
Normal Correction Towards Smoothing
Point-based Surfaces

Paola Valdivia∗, Douglas Cedrim∗, Fabiano Petronetto†, Afonso Paiva∗, Luis Gustavo Nonato∗

∗ ICMC, USP, São Carlos - Brazil
† Universidade Federal do Espı́rito Santo - Brazil

Fig. 1. From left to right: original point-based surface, positions perturbed by Gaussian noise on normal (left) and random directions (right), their denoised
counterparts.

Abstract—In recent years, surface denoising has been a subject
of intensive research in geometry processing. Most of the recent
approaches for mesh denoising use a two-step scheme: normal
filtering followed by a point updating step to match the corrected
normals. In this paper we propose an adaptation of such two-step
approaches for point-based surfaces, exploring three different
weighting schemes for filtering normals. Moreover, we also
investigate three techniques for normal estimation, analyzing
the impact of each normal estimation method in the whole
point-set smoothing process. Towards a quantitative analysis,
in addition to conventional visual comparison, we evaluate the
effectiveness of different choices of implementation using two
measures, comparing our results against state-of-art point-based
denoising techniques.

Keywords-point-based surface; normal estimation; surface
smoothing;

I. INTRODUCTION

Surface smoothing is a well established field in the context
of geometry processing, where many methods have been
proposed towards removing noise while preserving surface
features as much as possible. Existing techniques vary consid-
erably as to mathematical foundation, encompassing method-
ologies derived from spectral theory, diffusion map, projection
operators, and bilateral filters. Most of those methods have
been originally developed for mesh-based surface representa-
tion, inspiring variants in the context of surfaces represented
by point clouds, which is the focus of this work.

Specifically in the context of point-based surfaces (a com-
prehensive discussion about mesh-based surface smoothing is
beyond the scope of this work), smoothing techniques have
experienced a substantial progress in the last decade. The
development of robust methods for discretizing the Laplace-
Beltrami operator on point-based surfaces has leveraged most

of such development. Pauly et al. [1] were one of the pioneers
in using Laplace operators to perform point-based surface
smoothing. Their approach uses an umbrella operator as
discretization mechanism, carrying out the smoothing as a
diffusion process. Lange and Polthier [2] make use of an
anisotropic version of the Laplace operator so as to detect and
preserve surface features such as edges and corners during the
smoothing process. More recently, Petronetto et al. [3] have
exploited spectral properties of SPH-based discretization of
the Laplace-Beltrami operator to smooth point set surfaces,
but without feature preservation.

Projection operators comprise another important class of
smoothing technique for point set surfaces. Firstly proposed
by Alexa et al. [4], projection operators typically accomplish
the smoothing in two steps, normal estimation and polynomial
fitting. Distinct approaches have been proposed to handle each
step, ranging from surface fitting other than polynomial [5] to
robust statistics [6], [7], [8], which allows for better preserving
features during smoothing.

A common characteristic of Laplace-based methods and
projection operators discussed above is their sensitivity to
normals, that is, the quality of the normals (given or computed)
affects the performance of those methods considerably. The
dependence of normals is mitigated by techniques such as
locally optimal projection (LOP) [9] and weighted locally
optimal projection (WLOP) [10], which rely on a global
minimization problem that does not make use of normal in-
formation to provide a second order approximation to smooth
surfaces. Representing sharp features is an issue that can
hardly be addressed by LOP and WLOP. Moreover, the high
computational cost of these methods impairs their use in big
data sets. Liao et al. [11] combine the mathematical formula-
tion of LOP with normal estimation, bilateral weighting, and
a sampling mechanism so as to better capture sharp features
while lessening computational times during smoothing. Liao’s
approach, however, leads to an intricate algorithm made up of
several complex steps.

