Morphology, ser.
ISMM ’13, Uppsala, Sweden, 2013, pp. 98–110.

[13] V. Caselles and P. Monasse, Geometric Description of Topographic
Maps and Applications to Image Processing, ser. Lecture Notes in
Mathematics 1984, Book. Springer Verlag, 2010.

[14] F. Meyer, “From connected operators to levelings,” in Proceedings of
the 4th International Symposium on Mathematical Morphology and its
Applications to Image and Signal Processing, 1998, pp. 191–198.

[15] ——, “The levelings,” in Proceedings of the 4th International Sympo-
sium on Mathematical Morphology and its Applications to Image and
Signal Processing, ser. ISMM ’98, 1998, pp. 199–206.

[16] F. Meyer and P. Maragos, “Morphological scale-space representation
with levelings,” in in Scale-Space?99, ser. Lecture Notes in Computer
Science. Springer-Verlag, 1999, pp. 187–198.

[17] P. Monasse and F. Guichard, “Scale-space from a level lines tree,”
Journal of Visual Communication and Image Representation, 2000.

[18] J. Hernandez and B. Marcotegui, “Ultimate attribute opening segmen-
tation with shape information,” in Mathematical Morphology and Its
Application to Signal and Image Processing, 2009.

[19] B. Marcotegui, J. Hernandez, and T. Retornaz, “Ultimate opening and
gradual transitions,” in Mathematical Morphology and Its Applications
to Image and Signal Processing, 2011, vol. 6671, pp. 166–177.

[20] R. C. Veltkamp and M. Hagedoorn, “Shape similarity measures, proper-
ties, and constructions,” in In Advances in Visual Information Systems,
4th International Conference. Springer, 2000, pp. 467–476.

[21] W. A. L. Alves and R. F. Hashimoto, “Text regions extracted from scene
images by ultimate attribute opening and decision tree classification,” in
Proceedings of the 23rd SIBGRAPI Conference on Graphics, Patterns
and Images, 2010, pp. 360–367.

	Introduction
	Image representation using tree structures
	Component Trees
	Tree of shapes

	Connected filtering
	Levelings

	Contrast extraction using numerical residues
	Ultimate attribute opening
	Residues using a family of levelings

	Ultimate attribute leveling
	Extended ultimate attribute leveling by shape information
	Shape information
	Ultimate attribute leveling with shape information
	Example of shape information

	Application Examples
	Text localization

	Conclusion
	References

