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Figure 1. Example of object tracking in two frames of a high-definition video [1] using our algorithm. An usual approach to search for an object is to
slide a search window through all the image area. By using frame segmentation and background integral images, we are able to tease out image regions
unnecessary for object detection. As a consequence, we achieve high frame rates even in HD videos. Copyrighted images reproduced under “fair use” policy.

Abstract—Object tracking in video sequences is still a chal-
lenging issue in real-time video processing. In this paper we
propose an integrated detection and tracking method suitable for
high-definition videos at real-time frame rates. In this method
we implement a frame segmentation procedure using integral
images of the background, which permits to discard the analysis
of several image parts of each frame and achieve high frame
rates. Also we extend the proposed algorithm to detect multiple
objects in parallel.
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I. INTRODUCTION

Tracking objects in video sequences is a central issue in many
areas, such as surveillance, smart vehicles, human-computer
interaction, augmented reality applications, and interactive TV
to name but a few. It is a process that always involves two
steps: detection and tracking. A common approach is to detect
the object in the first frame and then track it through the
rest of the video. However, this type of approach overlooks
spatial information. A better approach is to pursue a con-
tinuous integration of spatial and temporal information, that
is: an integrated detection and tracking approach. Examples
of integrated approaches can be found in [2]. Another view
of tracking methods is the taxonomy found in the survey
presented by Yilmaz et al. [3] that comprehends three classes:

Point Tracking (objects detected in consecutive frames are
represented by points); Kernel Tracking (objects are repre-
sented by a kernel, e.g. a rectangular shape or an elliptical
shape); Silhouette Tracking (objects are represented by their
contour or the region inside a contour). The first class of
methods is suitable to handle missing information, and small
objects. However, this type of method requires a mechanism
to detect the objects in every frame. The second class is
suitable for rigid objects, which is appropriate for intensive
real-time applications. The third one is suitable for non-rigid
and complex objects.

In particular, Kernel Tracking methods essentially use two
models: one that gather information from the most recent
observation (what may cause the object being tracked to be
lost if the object appears different from a different view) [4],
and another model where different views of the object can
be learned offline and used for tracking [5], [2]. This second
model requires training.

Motivation. Our work aims at conceiving a novel method
for object tracking that meets the computational performance
required for interactive TV programs, where some objects are
tracked as hot spots for user interactions (e.g. character selec-
tion) or as regions for real-time compositing (e.g. illuminating



a face or attaching an image/text to a character).
The reason why is so difficult to achieve real-time detection

and tracking of objects is twofold: firstly, the existence of
more than one object to be detected in each video frame
compromises the performance of the algorithms; secondly, the
use of high resolution videos directly affects the processing
time, because the higher is the resolution, the larger will be
the area that must be searched for each object.

Contributions. In this paper we propose a real-time integrated
detection and kernel tracking method, in which the features of
the objects are learned by an adaptive boosting algorithm. Our
method is based on the detection method proposed by Viola
and Jones [6]. Our first contribution is the use of integral image
of the background to discard the analysis of several parts of
each frame. Moreover, in the proposed method, the frames
are segmented in an adaptive way. Our second contribution
is an extension of these ideas to deal with multiple objects in
parallel. Our results show a good performance of the proposed
method when we deal with high definition resolutions as one
can found in digital television videos.

Paper outline. Section II discusses some previous and related
works in Kernel Tracking. Section III describes the Viola and
Jones’ algorithm. Section IV presents our method. Section V
shows the experimental results. Finally, Section VI concludes
this woe by suggesting future directions.

II. RELATED WORK

For a video sequence with static camera, several authors [7],
[8], [9] have tried to develop a robust system for real time
tracking. There are also methods of object tracking based
on color particle filters [10], [11]. In these methods, the
target model of the particle filter is defined by the color
information of the tracked object. The tracking of objects is
computationally very expensive. There are some techniques
for tracking objects that try to reduce the computational cost,
such as optical flow, parametric models motion, and matching
blocks.

