
Dynamic per Object Ray Caching Textures
for Real-Time Ray Tracing

Christian F. Ruff, Esteban W. G. Clua, and Leandro A. F. Fernandes
Instituto de Computação, Universidade Federal Fluminense (UFF)

CEP 24210-240 Niterói, RJ, Brazil
Email: {cruff, esteban, laffernandes}@ic.uff.br

(a) 128× 128 (b) 256× 256 (c) 512× 512 (d) Conventional Ray Tracing

Fig. 1. Images produced by ray tracing two scenes while using the proposed ray-caching textures for real-time rendering (a)-(c), and without our caching
mechanism (d). The quality of the resulting images increases as the resolution of the proposed caching structures increases. Notice that caching textures having
512× 512 texels (c) generated images equivalent to the standard ray tracing (d). As can be seen in Table I for the images on the bottom, our approach has
the advantage of producing results like (a)-(c) at 42 fps, while (d) is rendered at 12 fps.

Abstract—Ray tracing allows the rendering of scenes with
very complex light interactions. It is based on the idea that
reflection, refraction and shadows can be modeled by recursively
following the path that light takes as it bounces through an
environment. However, despite its conceptual simplicity, tracing
rays is a computationally intensive task. Also, optimizing memory
management to increase efficiency is hard since coherent access
in 3D space would not generate coalescent memory patterns.
We present a new caching-like strategy suitable for real-time
ray tracing which is capable to store data generated in previous
frames in such a way that coherent memory access is achieved
while data is reused by subsequent frames. By storing light
bounce results of previously traced rays in a cubemap attached
to each scene object, we show that it is possible to explore the
efficient memory sampling mechanism provided by the graphics
hardware to increase frame rate. Our approach is suitable for
static scenes and may prevent deep interactions of rays with
the scene as well as enable synchronous computation of rays in
parallelized architectures, and it can be easily integrated to any
existing ray tracing solutions.

Keywords-ray tracing; cache memory; cubemap; real time.

I. INTRODUCTION

Computer-generated images having outstanding quality and
unsurpassed realism have been created through the use of
ray tracing [1]. It is based on the idea of tracing the path
of individual light rays from the eye into the scene, and
calculating the effect of its interaction with the environment.
The recursive task of tracing a ray consists of traversing the
3-dimensional space until the ray hits an object and generates
up to three new types of ray leaving the intersection point:
a reflected ray continues on in the mirror-reflection direc-
tion from a shiny surface; a transmitted ray travels through
transparent materials; and a shadow ray is used to test if
a surface is visible to a light source. At each ray-surface
interaction, an intensity is computed, added to the color of the
pixel related to the ray, and some energy is lost. The creation
of reflected and transmitted rays stops when the computed
intensity becomes less than a certain threshold. While the
technique is capable of producing a high degree of visual

mailto:cruff@ic.uff.br
mailto:esteban@ic.uff.br
mailto:laffernandes@ic.uff.br

realism, the large number of rays, intersections and recursive
calls brings a large computational cost. For this reason, ray
tracing has been best suited for applications that do not
require real-time or interactive frame rates, such as still images
creation and cinematography visual effects.

Ray tracing can be trivially parallelized in a naı̈ve way.
However, the incoherence of the direction of neighboring
rays difficult coalescent memory and data arrangement. Also,
the independency of the rays’ computation naturally leads to
different efforts to calculate paths, and usually result in idle
threads. Since rays related to neighbor pixels travel through
different levels of the data structure used to arrange the objects
(e.g., octree), the algorithm is prone to high degree of kernel
disparities, making the optimization of the code into GPU
architectures not trivial. The existence of efficient ray-caching
mechanisms to ensure memory coherence and avoid inter-
frame redundant rays computation could really increase the
performance of ray tracing algorithms by making different rays
shot towards the same object to return synchronously, leaving
no threads in idle state, and maximizing the efficiency of the
GPU.