One can see from discussion above that normal vectors are
fundamental when sharp features and details have to be pre-
served during the smoothing process. However, in the presence
of noise data, normals can hardly be estimated accurately,
hampering existing point-based surface smoothing algorithms
to work properly. This problem is also known in the context of
mesh-based surface smoothing, where alternatives have been
proposed to compute a fair normal field. A typical approach
for denoising surface meshes while preserving features is first
to filter normal vectors towards removing noise and then
update mesh vertex position such that the mesh cope with
the filtered normal field [12], [13], [14], [15]. Although most
authors claim that normal filtering methods can be adapted
to the context of point set surfaces, as far as we know, no
such extension/adaptation has been presented in the literature,
raising doubts on the effectiveness and pitfalls of normal
filtering to smooth surface of points. More specifically, the
literature presents approaches that filter normals for rendering
purposes but without point update [16] or update points

considering the original normals [17]. Assessing the efficacy
of combining both normal filtering and point update is still an
issue to be investigated.

The goal of this paper is to investigate the two-step filtering
methodology, that is, normal filtering and point update, in
the context of point set surfaces. The proposed methodology
investigates different methods for estimating normals, filtering
the normal field, and updating the point set to match the
filtered normals. The provided comprehensive study allows
for identifying the best set of tools and how to implement
them in each step of the smoothing process in order to
reach a robust and effective normal filtering-based denoising
technique for point set surface. Comparisons with state-of-
art techniques show that, when properly implemented, normal
filtering denoise methods is quite effective in the context of
point set surfaces, outperforming most existing methods as to
feature preservation and noise reduction.

In summary, the contributions of this paper are:
• A thorough investigation of alternatives to extend normal

filtering denoise and point update to the context of
point set surface. More specifically, we investigate dif-
ferent ways of implementing each step of the smoothing
pipeline, analyzing the effectiveness of each combination.

• A comprehensive set of comparisons against state-of-art
point-based denoising techniques.

• The definition of quantitative measures to analyze the
effectiveness of smoothing techniques, which allows for
clearly assessing the quality of point-based surface de-
noise methods.

II. SMOOTHING MECHANISM AND ITS ALTERNATIVES

The proposed methodology for point set surface smoothing
is made up of three main steps: normal estimation, normal
filtering, and point update. Different techniques can be used
to perform each of these steps and in the current work we
investigate three possible methods for normal estimation, three
distinct approaches for normal filtering and an up-to-date
method for point update. Fig. 2 illustrates the pipeline of
our approach together with the different methods used to
implement each step. The mathematical and computational
tools used to implement each step of the proposed point-based
surface smoothing process are described below.

A. Normal Estimation

The first step of our pipeline is normal estimation. Given
a (noisy) point cloud S = {p1, . . . ,pn}, we investigate three
different mechanisms to estimate a normal ni for each point
pi, namely, PCA, Weighted PCA, and Randomized Hough
Transform.
PCA-based (Principal Component Analysis) normal esti-
mation method computes the normal for each point pi by
constructing a covariance matrix from points pj in the neigh-
borhood of pi, setting the normal vector ni as the principal
component of the covariance matrix with smallest covariance
(the eigenvector associated to the smallest eigenvalue) [18].
The nearest neighbors of pi defines the neighborhood used

Normal Estimation

PCA WPCA RHT

Normal Correction

Bilateral
Gaussian

Threshold
Weights

Bilateral
Mixed

Surface Smoothing

Point Update

Fig. 2. Point set surface smoothing pipeline and its alternative implementations.

to build the covariance matrix (we have performed tests with
different number of neighbors, as discussed in Section III).

Weighted PCA (WPCA) is an extension of PCA that can also
be used to estimate normals. WPCA works quite similarly
to PCA, except that a weighting function is used to define
the contribution of each point to the covariance matrix. More
specifically, the covariance matrix Ci associated with the point
pi is defined by

Ci = XWX> (1)

where X is the matrix with columns formed by the coordinates
of points in the neighborhood of pi and W is a diagonal
matrix with nonzero entry wjj corresponding to the weight
associated with the point pj . In our implementation the weight
associated with each point pj in the neighborhood of pi is
given by the inverse of the euclidean distance between pi and
pj . As far as we know WPCA has never been used to estimate
normals, despite its reported effectiveness in applications such
as data clustering and classification.