Viola and Jones [6] proposed a reliable algorithm that can
detect objects in images in real time, which, according to
them, is fifteen times faster than other previously proposed
techniques such as [12], [13] and [14]. Lienhart [15] proposed
an algorithm based on a set of rotated Haar-like features that
enriches the simple features of Viola and Jones’ work.

Tresadern et al. [16] proposed a real-time facial feature
detection on mobile devices based on integral images.

The great advantage of the Viola and Jones’ solution is that
it is an algorithm based on features rather than on pixels, what
provides much higher performance.

Viola et al. [2] present an extension of Viola and Jones’
algorithm [6] to the motion domain. However that extension
is focused on low resolution videos of human figures under
difficult conditions. Moreover the frame rate is too low (about
4 frames/sec).

III. VIOLA AND JONES’ ALGORITHM

As mentioned in the introduction section, the technique pre-
sented in this paper extends the Viola and Jones’ algorithm
[6]. In this section we present a brief description of it.

A. Features of an Object

In Viola and Jones’ algorithm, object detection is based
on features that differentiate them from other elements in the
scene. The main motivation for the use of features rather than
pixels for object detection is that it is much faster to compute.

It uses three types of features, as shown in Figure 2. Two
”two rectangle features” (Figure 2A and 2B) are given by
the difference of pixel values within two rectangular regions.
These regions have the same size and are adjacent. A ”thee
rectangle feature” is given by the sum of pixel values within
two rectangles on both side of a central rectangle (Figure
2C). Finally, a ”four rectangles” feature is the difference of
pixel values within two pairs of rectangles aligned diagonally
(Figure 2D).

Figure 2. (A) and (B) are two rectangle features; (C) is a three rectangle
features; and (D) is a four rectangle features. The sum of white rectangles is
subtracted from the sum of dark rectangles. (Figure extracted from [6])

Rectangular features (also called ”Haar Features” due to
its resemblance to the definition of ”Haar Wavelets” [17])
are extremely easy to be computed if we use an intermediate
representation of the image called Integral Image. In this form
of representation, initially presented by Crow [18], each point
(x, y) of the integral image contains the sum of pixels value
from the origin to its location, formally:

II(x, y) =
∑

x′≤x,y′≤y

I(x′, y′)

Thus, with a single pass on the image, it is possible to
compute the integral image. Once the integral image has been
computed, we can calculate the sum of pixel values within any
rectangular region of the input image reading only four array
elements, as illustrated in Figures 3 and 4.

B. Classification Functions

The main idea of Viola and Jones’ proposal [6] is to
discover a small set of aforementioned features upon which
instances of the object can be easily detected by the use
of a good classifier. To find out what are these features a
classification algorithm known as AdaBoost [19] is used.



Figure 3. The value of the integral image at point x,y is the sum of all pixels
above and to the left. (Figure drawn from [6])

Figure 4. It is possible to find the value of area D calculating: 4+1-(2+3).

In the example of Figure 5, the classifier searches the image
for regions, whose features are typical of the object of interest.

Figure 5. In the first row are examples of the first and second features
selected by AdaBoost for training the object “frontal upright human face”.
On the line below they are superimposed on someone’s face. We can see that
the first feature shows that the eye region is usually darker than the upper
cheek region. The second feature shows the difference in intensity between
the region of the eyes and the nasal bridge region. (Figure extracted from [6]).

C. Cascade of Classifiers

Viola and Jones’ algorithm uses a cascade of N classifiers to
recognize objects. Stages in a cascade are created by ranking
functions using AdaBoost [19]. Early stages must discard a
large number of image regions that do not contain the desired
object, and later stages should be more precise to avoid false
positives, as illustrated in Figure 6. If an image region passes

through the last stage of a cascade, then this region has the
desired object.

It is worth mentioning that the input image processed in
different scales. The use of the integral image allows for
efficient re-scaling, as will be shown in the following.

Figure 6. Representation stages of a cascade of classifier. Each stage
classifiers (C0, C1, ..., CN) attempts to drop the maximum number of sub
windows, in order to decrease the further processing of the sub image, as
proposed by [6].

IV. THE PROPOSED METHOD

This section presents the changes we proposed in the object
search algorithm of [6] to enhance its performance, allowing
it to remain fast enough for video playback.