We present an efficient technique that manages caching
textures of rays. Our approach is capable of storing the reflex
information computed by tracing rays in previous frames and
reusing it while producing the next frames of the sequence.
The main idea is to assign to each reflective object a cubemap
to store the reflection color calculated by rays leaving the
object in a given direction. Cached information is dynamically
completed and updated in render time and used in subsequent
frames to avoid tracing redundant reflected and refracted rays.
So, before casting new rays to the environment, the technique
tries to fetch from the caching textures the reflex information
in the ray’s direction. If the information is available, the
algorithm returns the color and the recursive tracing stops.
When the reflex information is not available the ray tracing
proceeds normally and the resulting color is used to update
the caching textures. Since retrieving information from the
caching textures is more efficient than tracing rays into the en-
vironment, the proposed technique leads to better frame rates.
In the first rendered frames, the conventional tracing of rays
will be executed quite more often because the caching textures
lookups will not return valid information. However, as the
cache memory gets dynamically filled, the efficient memory
sampling will gradually replace the computationally intensive
work of bounce rays through an environment. Fig. 1 (bottom)
shows a scene renderer using the proposed technique (Fig. 1a
to Fig. 1c) at 42 fps. Without our caching strategy the same
scene (Fig. 1d) was rendered at 12 fps.

The central contribution of this work is the dynamic con-
struction and usage of cubemaps attached to scene objects
to store render-time generated data to be used in subse-
quent frames of ray traced frame sequences. This simple
but effective strategy prevents the creation of redundant rays
and deep interactions with the environment. Our approach
allows synchronous computation of rays cast to the same
object, maximizing the efficiency of the GPU. The approach

TABLE I
PERFORMANCE COMPARISON BETWEEN A RAY TRACING SYSTEM

RUNNING WITH AND WITHOUT OUR RAY CACHING STRATEGY

Additional Hybrid Ray Tracing
Speed UpReflective Standard With Our

Objects Approach
0 68 fps 125 fps ∼ 84%
1 63 fps 120 fps ∼ 90%
2 59 fps 117 fps ∼ 98%
4 49 fps 98 fps ∼ 100%
8 38 fps 85 fps ∼ 124%

16 23 fps 63 fps ∼ 174%
32 12 fps 42 fps ∼ 250%

also improves memory coalescence by converting the task
of traverse the scene into the simpler problem of fetching
coalescent regions of textures as in rasterization-based reflec-
tion mapping rendering. We have implemented and tested the
solution in order to demonstrate that our approach works well
in static scenes with convex objects and is suitable for real-
time rendering in ray tracing systems (see Table I).

The remaining of the paper is organized as follows: Sec-
tion II presents related work. It discusses techniques for
optimizing ray tracing, previous attempts to achieve coherent
access to 3-dimensional space and memory, and the local stor-
age of render data for computing lightning effects. Section III
describes the proposed approach, whose results, advantages,
and limitations are discussed in Section IV. Section V con-
cludes the paper with some observations and directions for
future exploration.

II. RELATED WORK

Many techniques have been created for making the ray
tracing algorithm less computationally intensive. Spatial data
structures have been widely used to optimize the interaction
between traced rays and scene objects. Glassner [2] proposed
the traversal of an octree while computing the intersection of
rays with the environment. Foley and Sugerman [3] were the
first to demonstrate k-d tree traversal algorithms suitable for
the programmable rendering pipeline of GPUs, and to integrate
it into a streaming ray tracer. Complete GPU implementations
of ray tracers that use an octree as acceleration structure
were also developed in the CUDA architecture [4]. Interactive
ray tracing of moderate-sized animated scenes was achieved
by Wald et al. [5] by traversing frustum-bounded packets
of coherent rays through uniform grids. Regular grids and
quadtree structures were also investigated by van Reeth et
al. [6]. The ability to efficiently rebuild the grid on every
frame enabled the treatment of fully dynamic scenes that are
typically challenging for k-d tree or octree-based architectures.
However, state-of-art general purpose ray tracing engines such
as OptiX [7] uses more sophisticated acceleration algorithms.
Among them, the Split Bounding Volume Hierarchy (SBVH)
algorithm [8] have been used because its data structure is
simple to construct, has low memory footprint, allows re-
fitting in animations, and works well with packet tracing
techniques. In the same way, the Linear Bounding Volume

Hierarchy (LBVH) algorithm [9] have recently been attracting
increasing attention because of its construction speed capacity.

