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Fig. 1. Walls of a 9.84m × 7.13m room reconstructed using the proposed methodology. The figure shows the keyframes of the globally optimized map with
each point represented by a surfel.

Abstract—This work addresses the problem of aligning a set
of point clouds acquired by an RGB-D sensor. To achieve this,
we propose the fusion of RGB-D data with the orientation
provided by a MARG (Magnetic, Angular Rate and Gravity)
sensor, a combination that hasn’t been extensively explored in
the literature.

Our methodology uses MARG data both in the coarse pairwise
alignment between point clouds and in the loop closure detection
between key frames. In our experiments, we were able to align
the walls of a room with dimensions 9.84m × 7.13m. Our analysis
shows us that MARG data helps to improve the alignment quality.
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I. INTRODUCTION

The general public has recently witnessed the popularization
of low cost 3D scanning devices, with prices that range
from US$100.00, for an Xbox Kinect, to US$2,995.00 for
a NextEngine 3D scanner 1 – and, despite their low prices
when compared to industrial scanners, these devices operate
with relatively high accuracies, with errors that are typically
as low as 0.0127cm for the most expensive models.

The introduction of those fast and inexpensive 3D scanning
devices has brought about a wide range of applications in
several areas, from entertainment and sports that require
accurate range measurements, such as golf and archery to
digital 3D modeling. The entertainment industry has a growing
requirement for digitally modeled objects and characters, which,
in some circumstances, is achieved by acquiring 3D scans
of sculptures and even living actors. There are companies

1Market prices as of February, 2013.

specialized in digitalizing sculptures and then reproducing
faithful replicas of the original piece of art.

Another application that benefits from 3D scanning is the
monitoring and the following up of construction sites in order
to verify compliance with CAD models. Point clouds obtained
from those environments can be submitted to a cross validation
procedure, also known as built, that is capable to detect relevant
differences between the CAD project and what has been actually
built [1]. Conversely, this technique can be used, for instance,
to recover CAD models from historic buildings.

Inertial measurement units (IMU) – devices that are able to
measure attitude (angular orientation in space), are becoming
increasingly popular and inexpensive. Since the release of the
Wii console, in late 2006, inertial sensors became very popular
and have also been integrated to smart phones, MP3 players
and other console peripherals. Thus, thanks to the adoption of
these sensors in different commodity devices, great research
effort has been devoted towards improving their accuracy and
lowering their cost.

Therefore, one can expect these sensors to serve compli-
mentary purposes in a mapping framework, as the problem
of environment mapping can be broken down into grabbing
several local depth images and assembling them into a global
representation. The later requires an estimate of the pose of
the depth sensor at the time the depth images were acquired.

Our goal with this work was to develop and evaluate a
methodology for fusing data from a sensor that captures both
color and geometry (RGB-D sensor) and a variant of inertial
sensors called MARG (Magnetic, Angular Rate, and Gravity)
in order to produce a globally consistent environment map. The
approached problem is relevant to the computer vision field,



since it has impacts on several areas that perform 3D modelling
by using scans obtained from depth sensors. Amongst these
areas, one can mention the digital replication of sculptures and
art objects, the modelling of characters for games and movies,
and even the reconstruction of CAD models from old buildings.
It is also closely related to robotics, since its solution may allow
mobile robots to map, localize and navigate autonomously in
unknown environments.

Our approach extends a photoconsistent alignment method-
ology by introducing a coarse alignment stage that uses depth,
color and attitude data, increasing its robustness to color and
geometric ambiguities. We also propose a loop closure detector
that takes advantage of the attitude data available, with which
we can perform a globally consistent map optimization.

A. Related work

The problem of point cloud alignment impacts several fields,
being particularly relevant to computer vision and robotics. We
focus on one of its most common applications – environment
mapping – in which the objective is to capture a representation
of an environment using a sensor (for instance, a 3D scanner
or a sequence of images). It is important to note that not all
solutions to the environment mapping problem rely explicitly
on point clouds alignment, and they depend largely on the type
of available sensors.