A. Search Area Reduction
According to the object detection algorithm originally pro-

posed by Viola and Jones [6], to find a certain object in
an image, a new search over the image must be started.
This search traverses the entire image by moving a window
with a varying size. The window in question begins with the
minimum possible size of an object in the image (e.g. 25x25
or 35x40). Each time the window finishes the search process
in the whole image, it must be increased in size by a factor
λ, and a new search over the image must be started. This
procedure ensures that the object that is present in the image
is detected regardless of its size. Algorithm 1 summarizes the
Viola and Jones’ methodology.

We notice here that the entire image area is always tested to
check if it contains the desired object. However, it is known
that the changes between consecutive frames occur only in
few small regions (except when there is a change of scene or
a sudden change in lighting, for example). In this case, we
can minimize the search area by checking only the regions
that have changed as shown in Figure 7.

To accomplish this task, we propose the use of a non-
statistical method for the background segmentation by an
adaptive mean [20]. The main advantages that led us to use
the subtraction technique through adaptive mean are that it
is recursive and therefore there is no need to maintain a
buffer memory for storing the background model. Further-
more, this technique deals gracefully with changes in lighting
and physics, and has a low computational cost.



Algorithm 1 Search Object in Image (Original [6])
Given J , the search window (initialized with the minimum
size of the object);
Given I , the original image;
Given λ, the scale factor;
Given ∆, the displacement of the window;
while size(J) < size(I) do
x = 0; y = 0;
while y + ∆ < height(I) do

while x+ ∆ < width(I) do
if J contains the wanted object then

store the actual location (x, y) of the search win-
dow;

end if
increment x;

end while
increment y;

end while
scale the size of J by λ;

end while
Mark in the image the detected locations;

Figure 7. Two rectangular regions on the plane ahead of a time t the video.
The rectangle formed by the points A, B, C and D need not be analyzed since
the sum of the integral image is zero.

Background segmentation is started by computing a pixel
based absolute difference between each incoming frame Ii
and a background frame Bi. The background model can be
represented by

Bi+1(x, y) =

{
Ii(x, y) if i = 1

(1− α)Bi(x, y) + αIi(x, y) if i > 1

where α is the learning rate. In addition, the segmentation of
objects of interest is given by

|Ii(x, y)−Bi(x, y)| > τ.

When the learning rate α is close to zero, the background
frame Bi will adapt very slowly to changes in the scene. But
when α is close to one, Bi will adapt quickly as objects move
and the scene changes.

After the background is subtracted, the search ignores
regions with no change in the foreground.

Algorithm 2 Search Object in Image with Segmentation.
Given F , the segmented image;
Given J , the search window (initiallized with the minimum
size of the object);
Given I , the original image;
Given λ, the scale factor;
Given ∆, the displacement of the window;

call Segmented Image Discarding(F );

function Segmented Image Discarding(F ′)
if size(F ′) ≤ object min size then

return object min size
end if
divide F ′ into two parts F1 and F2 alternating vertical and
horizontal parts on each execution of this function;
compute II1, the integral image of F1;
compute II2, the integral image of F2;
if II1 > 0 then

ret size = Segmented Image Discarding(F1);
call Detect Object(F1,ret size);

end if
if II2 > 0 then

ret size = Segmented Image Discarding(F2);
call Detect Object(F2,ret size);

end if
// check if the object is between two regions with changes
// search window doesn’t need to be smaller than F1.
if II1 > 0 and II2 > 0 then

call Detect Object(F ′,size(F1));
end if
return size(F ′)
end function

function Detect Object (F , search window min size)
scale J until it fits search window min size;
while size(J) < size(F ) do
x = 0; y = 0;
while y + ∆ < height(I) do

while x+ ∆ < width(I) do
if J location on the original Image contains the
wanted object then

store the actual location (x, y) of the search win-
dow;

end if
increment x;

end while
increment y;

end while
scale the size of J by λ;