Unfortunately, efficient spatial data structures may not guar-
antee coherent memory access. In the literature it is possible
to find several ray tracers developed with this goal. Pharr
et al. [10] have described algorithms that use caching and
lazy creation of texture and geometry to manage scene com-
plexity. In order to improve cache performance, they increase
locality of reference by dynamically reordering the rendering
computation based on the contents of the conventional cache.
Aila and Karras [11] proposed a massively parallel hardware
architecture based on hierarchical treelet subdivision of the
acceleration structure and repeated queuing and postponing
rays to reduce cache pressure. As a result, the authors reduced
the total memory bandwidth. In a recent work, Yang et
al. [12] presented efficient data and task management schemes
designed for GPU-based ray tracing. Their approach uses
fuzzy spatial analysis, a two-level ray sorting method, and a
ray bucket structure to reorganize ray data. By doing so, the
threads can be scheduled in order to achieve coherent access
to geometry and to reduce memory bandwidth. Our approach
uses the spatial data structures provided by NVIDIA OptiX
to handle geometry, and no data reordering is necessary to
achieve coherent access to rays cached in previous frames.
We explore the existing texture mapping functionalities of the
GPU to store, sample, and filter cached rays with the same
memory-management advantages of using cubemap textures
in rasterization-based rendering.

The idea of storing information as textures and use it
for computing lightning effects is widely spread. Blinn and
Newell [13] presented an extension of the ideas of Cat-
mull [14] in the areas of texture simulation and lightning mod-
els, developing the environment mapping. It can be considered
even nowadays an efficient image-based lightning technique
for approximating the look of a reflective surface by means
of a precomputed texture image. This texture is used to store
the image of the distant static environment surrounding the
rendered object. Miller and Hoffman [15] extended Blinn and
Newell’s work to cover a wider class of reflectance models.
Panoramic images of environments were used as illumination
maps that are blurred and transformed to create reflection
maps. Miller and Hoffman were the first to use perspective
projection onto cube faces. A couple of years later, Greene [16]
created the well-known cubemapping.

The storage of render data on the surface of objects was
explored by Ward [17], who has described a physically-based
rendering system to create the radiance effect on objects. The
information of the radiance was stored in structures to be
later combined with the objects in the scene. Jensen [18]
developed the photon mapping technique that makes possible
to efficiently simulate global illumination in complex scenes.
It can simulate caustics, diffuse inter-reflections, and partici-
pating media like clouds and smoke. The information of these
effects are stored in temporary data structures to be used later
to generate the final image. In contrast to these techniques, our
approach writes traced rays in the proposed cached memory.

Fig. 2. Axis-aligned cubic box assigned to a reflective sphere in object space
during the loading of the scene. The faces of the box coincide to the faces of
the caching cube.

Also, the data is generated and updated in render time.

III. PER OBJECT RAY CACHING

The approach uses 2-dimensional caching textures to store
the color of recursive rays calculated by a ray tracer. Each
reflective object of the scene generates a particular set of six
caching textures, which we call a caching cube (Section III-A).
For each frame, before tracing a ray leaving the object, the
algorithm verifies in the caching textures of the object whether
the color information for that ray is available. If the color is
not available, the ray tracer calculates the ray’s color using the
conventional tracing technique, and it updates the caching cube
with the new color information (Section III-B). However, when
updated color information is available in the caching cube, the
algorithm returns the stored color and the ray tracing does not
need to be evaluated for that ray (Section III-C). It is easy to
realize that the more the camera moves around the scene, the
more complete will be the cached information.

The process of consulting a texel at the caching cube is
much faster than computing the color information through a
ray tracing procedure. Since in the first frames the ray tracing
algorithm will be executed quite more often than the simpler
texture lookup, it is supposed that when a new reflective object
appears in the scene there will be a decrease at the frame
rate. However, as ray tracing fills the textures of the object’s
caching cube, the fetching procedure returns valid results so
that the number of ray tracing calls reduces. Stochastically,
new reflective objects will appear at the camera frustum in a
well distributed manner, so that while new objects will require
ray tracing calls, older ones will mostly use cached rays.

A. Caching Cube Setup

For each reflective or refractive object in the scene we define
an axis-aligned cubic box. The object and its box are children
of the object’s transformation in the scene graph hierarchy, so
that any transformation applied will affect both. Also, both
object and box are centered on the origin of the local coor-
dinate system. Fig. 2 shows a representation of the cubic box

around a reflective sphere. The faces of the box are oriented
according to the cubemap texture convention, i.e., the faces’
normals pointing inside the cube. In our implementation, the
cubic box is not created as a piece of geometry. It is only a
convention about the geometrical relation between the object
and its respective caching cube.