Both in computer vision and in the mobile robotics fields,
several researchers have been studying the Simultaneous
Localization and Mapping (SLAM) problem. There are several
SLAM approaches in the literature, but it can be simply stated
as to incrementally build a map of the environment, while
obtaining the pose of the sensor with respect to the environment.
In mobile robotics, one important task is to build a map where
the robot can localize itself. Depending on the task, environment
maps can be either two or three dimensional. Simple structured
environments, such as a room or a single floor of a building
might be easily represented by a 2D map, while more complex
environments, such as mines and multistory buildings, may
require a 3D representation.

There are several possibilities sensors that may be used for
the mapping. Some researchers, for instance, have successfully
used color cameras to build maps of static scenes, due to their
typical large field of view and low cost. Classic vision-based
mapping systems seek to build a 3D map based on features
detected in the images captured from a camera moving in the
environment [2]. In particular, [3] performed real-time, drift
free, visual SLAM with high quality features, but limited to
a small amount of features, which would be practical only
for mapping small environments. Other methodologies with
lighter spatial restrictions have already been used to generate
a voxelized representation of 3D features for the purposes of
robot navigation, map visualization, etc. [4].

Some methodologies have mitigated the computational
problem by running the mapping process at lower rates than
the localization step [5], while the scalability issue has being
addressed by separating the environment into several keyframes,
which can be separately processed [6].

In general, vision-based mapping techniques provide good
localization estimates with a relatively low computational cost
when sparse features are used. Despite not being sophisticated
enough to provide detailed environment maps, this technique
can be already used for real time accurate localization in small
to mid scale environments. The advances made in this field
throughout the years also present great value to approaches
based on multiple sensors, such as the one we proposed in this
paper.

We address the environmental mapping problem as an
instance of the globally consistent registration problem. The
simplest version of this problem, in which only local con-
sistency is sought, has been approached in many different
ways in the literature: By using the Principal Component
Analysis to find the relative rotation between point clouds [7],
by discretizing the space and trying to match statistically similar
voxels [8], [9] or by matching only three control points [10],
to name a few. One of the most popular registration algorithm
is the Iterative Closest Points proposed by [11]. During each
iteration, this algorithm finds the correspondences between
the point clouds and computes the affine transformation that
minimizes the RMS error of the distances between pairs points
in the clouds. Several registration techniques only use geometric
information (i.e 2D or 3D point clouds), although recent
researches have sought to use color information in this process
due to the popularization of RGB-D sensors.

There are several recent methodologies developed for RGB-
D sensors (such as the Kinect and XTion). They are typically
focused on fusing color information with depth data to perform
pairwise alignment of frames that can be later optimized for
global consistency [12], [13], [14]. In spite of being driven
by the popularization of this sensor, registration algorithms
that use color information are not new, and significant results
have been published years before these sensors were released
[15]. However, it was only recently that, enabled by the
computational power provided by GPUs, real time RGB-D
mapping has been made possible. The KinectFusion [16], for
instance, accomplishes this goal but it is limited to small
volumes, which has been further improved by [17]. Their
methodology allows the mapping of scenes of arbitrary sizes
by generating a polygonal mesh of regions that fall outside the
central volume.

Although the use of visual information together with depth
data helps to increase the quality of 3D alignment, mapping
systems based solely on visual features have their kinematics
significantly constrained, since it can be very difficult to recover
from divergences which may occur when the sensor moves too
quickly. Furthermore, the number of correspondences between
consecutive frames tends to decrease as motion velocities
increase. Also, visual features may be lacking under certain
lighting conditions, which is a key issue for applications such
as prospection of uninhabited environments.

In order to overcome these problems, some methodologies
approach the mapping problem by combining inertial data with
3D information from laser scanners [18], [19]. Although those
scanners are able to acquire data from larger volumes than a
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Fig. 2. High-level overview of the proposed approach. The front-end is
divided into three pairwise registration levels, and their result is refined by a
SLAM optimizer.

RGB-D sensor, they cannot capture color from the environment,
and have a significantly higher cost.

To the best of our knowledge, the work presented by [20]
is the only one reported in the literature to integrate RGB-D
and inertial data to tackle the environmental mapping problem.
Inspired by the work [21], it introduces the data fusion with
the inertial pose estimated after a coarse alignment, which is
performed by matching visual features from different sensor
frames. However, [20] depends on the difference between
the estimated attitudes from both the IMU and the key point
matching process, discarding IMU data if the difference is
too large. This means that only closely redundant information
are fused, rendering the IMU data useless in many situations.
Moreover, they do not address the loop closure problem, which
we we have developed in ours.