Randomized Hough Transform has been proposed by
Boulch and Marlet [19] as a robust mechanism for normal
estimation. The idea is to randomly choose three points in
the neighborhood of pi so as to define a plane. The normal
of each plane votes to a bin using a Hough accumulator.
The number of random triples need to reach a reliable normal
estimation is defined as T = 1

2δ2 log
(

2M
1−α

)
, where α is the

minimum tolerated probability, such that the distance between
the theoretical distribution and the observed distribution is at
most δ. This number can be reduced by stop picking triples as
soon as the confidence intervals of two bins do not intersect,
i.e., the confidence is greater than 2

√
1/T . The normals of

the most voted bin are averaged to define the normal ni.

B. Normal Correction

Normals estimated with any of the methods described in
the previous subsection are prone to not vary smoothly due to
noise in the point set. The typical approach to denoise normals
is to iteratively average normals from neighbor points using
specific weights, more specifically,

nli =

(∑
j∈Ni

wjn
l−1
j

)
‖
(∑

j∈Ni
wj

)
‖
, (2)

where Ni accounts for the k-nearest neighbors points of pi, nli
is the normal obtained at iteration l, setting n0

i as the initial
estimated normal, and wj is the weight used to define the
contribution of each normal.

Normal filtering methods differ mainly as to the choice of
the weights wj . We have investigated three different methods
to compute the weights, one based on a simple threshold
scheme and two based on bilateral filtering.

Thresholded weights Sun et al. [15] proposed a simple
threshold-based scheme to define the weights wi used in the
iterative filtering mechanism 2. Such threshold-based scheme
can be stated as follows:

wj =

{
0 , if ni · nj ≤ T
(ni · nj − T)2 , otherwise

(3)

where 0 ≤ T ≤ 1 is a threshold defined by the user. In our
implementation we use T = 0.65.

Bilateral-Gaussian Zheng et al. [14] presented, in the context
of meshes, a weighting scheme inspired on bilateral filter-
ing commonly used in image denoising. Zheng’s weighting
scheme is given by:

wj = Wc(||pi − pj ||)Ws(||ni − nj ||) , (4)

where Wc and Ws are Gaussian functions as below:

Wc(x) = exp(−x2/2σ2
c), Ws(x) = exp(−x2/2σ2

s) , (5)

and σc, σs are the standard deviation of the Gaussians. In
the context of meshes, σc has been set as the average length
of edges incident to pi. Following the same reasoning, we
have set σc as the average distance from pi to pj in the
neighborhood of pi. There is no well established mechanism
to tune σs, even in the context of mesh-based denoising, so it
is determined manually.

Bilateral-mixed Wang et al. [20] proposed a weighting
scheme that combines both thresholded-weight and bilateral-
Gaussian. We have adapted Wang’s formulation to the context
of point sets as follows:

wj = Wc(||pi − pj ||)Φs(ni,nj) , (6)

where Wc is the same as in 5 and Φs is function given by:

Φs(ni,nj) =

{
0 , if (ni − nj) · ni ≥ T
((ni − nj) · ni − T)

2 , otherwise
(7)

where T =
√∑

j∈Ni
((ni − nj) · ni)2/k, and k is the num-

ber of points in Ni.
The methods described above do not work properly when

normals are not consistently oriented, as illustrated in Fig. 3.
However, since those methods rely on a local procedure to
filter the normals, we only need to guarantee local consistence
regarding orientation. In other words, we can make the filter
work properly by simply flipping normals nj if ni · nj ≤ 0.
This procedure preserves the orientation of normals, thus
it does not guarantee a consistently oriented normal field.
However, this is not an issue in our formulation, since the point
update mechanism we adapted from [15] (described below)
does not require a consistently oriented normal field.

no �ipping with �ipping

Fig. 3. Estimated normals with different orientation (top row). Filtering
without flipping and with flipping procedure, respectively (bottom row).