The caching cube setup consists on creating six RGBA 2-
dimensional textures, one for each face of the cube. The RGB
channels of the textures will store the reflection information of
the object they belong. We use the A-channel of the textures
as flag to indicate the presence of updated ray information.
According to our convention, A = 0 means outdated data and
A = 1 means updated data. All texels are initially marked as
outdated. Each face of the cubic box is related to a face of the
caching cube. It is easy to see that our technique uses more
memory than the common ray tracing. The greater the number
of reflective objects in the scene, the greater the memory used
to store these textures. The use of the caching cube is a trade-
off between speed and memory in favor of speed. However,
we remark that these textures remain at the GPU memory,
which are abundant in modern architectures. In Section IV we
discuss the frame rates and the quality of images produced
by conventional ray tracing and by the use of caching cubes
having different resolutions.

B. Caching the Reflection Information

Once the caching cube is created, it is ready to store reflex
information. The caching procedure is performed along with
the ray tracing. For each ray leaving the object, we compute
the direction of the reflected (1) or refracted (2) ray using
standard formulas [19]:

~r =~i+ 2~n cos θi (1)

~t = η~i+
(
η cos θi −

√
cos2 θt

)
~n (2)

where ~i is the direction of the unit incident ray pointing to
the surface, and ~n is the unit surface normal. θi and θt are,
respectively, the angles of incidence (3) and transmission (4),
leading to:

cos θi = −
(
~i · ~n

)
(3)

cos2 θt = 1− η2
(
1− cos2 θi

)
(4)

In (2), η = η1/η2, where η1 and η2 are the indices of refraction
of each medium. Notice that we assume rays leaving the object
while updating the caching cube. Therefore, we also assume
that the first refraction and internal reflections are already
solved for transmitted rays.

We update the caching cube only for rays whose stored
information is outdated (i.e., A-channel equals to zero). The
current state of cached information is retrieved for a given ray
~r by fetching the texture position related to the intersection
between the cubic box and a ray rs traced from the center of
the box in the reflection direction ~s (~s is equal to ~r (1) or ~t (2)
depending of the type of ray leaving the object). Based on the
intersection point, we calculate which of the six textures of the

r1

sr P
P2

1

C
r2

r0

P0

Fig. 3. The path of a primary ray traced from the camera to the scene is
defined by its interactions with scene objects. In this 2-dimensional example,
the primary ray r0 intersects a circular object at point P0, producing the
reflected ray r1 which, in turn, hits a squared object at point P1. The resulting
reflected ray r2 keeps interacting with the scene until some stop condition be
achieved. With our approach, the creation of r1 is prevented if the caching
square (the green box) has updated color information at point P2, defined by
the intersection between one of the faces of the box and the ray rs is casted
from the center C in the direction of r1.

caching cube has to be used to store the reflection information.
Details are described later in this section. In case of outdated
data, the standard ray tracing procedure is evaluated for ~r
leaving the surface of the object in order to compute its color.

Fig. 3 shows the process of storing reflection rays in
a simplified 2-dimensional view of a complete ray tracing
procedure. First, the ray r0 is traced from the camera to
the scene and hits a circular object at point P0. In turn, the
reflected ray r1 is created and is shot into the environment,
hitting a squared object at point P1. The recursive ray tracing
continues until the ray hits a non-reflective object or another
stop condition is achieved. In this example, the reflex color
to be stored is computed as the intensities accumulated along
rk, for k > 1. The location in which the reflex color is stored
in the caching square is computed from the intersection of
the ray rs leaving the center C of the square with the same
direction than r1. In Fig. 3, rs hits the squared box at P2.
In our implementation, all rays traveling from the camera
(red arrows in Fig. 3) only intercept renderable objects in the
scene. Therefore, cubic boxes do not affect the rays directly.
In practice, rays traveling from the center of their respective
reflective objects (like the purple arrow in Fig. 3) are not
handled by the ray tracer.

The texture that stores the current ray’s color (RGB) and
state (A) is selected based on the largest magnitude coordinate
direction of ~s. The texture coordinates to be used in the
selected texture are computed as follows:

tu =
1

2

(
t′u
|m|

+ 1

)
, and tv =

1

2

(
t′v
|m|

+ 1

)
(5)

where m is the coordinate value related to the major axis
direction of ~s in object space, and t′u and t′v are defined

Fig. 4. Color information generated for the caching cube of a reflective sphere
after executing the first frame of the application (top) and after moving the
camera around the object (bottom).

according to the OpenGL’s convention. We assume nearest-
neighbor interpolation while sampling rays from the caching
textures because the writing operation is also performed on
exact texels location.

We have defined the texture selection and the computation
of texture coordinates to be consistent with DirectX’s and
OpenGL’s cubemap arrangements. However, it is important to
comment that we had to implement those operations as part of
our programs because the ray tracing engine adopted in this
work (NVIDIA OptiX 2.6) does not support native cubemaps.