II. METHODOLOGY

In this section, we describe our approach in detail. We
propose a registration technique that consists of a coarse-to-
fine alignment pipeline. This design has low computational
requirement, since transformations coarsely computed by initial
stages reduce the number of iterations that may be required to
refine to the optimal solutions. Figure 2 depicts a high level
view of our approach.

The first step in our methodology is the key points detection
and descriptor calculation for each point cloud captured. Then,
the whole pipeline is executed, whilst the alignment processes is
performed between the last two two point clouds in a pairwise
fashion. Each alignment level will be described in detail in the
following subsections.

It is assumed that the RGB-D and IMU sensors were
correctly calibrated in a previous step, and that their data
is synchronized.

A. Coarse Alignment

In the first alignment stage, our methodology computes an
initial estimate for the rigid transformation between the two

latest point clouds by using inertial, texture and geometric
information.

In order to accomplish the fusion of texture and geometric
information, we firstly detect a set of SURF keypoints on the
most recent image, and label them with BASE descriptors
[22]. This descriptor is computed by using both texture and
geometry information, which makes it more robust to variations
in lighting conditions and textureless scenes.

We then match the keypoints from the two last point clouds.
We developed a fast keypoint matching strategy that takes into
account the a priori knowledge of the displacement between
these point clouds. This prior knowledge is extracted from
estimation of the rotation between two point clouds given by
the MARG sensor, and the translation that can be roughly
estimated by finding any pair of corresponding keypoints.

Let k
mR be the MARG rotation w.r.t. the depth sensor

(obtained from an extrinsic calibration step), and w
mMt be

the MARG attitude w.r.t. a world fixed frame when the t-
th point cloud was captured. If the MARG sensor was not
susceptible to noise and interference, the attitude of this point
cloud w.r.t. the (t− 1)-th point cloud would be given by

kt−1

kt
K = (wmMt−1

k
mR

−1
)−1 w

mMt
k
mR

−1
. (1)

Here, m represents the MARG frame, w the fixed world
frame and k the depth sensor frame. In practice, Equation
1 doesn’t yield an exact attitude due to problems such as
noise from the MARG sensor, small extrinsic calibration
errors and the sync variations between MARG and RGB-D
sensor. Furthermore, it only accounts for rotation, leaving the
translation unknown. We tackle these issues by combining
the estimated attitude with a maximum sensor motion speed
assumption. Given a keypoint kt−1k on the (t− 1)-th frame,
its corresponding match on frame t is likely to lie within a
spherical shell defined by (

kt−1

kt
K)−1 kt−1k+rvmaxdt, where r

is a unit vector, vmax is the maximum motion velocity assumed,
and dt is the elapsed time separating the acquisition of those
frames.

Considering the maximum velocity assumption, we select
a subset composed of the N most prominent keypoints from
the (t− 1)-th frame (keypoints are compared by their response
to the SURF detector). Then, for each keypoint, we search
for correspondences on the t-th image. To compute the set of
matching candidates from the t-th frame, we perform a radial
search for key points around a center given by (

kt−1

kt
K)−1 kt−1k

and radius of length vmaxdt. Each candidate in this set has an
associated vector t, which represents the translation between
the two frames.

We proceed by comparing all combinations between an
arbitrary kt−1ki and its corresponding results from the radial
search. For each pairing, we have a different t that, together
with the attitude guess from the MARG sensor, provide an
estimate of the pose of point cloud t w.r.t. point cloud t− 1.
Then, in order to refine this estimate, for all remaining key
points kt−1kl, we perform a nearest neighbor search in the t-th
frame around the point given by (

kt−1

kt
K)−1 kt−1kl + t – we



have found that three neighbors is typically a good compromise
between computational performance and alignment quality.
The neighbor that best matches the current keypoint is then
defined as its pair. Once we have a correspondence for every
keypoint subsampled from the (t− 1)-th frame, we calculate
the Hamming distance between the binary descriptors of the
matched key points. The distances are used to calculate a score
of the current pairing configuration. We repeat this process for
all possible kt−1ki, and chose the pairing configuration with
the smallest score. Algorithm 1 depicts the whole procedure.