end while
Mark in the image the detected locations;
end function



For this test to be done quickly, we firstly set up a binary
mask containing the pixels that are part of the foreground.
Then we calculate its integral image. Upon the test of whether
the window is over an area on which there was a change,
we just check whether the integral image area is greater than
zero. If so, the window is over an area that may or may
not contain the desired object. Otherwise, the area can be
discarded from the analysis, because if there was an object and
no change occurred in the region of the frame, the object has
been found in previous frames. By segmenting the background
and calculating the integral images of the segmented parts,
we achieve a significant performance gain. To achieve a quick
discard of image areas, we propose a ”binary search” on each
frame, dividing the foreground image recursively in two pieces
and analyzing its integral image. If the integral image of the
search window is equal to zero, all the area can be discarded,
since there is no change between the previous frame and the
current one. If the integral image of the current search window
is greater than zero, it should be divided and analyzed again
until its size is less or equal than the minimal search window
size. This idea is illustrated in Figure 8. In addition, Figure
shows our program running in a HD video.

Algorithm 2 summarizes our proposal.

B. Parallelism

Since we want to detect multiple objects over a video rather
than a single object, we need to optimize the amount of times
and the way such objects are tracked in each frame.

The algorithm proposed by Viola and Jones [6] has a
solution for searching objects individually. In this algorithm,
for each object of interest, it is necessary to rebuild the
structures of the cascade classifier, recalculate the integral
image, and finally restart the search. In the present paper, we
propose a simpler and more effective solution that can be used
on videos.

The algorithm can be split in parts that can be executed in
parallel, each one dealing with an object instance in the image.
These parts are:
• Initialization of the structure of the cascade of classifiers

in memory;
• Calculation of the existence of the object in a particular

region of the image;
• Marking areas of the image where there are object

instances;
We implemented the Algorithm 2 with the above-mentioned
parts running in parallel. In this way, we can detect all desired
objects simultaneously. This strategy clearly improves the pro-
cessing time in comparison with the sequential implementation
of the Algorithm 1.

V. EXPERIMENTAL RESULTS

This section presents the experimental results obtained with
different sequences and resolutions of videos. The dataset used
for the experiments were known entertainment videos, like
Lord of the Rings and The X-Files, and also a pedestrian video,
as shown in Figure 9. The following resolutions were used in

Table I
AVERAGE PROCESSING TIME IN FRAMES PER SECOND (FPS) SEARCHING

A SINGLE OBJECT IN A VIDEO, FOR EACH SPECIFIED RESOLUTION.

Video Resolution FPS Our Method FPS Viola Jones
320x240 94.7 54.2
640x480 72.6 28.3

1.024x720 41.3 14.4
1.920x1.080 21.4 5.9

Table II
TOTAL NUMBER OF PROCESSED AREAS LOOKING FOR AN OBJECT

ACCORDING TO THE TECHNIQUE ORIGINALLY PROPOSED BY VIOLA /
JONES (ALGORITHM I) AND THE PROPOSED TECHNIQUE, USING A

SEARCH WINDOW INITIAL SIZE OF 20X20, λ = 1.3 AND ∆ = 1. AMOUNTS
EXTRACTED IN ACCORDANCE WITH THE FRAME OF FIGURE 7.

Video Resolution Viola/Jones Our Method
320x240 81.246 1.984
640x480 162.642 4.206

1.024x720 305.324 7.628
1.920x1.080 620.976 15.842

the experiments: 320 x 240, 640 x 480 and 1280 x 720. The
environment used for the tests was an Intel Core 2 Quad 2.4
GHz, 2 GB RAM, Windows XP, and a C++ compiler (Visual
Studio 2005) was used as a platform for software development.
The Intel OpenCV library was used for the processing and
transformation of the original frames to grayscale. A mean
value of α = 0.7 was used for the adaptive segmentation of
the background. We choose the α parameter empirically. We
observe that a very low α value decreases processing time,
since the lower the value, the extracted foreground gets bigger
and the area to be evaluated increases. A very high value
of the alpha parameter does not capture all the necessary
changes in the scene, making some objects to not be detected
between frames of a video (high number of missing positives).
Following the same idea the values of lambda (search window
scale factor) and delta (search window displacement) were
chosen after empirical experiments.