Fig. 4 (top) shows the result of caching the ray tracing
reflection at the textures of the caching cube. Black texels
represent outdated information. After moving the camera and
complete near 30 degrees around the object all texels of the
caching cube were filled with updated information (bottom).
It is important to comment that reflection and shadowing for
the current object are computed separately, so that the caching
textures will never be affected by shadow rays.

C. Using the Cached Values

The process of retrieving information from the caching cube
is performed every time a ray hits the object and produces a
reflected or a transmitted ray whose direction (~s) is defined,
by (1) or (2), respectively. The 2-dimensional texture of
the caching cube and the texture coordinates in which the
ray information resides are computed using (5). When the
stored information is valid (i.e., A-channel equals to one), the
recursive ray tracing of the ray leaving the object is prevented
and the cached information is combined with the shadow ray
in order to compose the final intensity of the incoming ray.

When several primary rays hit objects whose caching cubes
are up-to-date, the creation and tracing of all secondary rays
are avoided and replaced by the simpler texture fetching
procedure. Thus, in GPU-based ray tracing architectures, it

is clear that threads related to primary rays will not be idle
for too long, maximizing the efficiency of the GPU.

IV. RESULTS AND DISCUSSION

We have implemented our technique using C++ with
OpenGL, NVIDIA CUDA 4.0, and NVIDIA OptiX 2.6. We
have used the Assimp library to load the 3-dimensional scenes,
and the DevIL library to load the environment maps. The ex-
periments were performed on a 3.40 GHz Intel Core i7-2600K
machine with 8 GB of RAM, and with a NVIDIA GTX680
graphics card having 2048 MB of memory. Microsoft Win-
dows 7 (64-bit) was used as operating system.

The proposed ray caching strategy can be integrated to
any existing ray tracing solution. In our experiments we have
integrated at an hybrid raster and ray tracing framework
developed by Sabino et al. [20], which is totally executed
at the GPU, and implemented using the same programming
languages adopted by our solution (except for the use of GLSL
as shading language, which it is not required by our approach).
Sabinos’s et al. framework uses the raster deferred shading
technique [21], [22] in order to prevent the computation
of primary rays hitting diffuse objects in the scene. In a
subsequent step, the hybrid solution applies conventional ray
tracing to compute and add visual effects such as reflection
and transmission for pixels neglected in the previous step. The
last stage of this technique consists on the composition of the
images created by the raster and by the ray tracing stages.

A. Visual Quality and Performance

The visual quality of reflections and refractions is dependent
of the resolution of the textures used as faces of the caching
cubes. Fig. 1 presents the quality comparison among the
render of two scenes. The first one (Fig. 1, top) is comprised
by 10 objects that have diffuse materials and a reflective
sphere facing the camera. The second one is comprised by
33 reflective spheres. From the left to the right, the first
three pairs of images were produced using the proposed ray
caching mechanism, while the last pair was generated by
the standard (hybrid) ray tracing. The resolution of the 2-
dimensional caching textures used in those examples are,
respectively, 128× 128, 256× 256, and 512× 512 pixels. The
resolution of the final images is 1024× 1024 pixels. Closer
looks on the resulting renders are presented in detail. Notice
that in Fig. 1a the edges of the objects are clearly bumpy.
In Fig. 1b, the texture size was increased, leading to slightly
better results. By comparing the detailed view of Figs. 1c
and 1d one can see that the use of 512× 512 caching textures
produced results that are visually equivalent to those produced
by ray tracing.

The performance of the proposed approach was evaluated by
comparing the frame rates of the standard implementation of
the framework developed by Sabino et al. [20] against the same
framework enhanced with our ray caching mechanism. The
measurements were made using the scenes presented in Fig. 5.
All those scenes are comprised by a main reflective sphere fac-
ing the camera and by a set of reflective spheres placed behind

Fig. 5. Scenes used in the performance comparison between our approach implemented as part of an existing ray tracing framework [20] and the standard
implementation of the same framework. The complexity of the scenes varies from the left to the right. The first one is comprised by a single reflective sphere
facing the camera. The other scenes include, respectively, 1, 2, 4, 8, 16, and 32 additional reflective spheres placed behind the camera. They can be observed
from their reflex in the main object. The resulting frames rates are presented in Table I and Fig. 6.