C. Surface Smoothing

We build upon the ideas of Sun et al. [15] to formulate
a point update scheme that operates on point set (Sun’s
approach relies on meshes). The advantages of Sun’s approach
is twofold, namely, it does not demand surface area computa-
tions, which is difficult to accurately estimate using point sets,
and it is oblivious to normal orientation, that is, it does not
require normals to be consistently oriented.

Given the filtered normals, denote by n′i, point positions
have to be updated to match the normals n′i. The points are
updated according to the iterative scheme:

pli = pl−1i +
1∑

j∈Ni
wj

∑
j∈Ni

n′j(wjn
′
j · (pl−1j −pl−1i)), (8)

where pli is the point position in the lth iteration step.
Notice that the updating process (8) can be seen as a

displacement based on weighted average of normals n′j ∈ Ni,
where weights are given by wjn

′
j .(p

l−1
j − pl−1i), and wj is

defined using the bilateral mechanism:

wj = Wc(||pi − pj ||)Ws(1− (ni.nj)), (9)

where Wc and Ws are the same Gaussian functions as in 5,
with σc = maxj∈Ni

(‖pi − pj‖) and σs = 1/3.
Next section shows the effectiveness of the proposed point

update scheme when combined with different mechanism to
estimate and filter normals.

III. RESULTS AND COMPARISONS

In this section we analyze the performance of each possible
variation of the proposed surface smoothing method. More
precisely, we have tested the following combinations: PCA +
Thresholded Weights + Point Update (PTU), PCA + Bilateral
Gaussian + Point Update (PGU), PCA + Bilateral Mixed +
Point Update (PMU), WPCA + Thresholded Weights + Point
Update (WPTU), WPCA + Bilateral Gaussian + Point Update
(WPGU), WPCA + Bilateral Mixed + Point Update (WPMU),
Randomized Hough Transform + Thresholded Weights + Point
Update (HTU), Randomized Hough Transform + Bilateral
Gaussian + Point Update (HGU), Randomized Hough Trans-
form + Bilateral Mixed + Point Update (HMU). Moreover,
we have also tested the impact of varying the size of the
neighborhood involved in each step of the pipeline, consid-
ering neighborhoods with size 7, 15, and 21 nearest points
for each point pi. The number on the right of each acronym
indicates the size of the neighborhood, for instance, PTU7
means that the 7 nearest neighbor of each point is considered
in the computations.

We have run the distinct implementations in 5 different
models with Gaussian noise added to the points. Gaussian
noise has been added in two different ways, normal (GN)
as well as random directions (GR) with standard deviation σ
proportional to 0.2 of the mean edge length of the underlying
mesh (the original models have a meshed counterpart). Fig. 4
and Fig. 5 illustrate the models used in our tests, specifically,
the models are: Bitorus, Elephant, Femur, Nicolo, and Fandisk.

The accuracy of each alternative implementation has been
measured using two different metrics, which are defined as fol-
lows. Since we have a one-to-one correspondence between the
points in the original and the smoothed surface, we measure
the quality of the smoothing process by simply computing, for
each point pi, the difference between the curvature in the point
pi before and after smoothing, averaging those differences
to produce a quality metric. The closer to zero the better is
the smoothing mechanism. We use the algorithm proposed by
Pauly et al. to estimate the curvature in point-set surface [21].

Comparing the original surface area against the smoothed
surface area is a measure of smoothness widely used by the
geometry processing community which we also employ in
our comparisons. The models used in our experiments are
endowed with triangular mesh, thus allowing to compute areas
before and after smoothing, although, the whole smoothing
process relies only on the points (the coordinates of the
vertices on the original mesh) to denoise the model.