Since the quality of a pairing configuration is proportional to
the number of matches found (a false-positive is less likely to
have a large number of corresponding key points) and inversely
proportional to the Hamming distances of their descriptors, we
defined our score to be the average of the Hamming distances
divided by the number of matched key points.

Algorithm 1 Key point Matching
Require:

1: Keypoint sets kt−1k = {kt−1k1, . . . ,
kt−1 kn} and ktk =

{ktk1, . . . ,
kt km} with their corresponding descriptors.

2: The attitude of the depth sensor at the instant t w.r.t instant
t− 1, kt−1

kt
K.

1: kt−1 k̂← SUBSAMPLE(kt−1k)
2: bestScore ←∞
3: for all kt−1 k̂l ∈kt−1 k̂ do
4: kt k̂← RADIUSSEARCH(ktk, (kt−1

kt
K)−1 kt−1 k̂l, V·dt)

5: for all kt k̂l ∈kt k̂ do
6: score ← HAMMING(DESC(kt−1 k̂l), DESC(kt k̂l))
7: matches ← {(kt−1 k̂l,

kt k̂l)}
8: t←kt k̂l − (

kt−1

kt
K)−1 kt−1 k̂l

9: for all kt−1 k̂m ∈ kt−1 k̂ | m 6= l do
10: c← (

kt−1

kt
K)−1 kt−1 k̂m + t

11: neighbors ←KNN(ktk, c, HARD_LIMIT)
12: kt k̂m ← BESTNEIGHBOR(neighbors)
13: hamming← HAMMING(DESC(kt−1 k̂m),

DESC(kt k̂m))
14: if ‖c−kt k̂m‖ ≤ THRESHOLD then
15: score ← score + hamming
16: matches ← matches ∪ {(kt−1 k̂m,

kt k̂m)}
17: score ← score/SIZE(matches)2

18: if bestScore > score then
19: bestScore ← score
20:

kt−1

kt
P← POSEFROMPCA(matches)

21: return (
kt−1

kt
P, bestScore)

To keep the computational cost of search operations low,
the set of keypoints from point cloud t is stored in a KD-tree,
allowing for quick range and nearest neighbor searches.

Differently from brute force techniques, we designed our
matcher to apply a transformation to the keypoint around
which a neighborhood search will be performed such that,
after the transformation, the keypoint will lie closer to its

correspondence. Also, the distance threshold used after the
KNN search can be set to tight values in order to preserve
euclidean constraints, thus eliminating the necessity for an
explicit outlier removal step.

B. Photo Consistent Alignment

The acquired frames often contain a substantial amount of
color information, which can be densely used to further improve
the coarse alignment, correcting for small displacements on
the pair-wise registration.

In our methodology, we refine the coarse alignment by
using the approach described by [13]. Given two point clouds
aCa,

b Cb where each point contains its color, and an initial
guess for the pose b

aP̂ of a with respect to b, this approach
searches for the pose b

aP that leads to the smallest difference
between the image from bCb and the image obtained after
applying the perspective projection to the points b

aP
aCa.

In our pipeline, this alignment stage outputs a refined pose
matrix, kt−1

kt
P, which is accumulated into the global sensor pose

k1

kt
P by the product k1

kt
P =k1

kt−1
P

kt−1

kt
P. The accumulated

sensor pose is then passed on to the back-end processing stage.

C. Sampling Keyframes and Graph Optimization

The major purpose of our back-end is to select a subset of
the captured point clouds, which we refer to as keyframes, and
build a globally consistent representation of the environment
with them. This is necessary because pairwise registration of
point clouds tends to accumulate errors that greatly worsens
the reconstruction result as the mapped region increases.

To overcome this issue, our back-end is capable of detecting
overlapping regions between keyframes, especially when the
sensor returns to a previously mapped region, which may be
very difficult to detect since the uncertainty due to the accumu-
lated error can make the search space too large when matching
temporally distant keyframes. Additionally, our back-end tries
to prevent regular point clouds from diverging indiscriminately
from its closest key frame, which is accomplished by aligning
each point cloud to the last detected key frame. The two
algorithms that accomplish this are described in detail below.