the observer. This setup makes the extra spheres visible only
from their reflex in the main sphere. From the left to the right,
the sets of additional objects are comprised by, respectively,
0, 1, 2, 4, 8, 16 and 32 spheres. The material of the main
sphere implements the proposed ray caching mechanism. The
material of the additional objects uses conventional ray tracing.
The resolution of the final images is 1024× 1024 pixels.
The frame rates were taken after the caching textures have
been filled. The update rates at different caching resolutions
is discussed in Section IV-B. Table I presents the performance
of the compared implementations (columns 2 and 3), and
the speed up achieved by the use of caching textures having
resolutions of 512× 512 pixels (column 4). Each scene in
Fig. 5 is related to a row of Table I. Notice that the greater the
number of reflective objects in the scene, the greater the speed
up with our method. This happens because, in contrast to our
approach, the computational cost of the ray tracing technique
is proportional to the number of bounces performed by the
rays, which is dependent of the number of objects. Fig. 6
complements Table I by showing that the relative performance
between the use of ray caching structures and the standard
implementation has an approximately linear relationship to the
number of additional objects is the scene. Table II presents
the frame rate comparison of the conventional ray tracing
algorithm with and without our technique. The scene used
for this test contains a group of spheres with our technique,
arranged like a grid in front of the camera. As expected, the
speed up was smaller than with the hybrid technique. In the
hybrid approach, the primary rays are shot by the raterization-
based graphics pipeline. The actual ray tracing is performed
only for secondary and high order rays. So, every ray in the
hydrid approach will be replaced by our caching technique. On
the other hand, in the conventional ray tracing, all the rays are
traced in the GPU, and many of them may hit a diffuse object,
or not hit an object at all. These rays will not be replaced by
our caching technique, giving no speed up at all.

We present only the performance achieved by using caching
textures having the same resolution (512× 512), because after
the caching cube has been filled, the frame rates achieved with
different resolutions of the caching textures are the same.

B. Update Rate
The update rates of caching cubes having different resolu-

tions were measured by placing a spherical reflective object in
front of the camera and panning the camera around it with nine

TABLE II
PERFORMANCE COMPARISON BETWEEN A CONVENTIONAL RAY TRACING

SYSTEM RUNNING WITH AND WITHOUT OUR RAY CACHING STRATEGY

Additional Conventional Ray Tracing
Speed UpReflective Standard With Our

Objects Approach
1 56.7 fps 57.8 fps ∼ 2%
2 52.0 fps 55.6 fps ∼ 7%
4 44.7 fps 51.8 fps ∼ 15%
8 32.8 fps 43.5 fps ∼ 32%
16 17.1 fps 33.4 fps ∼ 95%
32 8.0 fps 21.5 fps ∼ 168%

regular steps of 10/3 degrees each. The number of outdated
texels were recorded every step before the rays being cast
into the scene. The results are presented in Fig. 7, regarding
caching textures with, respectively, 128× 128, 256× 256, and
512× 512 pixels.

In all three cases, the caching cubes were initialized with
invalid information (100% at the beginning of frame 1).
According to Fig. 7a, for 128× 128, after the first frame
only 3% of the texels had invalid information. After the end
of the seventh frame the caching textures achieved almost
100% of valid data. For the texture of 256× 256 pixels, the
convergence rate is virtually the same than for the previous
example. After the first frame, 31% of the texels had invalid
information, but after the seventh frame the caching textures
are almost filled. For the case depicted in Fig. 7c, as expected,
the convergence rate was slightly slower than the previous

0 1 2 4 8 16 32
1

1.5

2

2.5

3

3.5

Number of Additional Reflective Objects

P
e

rf
o

rm
a

n
c
e

R
a

te
(P

ro
p

o
s
e

d
/

S
ta

n
d

a
rd

)

Fig. 6. The relative performance achieved by using the proposed caching
scheme and without using ray caching increases linearly with respect to the
number of objects in the scene. See Table I.

cases. After the first frame, 73% of the texels had invalid
information, but after 8 frames, only 1% of the texels were
not updated yet. These tests show that the caching cubes can
be quickly filled, even if they have high resolutions. A quick
update is a desirable feature that promotes the reuse of stored
information.

C. Limitations and Future Work

The proposed approach is tailored to static scenes. Since
we are storing previous ray tracing information of the scene
around a certain object, it is easy to see that any movement
on the scene objects would generate inconsistencies on cached
data. One possible solution for that problem would be flush
the information on the caching cube of objects that can be
“seen” by moving elements. That could be managed by a
visibility-graph-like structure that connects all the objects that
have reflex information of each other. So, when a given object
moves, just the caching data of objects that are connected to
that particular entity need to be marked as outdated.