Another important aspect to be considered when implement-
ing any of the alternatives of the proposed pipeline is the

Fig. 4. Mesh denoising on Bitorus with 4350 points, Elephant with 24955 points, Femur with 15185 points and Nicolo with 25239 points. From left to
right: original meshes, their noisy counterparts (random direction), and the results from LOP, WLOP, APSS, RIMLS and our methods.

Fig. 5. Smoothing point-based approach is capable of preserving sharp features while smoothing the meshes. From left to right: original and noisy surfaces;
and results with LOP, WLOP, APSS, RIMLS and our method.

number of iterations to be employed during the normal filtering
and during the point update steps, as the convergence of the
iterative methods described in (2) and (8) are, respectively, not
guaranteed or only ensured under restrictive hypothesis (in the
context of surface meshes). Therefore, in practice, the number
of iterations has to be set a priori. We have tested the normal
filtering with five different number of iteration steps, namely,
2, 4, 8, 16 e 32, and the point update with four different
number of iteration steps, namely, 5, 10, 20 e 40, resulting
in twenty combinations.

Box plots in Fig. 6 show the performance of each alternative
implementation when facing each of the twenty possible

choices of interaction steps when smoothing the Elephant data
set. Notice that the error varies considerably for all methods,
showing that the number of iteration steps affects considerably
their performance. Moreover, one can see that methods using
PCA and Hough with neighborhood 7 and 15 tend to generate
smaller errors than the other alternatives for the area error for
both normal and random Gaussian noise. For curvature error,
PCA normal estimation with neighborhood 15 has a better
performance for normal Gaussian noise while WPCA with
neighborhood 7 is the best choice for random Gaussian noise.

Considering the 60 variations of each implementation (3
different neighborhood size and 20 choices of iteration steps),

0 0.2 0.4 0.6 0.8 1 1.2
HGU7
HGU15
HGU21
PGU7
PGU15
PGU21
WPGU7
WPGU15
WPGU21
HMU7
HMU15
HMU21
PMU7
PMU15
PMU21
WPMU7
WPMU15
WPMU21

HTU7
HTU15
HTU21
PTU7
PTU15
PTU21
WPTU7
WPTU15
WPTU21

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
HGU7
HGU15
HGU21
PGU7
PGU15
PGU21
WPGU7
WPGU15
WPGU21
HMU7
HMU15
HMU21
PMU7
PMU15
PMU21
WPMU7
WPMU15
WPMU21

HTU7
HTU15
HTU21
PTU7
PTU15
PTU21
WPTU7
WPTU15
WPTU21

area error curvature error
(a) Gaussian noise on normal direction.

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
HGU7
HGU15
HGU21
PGU7
PGU15
PGU21
WPGU7
WPGU15
WPGU21
HMU7
HMU15
HMU21
PMU7
PMU15
PMU21
WPMU7
WPMU15
WPMU21

HTU7
HTU15
HTU21
PTU7
PTU15
PTU21
WPTU7
WPTU15
WPTU21

0 0.2 0.4 0.6 0.8 1 1.2
HGU7
HGU15
HGU21
PGU7
PGU15
PGU21
WPGU7
WPGU15
WPGU21
HMU7
HMU15
HMU21
PMU7
PMU15
PMU21
WPMU7
WPMU15
WPMU21

HTU7
HTU15
HTU21
PTU7
PTU15
PTU21
WPTU7
WPTU15
WPTU21

area error curvature error
(b) Gaussian noise on random direction.

Fig. 6. Quantitative evaluation of the metrics using different combinations of smoothing methods on elephant model (×10−4).

Fig. 7 shows the average curvature and area error of each
method for all surface models. It is clear that Thresholded
Weights approach performs better regarding area error while
it is not possible to clearly point out the best method as to
curvature error.