1) Key frame Detection: The criteria for determining
whether a point cloud can be considered a key frame or not is
crucial for any registration system. On the one hand, a large
amount of keyframes may cluttering the graph to be optimized,
leading to higher running times and increased accumulated
error after mapping the whole environment. On the other hand,
a small number of keyframes conduce to a smaller intersection
region between them, which turns the alignment into a more
difficult task, which increases the chances for registration
divergence.

With that in mind, our key frame detection policy takes
into account the area of the region of intersection between
a candidate point cloud and the rest of the keyframes. This
metric allows us to address the divergence issue, since a good
registration depends on the size of the overlapping region,
but also gives control over the amount of detected keyframes,
which can be reduced by decreasing the intersection threshold.



2) Alignment to Closest Key Frame: The alignment error
between a regular point cloud and its closest key frame is
typically small enough that both the estimated translation and
rotation can be used as an initial guess for the frame-to-key-
frame alignment, which is accomplished by a slightly modified
version of the key point matcher algorithm previously described.
Given a pose estimate of the t-th frame with respect to the
key frame f , f

kt
P̂ =k1

f P−1 k1

kt
P, the radial search of the key

point matcher is performed around f
kt
P̂−1 fk, fk ∈ f .

D. Optimizing Environment Graph and Closing Loops

In the optimization step, we associate a hyper graph to the
key frame structure, where each key frame is represented by
a vertex, and each key point correspondence between frames
becomes an edge between their corresponding vertices.

An important aspect of a global alignment procedure is the
detection of loop closures between two candidate keyframes.
Our approach uses the attitude reported by the MARG sensor,
since it does not suffer from significant drift under the assumed
operational conditions. Therefore, our methodology reduces the
loop detection problem to finding a translation that connects two
candidate keyframes, while being able to reject candidates with
a large angular displacement. This is done with an algorithm
that follows the idea behind our key point matcher, that is,
the transform between keyframes is estimated from a set of
corresponding key points.

The keypoint correspondences are computed using another
modified version of the keypoint matcher employed in the
coarse alignment. Given two keyframes i and j, our matcher is
divided into two steps. Firstly, all key points from a subset ki k̂
are tested against all keypoints from a subset kj k̂. These subsets
are obtained by dividing both keyframes i and j into subregions
and extracting only a limited amount of keypoints from each
subregion. During each single test, we estimate the translation
between i and j by using the chosen keypoints coordinates and
the relative MARG attitude between these keyframes. Similar
to the coarse keypoint matcher, this transformation is used to
match all remaining key points, and a score is computed for
the current transform using the same metric used before. The
estimated transform is stored in a priority queue in which the
weight is defined by the alignment score. Finally, in the second
step, all transforms in the priority queue with a score below an
arbitrary threshold are submitted to a matching strategy where
all keypoints from both keyframes are taken into account,
instead of the subsampled sets.

Since the hyper graph is locally consistent, the edges between
neighboring vertices can be those provided by the pairwise
alignment stage. As far as the non-neighbor vertices are
concerned, we use orientation data from the MARG sensor to
discard matching candidates that fall below a given threshold
of the angle between their view direction vector. For instance,
a loop cannot be closed between two keyframes if the first one
was captured with the sensor pointing towards the floor and,
the second, pointed to the ceiling.

III. EXPERIMENTS

Our experimental analysis seeks to compute the fidelity of a
map generated by the proposed methodology. Our ground truth
was captured by a Zebedee [19] device. We are also concerned
with how each component of our system contributes to the
final reconstruction.

In our experiments, we captured the walls of a cluttered
rectangular room with dimensions 9.84m × 7.13m with an
XTion PRO LIVE sensor onto which a 3DM-GX1 MARG
sensor, as illustrated by Figure 3. This room has been chosen
due to the fact that it contains regions with rich geometric
and color features as well as some regions that lack them, as
shown in Figure 4. This has enabled us to test the robustness
of the proposed approach under different conditions.

MARG

Depth Sensor

Fig. 3. Devices used during our experiments.

A. Quality of the globally optimized registration

In order to evaluate the accuracy of our methodology, we
handpicked sixteen salient points from both the reconstructed
map and the ground truth, and calculated the distances between
all combinations of pairs in each map. The points were
chosen so as to create a thorough distribution of points in
the map. Figure 5 illustrates the distribution of points across
the generated map.