Our technique explores cubemap-like texture addressing
mechanisms available in current graphics hardware. Cubemaps
model skyboxes that always appears infinitely distant from the
object. As a result, the visual appearance of smooth surfaces
reflecting or refracting close objects may lack parallax effect.
A promising area of future work is the extension of relief
textures [23] to cubemap environments in order to produce
local reflections with seamless transitions between objects.
Another possible extension is to use not only rays leaving, but
also the rays hitting the object to populate the caching memory.
This is possible due to the bidirectional nature of reflectance
distribution functions [19]. By doing so, we believe that the
update rate of cached rays (Fig.7) may increase significantly.
Finally, we also pretend to implement dynamic changes at the
resolution, according with the distance and projected size of
the reflective object.

The technique is also tailored to be used with convex objects
and auto-reflection features. Figs. 1 and 8 show that when the
reflective object is convex, the resulting reflex are plausible
and comparable to those produced by conventional ray tracing
solutions. However, as can be seen in Fig. 9, a concave object
will generate concurrent rays that hit different objects of the
scene. As a result, some cached rays fetched from the caching
cube may be inconsistent at a particular view point. See the
impulsive noise at the detailed views of Fig. 9. A possible
solution to this issue is the use of relief mapping of non-
height-field surface details [24] as caching structure. Another
solution would be breaking the object into convex parts.

V. CONCLUSION

We have presented an efficient cache strategy that improves
the locality of storage of rays computed in previous frames
and the locality of cached rays’ retrieval in subsequent frames
rendered by ray tracing algorithms. The approach uses 2-
dimensional textures attached to scene objects in a cubic
arrangement as cache structure. Outdated data in a given direc-
tion of the caching cube is replaced in runtime by the color of

(a) 512× 512

(b) 512× 512

Fig. 8. Images (a) and (b) show a cone and a cylinder whose material
implements the proposed ray caching cube for real-time ray tracing. In both
cases, the resolution of the caching textures was set to 512× 512 pixels.

rays casted from the object’s surface to the environment in that
direction. When the cached data is up-to-date, the proposed
approach replaces the computationally expensive bouncing of
rays leaving the object by the texture sampling mechanism
of the GPU. Our local cache system has also enhanced the
coherent memory access of the first interaction of rays related
to neighbor image pixels and thus has improved performance
in that sense. We demonstrate the effectiveness of the proposed
technique by implementing it as part of a real-time ray tracing
rendering system. Our results show increases ranging from
84% to 250% in the frame rate of scenes comprised by several
reflecting objects.

Improving performance by gathering related rays together
in an object-driven cache memory is a powerful technique.
We believe that this idea will lead to further benefits in the
development of real-time ray tracing architectures for video
games and virtual reality.

ACKNOWLEDGMENT

Christian was sponsored by a CAPES fellowship. Es-
teban and Leandro received grants from FAPERJ (pro-
cesses E-26/102.290/2009 and E-26/112.468/2012). The au-
thors would like to thank NVIDIA for the donation GPUs

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

x 10
4

Frame Index

N
u

m
b

e
r

o
f
T
e

x
e

ls

100%

3% 2% 1% 1% 1% 1% 0% 0%

Outdated Texels

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
5

Frame Index

N
u

m
b

e
r

o
f
T
e

x
e

ls

100%

31%

4% 3% 2% 2% 1% 0% 0%

Outdated Texels

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

16

x 10
5

Frame Index

N
u

m
b

e
r

o
f
T
e

x
e

ls

100%

73%

19%

10%
5% 4% 3% 2% 1%

Outdated Texels

Fig. 7. The amount of outdated texels in the caching textures before each frame of a sequence of nine panning steps of 10/3 degrees each.

(a) 512× 512

(b) Conventional Ray Tracing

Fig. 9. A convex object rendered using 512× 512 caching textures (a), and
conventional ray tracing (b). For this kind of object, concurrent rays leaving
the object may have different targets.

and OptiX team for additional support. We thank T. L.
Sabino for additional support with the hybrid raster ray-tracing
renderer [20] used in this work.

REFERENCES

[1] T. Whitted, “An improved illumination model for shaded display,”
Commun. ACM, vol. 23, no. 6, pp. 343–349, 1980.

[2] A. S. Glassner, “Space subdivision for fast ray tracing,” IEEE Comput.
Graph. Appl., vol. 4, no. 10, pp. 15–24, 1984.