Fig. 8 depicts the area × curvature error scatter plot for
all 540 possible implementation choices (9 techniques with
3 different neighborhood size and 20 choices of iteration
steps) applied to smooth the Bitorus data set. Highlighted
dots correspond to the best (bottom left) and worst (top right)
combined result as well as the best result as to area (bottom
right) and the worst in terms of curvature (top left). The model
highlighted on left middle is an average case.

Our method is compared with LOP (Locally Optimal Pro-
jection), WLOP (Weighted Locally Optimal Projection), Alge-
braic Point Set Surfaces (APSS) and Robust Implicit Moving
Least Squares (RIMLS). For each of these methods, we have
tested three parameter combinations: the default parameter set
and two other combinations that produced visually pleasing

results. From the three results we chose the one that gives the
best results as to area and curvature metrics. The parameter
sets for the methods are: LOP and WLOP (support radius h, µ

ar
ea

 m
ea

n
er

ro
r

cu
rv

at
ur

e
m

ea
n

er
ro

r

normal noise random noise
0

0.05

0.1

0.15

0.2

0.25

0.3

normal noise random noise
0

1

2

3

4

 bilateral gaussian threshold weighted bilateral mixed

Fig. 7. Average error of each alternative implementation for all models
varying among 27 choices of neighborhood size and iteration steps.

0 0.4 0.8 1.2 1.6
0

0.4

0.6

0.8

1.0
x 10

−3

area error

cu
rv

at
ur

e
er

ro
r

0.2

Fig. 8. Scatter metrics (area,curvature) in the bitorus model (random noise).

controlling the repulsion force), APSS (filter scale, spherical
parameter), RIMLS (filter scale, sharpness) and ours (acronym
described above, number of normal filtering iterations, number
of point update iterations). Table I shows the result of such
comparison, where EA and Ek account for area and curvature
error respectively. Notice that our method is quite competitive,
outperforming in some cases the state-of-art RIMLS method.

We conclude this section with a qualitative result showing
the effectiveness of our methodology in preserving sharp
features. Fig. 5 shows denoising results on the fandisk model
resulting from LOP, WLOP, APSS, RIMLS and ours. Color
code shows the curvature distribution. One can notice that
our method yields good results, comparable again to RIMLS,
showing that normal filtering combined with point update is
an alternative for point-based surface smoothing.

We have also tested our two-step method with a real scanned
model with raw noise. Fig. 9 shows the denoised result of the
scanned bust model. We have used the following parameters
PGU7 with 5 iterations in normal updating step and 7 iterations
for perform the point updating step. We can observe that our
method preserves feature to some extent.

IV. CONCLUSION

In this paper we show that the normal-filtering/point-update
smoothing procedure commonly employed in the context of
surface meshes can be extended to the context of point-based
surface with good results. The comprehensive set of tests
we performed showed that parameters such as the number
of neighbors and iteration steps used in the different phases
of the pipeline can impact substantially on the quality of
the smoothing process. Moreover, the provided comparisons

show that normal-filtering/point-update can outperform exist-
ing methods, being quite competitive and a good alternative
for point-based surface smoothing.

Like most previous denoising methods based on distance
neighborhoods, our method does not perform well in the
presence of two parallels close sheets surfaces, as shown
in Fig. 10. A possible solution to this problem could be
to consider orienting normals before normal estimation. In
that way, normals could be more accurately filtered and
furthermore, normals with opposite orientation would not have
a big influence in the point updating step.

As a future work, one could use the theoretical framework
proposed by Mitra et al. [22] to ensure bounds on the normal
estimation step. Moreover, the analysis could be improved by
different noise distributions.

Fig. 9. Denoised a real scanned model with raw noise.

Fig. 10. A drawback with point set surfaces is to determine the neighborhood relation of points on surfaces with close sheets.