We computed our error by subtracting the distance between
two points in our map from the distance between corresponding
points in the ground truth. Figure 6-a shows this error, and
the normalized error (which is given by the error divided by
the distance in the ground truth). Although the error behaves
randomly, it tends to increase for larger distances. This insight
can be useful to help us to determine the accuracy of our map as
a random function of the distance between points. As depicted
in Figure 6-b, which depicts the error as a percentage of the
distance, we have a random variable that seems to be bound
by a maximum value. This suggests that the normalized error
is an independent random variable, which can be statistically
shown by fitting a probability distribution function to this data
with a quantile-quantile plot.

The quantile-quantile plot allows us to infer the probability
distribution of a sample if the plot shows a linear data
distribution. If the plot is well approximated by a linear function,
then the sample can be approximated by the known distribution
used in the plot. Due to the shape of the histogram given by the
normalized errors, we decided to perform a quantile-quantile
plot with the standard normal distribution, shown by Figure
7. As seen in the figure, a linear function can adjust well to
most of he samples in our sample, with a few outliers in both
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Fig. 4. Different texturing and geometric conditions of the experimental setup.

Fig. 5. Geometric features selected for comparison purposes. We calculated
the distances between all pairs of geometric features, and compared the results
to the distances estimated from the ground truth reconstruction.
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Fig. 6. Accuracy of the global reconstruction method with respect to the
ground truth provided by a Zebedee sensor. The graphic on the right represents
the error as a percentage of the distance between the compared points.

of its ends. Following this hint, we performed a Shapiro-Wilk
test with significance level α = 0.01, which didn’t discard our
approximation of the error as a normally distributed random
variable. Therefore, we can say that the normalized error of
the reconstruction provided by our methodology, is given by
ê = N (µ : 1.4310, σ : 1.1513) percent.

B. Back-end Robustness

We test the robustness of our loop closure computational
block by running it on two distinct pairwise alignment
methodologies. We expected that the global optimizer would
receive different inputs from those alignments (a requirement
that was also assessed in this phase), but would produce similar
results for each of them. The pairwise alignment methodologies
employed in this stage were small modifications to our Front-
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Fig. 7. Quantile-quantile plot of normalized error versus standard normal
distribution.

end block:
(A) No photo consistent alignment The output pose from

our coarse alignment is directly forwarded to the back-end
block (this strategy does not perform dense registration).

(B) No MARG-based key point matcher The coarse align-
ment is not performed with input from our MARG; instead,
key points are matched with a regular brute force matcher.

As it can be seen in Figure 8, pairwise alignments (A)
and (B) yield different results from those obtained from the
proposed methodology. We conclude that we can expect to
have different alignments between adjacent keyframes even
after global optimization, since our back-end performs a regular
pairwise feature matcher between close point clouds, and the
error between those can be too large on the results provided
by strategies (A) and (B).

After performing global optimization, strategies (A) and (B)
yielded maps with loop closure errors that could have been
spotted with a visual inspection, as shows Figures 10. In terms
of numbers, the normalized error from strategy (A) has a mean
2.62% and standard deviation 1.66 – both values are larger
than the corresponding values obtained from our methodology.
As for strategy (B), the data dispersion is significantly larger,
with a mean of 0.14% and standard deviation 27.32. These
values are shown by Figure 9.

Since the match between loop closing frames doesn’t depend
on the pre-alignment stage, we would expect this region of the
global map to be consistent with the result obtained from our
complete method, presented in the previous subsection, unless
the data provided to the global alignment stage was different
for both strategies (A) and (B). There is one way this could
have happened: by providing the global alignment stage with
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a different set of key frames.
As can be recalled from our methodology, the key frame

detection is a byproduct of the pairwise alignment stage.
Therefore, different pairwise alignment strategies might yield
different sets of keyframes. This was the case for both
strategies (A) and (B). Wether or not this was the cause of the
misalignment issues still remains to be proven.

To verify the hypothesis that the poorly closed loops by
strategies (A) and (B) is a result of a different set of keyframes
given to the global optimization stage, we manually changed
the keyframes set of the results computed by these strategies to

(a) (b)

Fig. 10. Comparison of loop closing region as obtained from all strategies.
A discontinuity can be spotted in the cabinet on the right, in (a); the same
occurs in (b), with several other discontinuities that makes it the worst map
estimated.