[3] T. Foley and J. Sugerman, “KD-tree acceleration structures for a GPU
raytracer,” in Proc. of ACM SIGGRAPH/EUROGRAPHICS Conference
on Graphics Hardware, 2005, pp. 15–22.

[4] D. C. Barboza and E. W. G. Clua, “GPU-based data structure for
a parallel ray tracing illumination algorithm,” in Proc. of Brazilian
Symposium on Games and Digital Entertainment, 2011, pp. 11–16.

[5] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker, “Ray tracing
animated scenes using coherent grid traversal,” in Proc. of ACM SIG-
GRAPH, 2006, pp. 485–493.

[6] F. van Reeth, P. Monsieurs, P. Bekaert, and E. Flerackers, “Ray tracing
optimization utilizing projective methods,” in Proc. of Comput. Graphics
International, 1996, pp. 47–53.

[7] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke,
D. McAllister, M. McGuire, K. Morley, A. Robison, and M. Stich,
“OptiX: a general purpose ray tracing engine,” in Proc. of ACM
SIGGRAPH, 2010, p. Article No. 66.

[8] M. Stich, H. Friedrich, and A. Dietrich, “Spatial splits in bounding
volume hierarchies,” in Proc. of High-Performance Graphics, 2009, pp.
7–13.

[9] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha,
“Fast BVH construction on GPUs,” in Proc. of Eurographics, 2009, pp.
375–384.

[10] M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan, “Rendering complex
scenes with memory-coherent ray tracing,” in Proc. of ACM SIGGRAPH,
1997, pp. 101–108.

[11] T. Aila and T. Karras, “Architecture considerations for tracing incoherent
rays,” in Proc. of the Conf. on High Performance Graphics, 2010, pp.
113–122.

[12] X. Yang, D. Xu, and L. Zhao, “Efficient data management for incoherent
ray tracing,” Appl. Soft. Comput., vol. 13, no. 1, pp. 1–8, 2013.

[13] J. F. Blinn and M. E. Newell, “Texture and reflection in computer
generated images,” Commun. ACM, vol. 19, no. 10, pp. 542–547, 1976.

[14] E. E. Catmull, “A subdivision algorithm for computer display of curved
surfaces.” Ph.D. dissertation, University of Utah, 1974.

[15] G. S. Miller and C. R. Hoffman, “Illumination and reflection maps:
simulated objects in simulated and real environments,” in Proc. of ACM
SIGGRAPH, 1984.

[16] N. Greene, “Environment mapping and other applications of world
projections,” IEEE Comput. Graph. Appl., vol. 6, no. 11, pp. 21–29,
1986.

[17] G. J. Ward, “The radiance lighting simulation and rendering system,” in
Proc. of ACM SIGGRAPH, 1994, pp. 459–472.

[18] H. W. Jensen, Realistic Image Synthesis Using Photon Mapping. A.
K. Peters, Ltd., 2001.

[19] M. Pharr and G. Humphreys, Physically Based Rendering: From Theory
to Implementation. Morgan Kaufmann, 2004.

[20] T. L. Sabino, P. Andrade, E. W. G. Clua, A. Montenegro, and P. Pagliosa,
“A hybrid GPU rasterized and ray traced rendering pipeline for real time
rendering of per pixel effects,” in Entertainment Computing – ICEC, ser.
LNCS. Springer, 2012, vol. 7522, pp. 292–305.

[21] M. Deering, S. Winner, B. Schediwy, C. Duffy, and N. Hunt, “The
triangle processor and normal vector shader: a VLSI system for high
performance graphics,” in Proc. of ACM SIGGRAPH, 1988, pp. 21–30.

[22] T. Saito and T. Takahashi, “Comprehensible rendering of 3-D shapes,”
in Proc. of ACM SIGGRAPH, 1990, pp. 197–206.

[23] F. Policarpo, M. M. Oliveira, and J. L. D. Comba, “Real-time relief
mapping on arbitrary polygonal surfaces,” in Proc. of ACM I3D, 2005,
pp. 155–162.

[24] F. Policarpo and M. M. Oliveira, “Relief mapping of non-height-field
surface details,” in Proc. of ACM I3D, 2006, pp. 52–62.

	Introduction
	Related Work
	Per Object Ray Caching
	Caching Cube Setup
	Caching the Reflection Information
	Using the Cached Values

	Results and Discussion
	Visual Quality and Performance
	Update Rate
	Limitations and Future Work

	Conclusion
	References