TABLE I
BEST PARAMETER SETS AND ERRORS

Model Noise Method Parameters EA ×10−3 Ek ×10−3

Double Torus

GN

LOP (0.14, 0.3) 53.62 0.78
WLOP (0.12, 0.3) 26.45 0.72
APSS (3, 0.5) 5.59 0.49

RIMLS (5, 0.5) 4.24 0.24
Ours (PTU7, 32, 5) 0.59 0.31

(|S| = 4350)

GR

LOP (0.9, 0.4) 95.68 0.45
WLOP (0.12, 0.3) 59.42 0.72
APSS (3, 0.5) 23.16 0.54

RIMLS (3, 0.5) 12.39 0.31
Ours (WPTU21, 4, 5) 0.22 0.34

Elephant

GN

LOP (0.07, 0.4) 11.86 0.18
WLOP (0.05, 0.5) 5.64 0.24
APSS (3, 0.75) 0.70 0.12

RIMLS (4, 1) 6.59 0.14
Ours (PGU21, 32, 5) 0.24 0.24

(|S| = 24955)

GR

LOP (0.05, 0.4) 42.14 0.15
WLOP (0.03, 0.4) 38.87 0.13
APSS (2, 1) 1.57 0.09

RIMLS (2, 0.75) 1.58 0.08
Ours (HG21, 32, 5) 0.04 0.22

Fandisk

GN

LOP (0.08, 0.3) 1.22 0.21
WLOP (0.07, 0.35) 37.36 0.20
APSS (2, 1) 5.76 0.10

RIMLS (4, 0.5) 0.59 0.05
Ours (HTU21, 16, 5) 0.02 0.08

(|S| = 25894)

GR

LOP (0.07, 0.35) 21.82 0.20
WLOP (0.07, 0.35) 35.21 0.20
APSS (2, 1) 0.58 0.08

RIMLS (4, 0.75) 1.13 0.08
Ours (HGU7, 32, 5) 0.04 0.09

Nicolo

GN

LOP (0.06, 0.3) 141.30 0.10
WLOP (0.07, 0.25) 10.52 0.10
APSS (4, 0.5) 9.74 0.10

RIMLS (4, 1) 0.18 0.08
Ours (WPTU15, 8, 5) 0.05 0.09

(|S| = 25239)

GR

LOP (0.04, 0.3) 71.31 0.11
WLOP (0.04, 0.25) 25.52 0.10
APSS (4, 0.75) 2.67 0.11

RIMLS (4, 1) 0.36 0.09
Ours (PGU7, 16, 5) 0.22 0.09

Femur

GN

LOP (0.07, 0.4) 13.92 0.26
WLOP (0.06, 0.4) 0.17 0.26
APSS (3, 0.75) 1.55 0.22

RIMLS (4, 0.75) 0.40 0.23
Ours (HTU7, 32, 5) 9.07 0.22

(|S| = 8168)

GR

LOP (0.06, 0.3) 33.19 0.26
WLOP (0.06, 0.4) 7.84 0.26
APSS (3, 1) 0.98 0.23

RIMLS (3, 0.75) 0.60 0.21
Ours (HTU7, 32, 5) 10.20 0.22

ACKNOWLEDGMENT

We would like to thank the Brazilian funding agencies
CAPES, CNPq, FAPES and FAPESP.

REFERENCES

[1] M. Pauly, L. Kobbelt, and M. Gross, “Multiresolution modeling of point-
sampled geometry.” ETH Zurich, Tech. Rep., 2002.

[2] C. Lange and K. Polthier, “Anisotropic smoothing of point sets,”
Comput. Aided Geom. Design, vol. 22, no. 7, pp. 680–692, 2005.

[3] F. Petronetto, A. Paiva, E. S. Helou, D. E. Stewart, and L. G. Nonato,
“Meshfree discrete Laplace-Beltrami operator,” Comput. Graph. Forum,
2013, (to appear).

[4] M. Alexa, J. Behr, D. Cohen-or, S. Fleishman, D. Levin, and C. T. Silva,
“Computing and rendering point set surfaces,” IEEE Trans. Vis. Comput.
Graph., vol. 9, pp. 3–15, 2003.