Our method has the same accuracy of the algorithm origi-
nally proposed by Viola and Jones [6]. During our experiments
we observed that changing the scale factor λ and the displace-
ment of the search window ∆, we achieved exactly the same
number of missing and false positive rates for both methods.

Due to the low computational cost of the proposed method
and the high number of discarded areas between frames of
a video, it is possible to achieve a high rate of frames per
second, including high-definition images, as shown in Table I.

In the experiment of Figure 9, we used four objects of the
same class instead of four totally different objects, not only as
a matter of implementation convenience, but mainly to avoid
the introduction of new variables that could cause a biased
analysis of the proposed parallel procedure.

Also we should notice a substantial reduction in the amount
of processed areas during the search for objects, as shown in
Table II. However, it is important to note that the gain with
reduced search area is proportional to the amount of motion



Figure 8. I - It displays the foreground between two frames extracted from a video using adaptive average. II - It shows the first division performed and
50% of the discharge frame according to the respective area, where the sum of the integral image is zero. III - It shows the second division performed on the
right side of the image. IV - It displays the effective area for the detection of objects in the frame, where all the white areas are discarded.

between frames. Currently we are not dealing with occlusion,
but the method is extensible to detect occluded objects after
the end of its occlusion. The processing time obtained by using
the proposed parallel technique for multiple objects detection
are shown in Figures 10, 11 and 12. In these three figures, we
can see that our algorithm produces a quasi-linear behavior
with relation to the number of searched objects.

VI. CONCLUSIONS

In this paper we extend Viola and Jones’ detection algorithm
[6] towards a real-time integrated detection and kernel tracking
algorithm. Firstly we introduce the idea of using the integral
image of the background to discard from the analysis several
parts of each frame. Furthermore, this discarding process
reveals an adaptive frame segmentation that defines a reduced
area for object detection. Another contribution is to expand
these ideas to deal with multiple objects in parallel. Finally,
our method presents high performance in terms of processing
time without missing the qualities of Viola and Jones’ original
algorithm.

The tests revealed that it is possible to reduce the detection
time up to 30% compared to Viola and Jones’ method,
depending on video resolution and type of object movements.
Therefore, the proposed method has the potential to avoid big

falls in frame rate when we use high video resolution and
search for more than one object.

Our algorithm can reach even higher frame rates if we com-
pute integral images using a parallel all-prefix-sums operation
on graphics processors as found in the work by Harris et al.
[21]. This operation (also known as a parallel scan) can be
applied to all rows of the image followed by the application of
the same operation to all columns of the result. Parallel scan is
available in CUDA Data Parallel Primitives Library [22]. Also
there is the possibility of applying the parallel scan algorithm
proposed by Dotsenko et al. [23], [24], which is faster than
the one by Harris et al. [21]. We are currently working on
this idea. Moreover, as soon as we have this new version of
the parallel algorithm, we shall present a complexity analysis
- what is missed in the present paper.

Although there is no widely available testing set in the
literature, we have plans to produce more comparisons with
published values of performance in terms of frames per
second.

The proposed method can facilitate the development of in-
teractive applications synchronized with high resolution digital
video in real time. In this particular, the following examples
can be mentioned: interactive advertising, e-commerce, or even
selling products that are detected during transmissions of TV
programs, such as soap operas, reality shows, and movies.



(a)

(b)

(c)

(d)

Figure 9. Examples of object tracking in videos. (a) and (b) illustrates
single object tracking (faces) in HD videos. (c) illustrates pedestrian tracking
in standard video. (d) illustrates a multi object tracking, in this case 4 objects
of the same class ”face” are tracked, each one with different radius and color.
Copyrighted images reproduced under ”fair use” policy [1], [25].

Figure 10. Average performance of the algorithm for detecting objects
with and without the proposed optimizations along with a video resolution of
320x240.

Figure 11. Average performance of the algorithm for detecting objects
with and without the proposed optimizations along with a video resolution of
640x480.

Figure 12. Average performance of the algorithm for detecting objects
with and without the proposed optimizations along with a video resolution of
1.024x720.
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