(a) (b)

Fig. 11. Map errors from pairwise alignment by strategies (A) and (B), on
subfigures (a) and (b), respectively. In this experiment, the key frame ids were
provided by our methodology.

be the same as that generated by our full methodology. Should
our original hypothesis be correct, the expected result would
be a map whose loop is consistent with the one generated
by our methodology, with only differences between adjacent
keyframes aligned during pairwise registration.

Strategy (A) yielded a global map visually consistent
with our methodology after we used the set of keyframes
detected by our approach, despite local errors introduced by
its pairwise registration (also shown in the same figure). After
this change, the normalized error was changed to a mean of
1.38% and standard deviation 1.64. However, it still contained
misalignments introduced by its pairwise registration stage,
which can be seen on 11-a.

In spite of displaying a good loop closure, strategy (B)
presented several discontinuities as illustrated by Figure 11-
b. These discontinuities appear between keyframes that were
registered by a pairwise method, which suggests that their bonds
were too weak and, therefore, were disregarded by the global
optimization process. A close analysis revealed that no reliable
matches were found for the 8th key frame . That is, adjacent
keyframes were matched by a very small number of key points
– all of them fell below our threshold of 20 key points for an
acceptable match. In fact, these matches had visually protruding
discontinuities. This happened because the global optimization
takes into account the pairwise registration transform in order
to align adjacent keyframes. Since the alignment provided
by strategy (B) had a significant accumulated error at this
point, the key point matching algorithm had to deal with a
larger uncertainty than it was supposed to, resulting in spurious
alignments with its adjacent frames.

Although this explains how different results could be
obtained after global optimization, it still leaves questions as
to why such results emerge. Since such differences are being
observed in a region of the map where loop closure is expected
to take place, our search for an explanation led us to the
relaxed coarse transform algorithm, responsible for detecting
loop closures and finding their respective transformations.

In a frame-by-frame analysis, we found that in several
instances the ambiguity between candidates of loop closing
keyframes was the cause of their incorrect alignment. As Figure
12 shows, the edge of the leftmost cabinet was vertically
constant, allowing for key point matches that had a significant



Fig. 12. Spurious key point match computed by strategy (B)

vertical error. In some other cases, similarities between the
two adjacent cabinets led to a condition where several local
minima could be found in which key points on the top
cabinet were matched to the one in the bottom, but in
these circumstances, the intersection between the frames after
alignment fell below our acceptable threshold, which eliminated
these bogus transforms.

C. Conditions not supported by our methodology

We know that regions with a significantly varying magnetic
field would render our methodology useless, since the keypoints
matching stage would be likely to find bogus correspondences,
which would ultimately lead to either misalignments or even
to complete divergence in pairwise registration.

Another problematic condition we have observed is that
points that lie outside the depth sensor operational range
(typically up to 3.5m in current commercially available RGB-D
sensors) are subject to a great deal of noise and uncertainty.
Such points not only introduce a large uncertainty in the coarse
alignment stage, but also render this stage unfeasible if we
employ a keypoint descriptor that uses normal information at
each point. This happens because by introducing depth error
the normals estimated at each point may vary largely.

Our methodology has been developed to reconstruct static
environments or objects. This means that the subject being
reconstructed must remain still when the point clouds are being
acquired.

IV. CONCLUSIONS

We have presented a methodology to create globally con-
sistent maps of static indoor environments using depth, color
and inertial information. Although several works have been
published aiming at the problem of environment mapping, few
have tried to fuse inertial information with RGB-D data for
registration purposes. With the release of many devices that
incorporate inertial sensors, we expect their prices to drop
quickly, making it feasible for a large amount of applications
to benefit from them.

Our key point matching algorithm seeks the best correspon-
dences at the same time it preserves Euclidean constraints. We
have also used inertial data in order to discard false positives
in the loop closure detection procedure.

We conducted experiments that have both validated the
proposed method experimentally, and assessed the robustness
of the global optimization module. We specifically studied

its response to poor pairwise alignment and to ambiguities in
the environment. We have also seen that, when disregarding
the input from the MARG sensors, the pairwise alignment
ultimately led to a map with several inconsistencies after global
optimization, especially in regions with few color features.
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