[5] G. Guennebaud and M. Gross, “Algebraic point set surfaces,” ACM
Trans. Graph., vol. 26, no. 3, 2007.

[6] B. Mederos, L. Velho, and L. H. de Figueiredo, “Robust smoothing of
noisy point clouds,” in Proc. SIAM Conf. Geom. Des. Comput., 2003.

[7] S. Fleishman, D. Cohen-Or, and C. T. Silva, “Robust moving least-
squares fitting with sharp features,” ACM Trans. Graph., vol. 24, no. 3,
pp. 544–552, 2005.

[8] A. C. Öztireli, G. Guennebaud, and M. Gross, “Feature preserving point
set surfaces based on non-linear kernel regression,” Comput. Graph.
Forum, vol. 28, no. 2, pp. 493–501, 2009.

[9] Y. Lipman, D. Cohen-Or, D. Levin, and H. Tal-Ezer, “Parameterization-
free projection for geometry reconstruction,” ACM Trans. Graph.,
vol. 26, no. 3, 2007.

[10] H. Huang, D. Li, H. Zhang, U. Ascher, and D. Cohen-Or, “Consolidation
of unorganized point clouds for surface reconstruction,” ACM Trans.
Graph., vol. 28, no. 5, pp. 176:1–176:7, 2009.

[11] B. Liao, C. Xiao, L. Jin, and H. Fu, “Efficient feature-preserving local
projection operator for geometry reconstruction,” Comput. Aided Design,
vol. 45, pp. 861–874, 2013.

[12] S. Fleishman, I. Drori, and D. Cohen-Or, “Bilateral mesh denoising,” in
ACM Trans. Graph., vol. 22, no. 3. ACM, 2003, pp. 950–953.

[13] T. R. Jones, F. Durand, and M. Desbrun, “Non-iterative, feature-
preserving mesh smoothing,” in ACM Trans. Graph., vol. 22, no. 3.
ACM, 2003, pp. 943–949.

[14] Y. Zheng, H. Fu, O.-C. Au, and C.-L. Tai, “Bilateral normal filtering
for mesh denoising,” IEEE Trans. Vis. Comput. Graph., vol. 17, no. 10,
pp. 1521–1530, 2011.

[15] X. Sun, P. L. Rosin, R. R. Martin, and F. C. Langbein, “Fast and effective
feature-preserving mesh denoising,” IEEE Trans. Vis. Comput. Graph.,
vol. 13, no. 5, pp. 925–938, 2007.

[16] T. R. Jones, F. Durand, and M. Zwicker, “Normal improvement for point
rendering,” IEEE Comput. Graph. Appl., vol. 24, no. 4, pp. 53–56, 2004.

[17] R. Pajarola, “Stream-processing points,” in VIS ’05, 2005, pp. 239–246.
[18] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,

“Surface reconstruction from unorganized points,” in SIGGRAPH ’92,
1992, pp. 71–78.

[19] A. Boulch and R. Marlet, “Fast and robust normal estimation for point
clouds with sharp features,” Comp. Graph. Forum, vol. 31, no. 5, pp.
1765–1774, 2012.

[20] J. Wang, X. Zhang, and Z. Yu, “A cascaded approach for feature-
preserving surface mesh denoising,” Comput. Aided Design, pp. 597–
610, 2012.

[21] M. Pauly, R. Keiser, and M. Gross, “Multi-scale feature extraction on
point-sampled surfaces,” in Computer graphics forum, vol. 22, no. 3.
Wiley Online Library, 2003, pp. 281–289.

[22] N. J. Mitra, A. Nguyen, and L. Guibas, “Estimating surface normals in
noisy point cloud data,” Inter. Journal of Comput. Geo. & App., vol. 14,
no. 04, pp. 261–276, 2004.

	Introduction
	Smoothing Mechanism and Its Alternatives
	Normal Estimation
	Normal Correction
	Surface Smoothing

	Results and Comparisons
	Conclusion
	References

