
Combining Orientation Tensors for
Human Action Recognition
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Abstract—This paper presents a new tensor motion descriptor
based on histogram of oriented gradients. We model the temporal
evolution of gradient distribution with orientation tensors in
equally sized blocks throughout the video sequence. Subsequently,
these blocks are concatenated to create the final descriptor.
Using a SVM classifier, even without any bag-of-feature based
approach, our method achieves recognition rates greater than
those found by other HOG techniques on KTH dataset and a
competitive recognition rate for UCF11 and Hollywood2 datasets.

Keywords-Histogram of gradients; Orientation tensor; Motion
description; Human action recognition.

I. INTRODUCTION

Human action recognition is a research field with appli-
cation in several areas such as video indexing, surveillance,
human-computer interfaces, among others. Several works in
the literature tackle this problem by extracting a set of descrip-
tors and comparing them throughout a similarity measure. In
the past years, several descriptors have been proposed. One
of the features widely used to create descriptors for actions
is the histogram of oriented gradients (HOG) [1]. In general,
HOG is used as motion descriptor combined to other features
or extracted around interest points [2].

The use of tensors is gaining space in image classification
[3] and in video classification [4], [5]. An interesting work
about tensor descriptors is presented in [6]. Perez et al [6]
proposed to represent histogram of oriented gradients in ori-
entation tensors in order to create a global motion descriptor.
The drawback of this method is that the aggregation of several
tensors could lead to an isotropic tensor, which does not
have any direction information. Thus, we propose to improve
this tensor descriptor. We argue that we could extract more
information with a new tensor aggregation, which takes into
account the individual motion information of each tensor.

Contributions: The main contribution of this work is to
present a new motion descriptor based on orientation tensors.
We model the temporal evolution of 3D gradient distribution
with orientation tensors in equally sized blocks throughout the
video sequence. Subsequently, these blocks are concatenated
to create the final descriptor. Using a SVM classifier, even
without any vocabulary computation, our method achieved
recognition rates greater than those found by other HOG

techniques on KTH dataset and a competitive recognition rate
for UCF11 and Hollywood2 datasets.

A. Related work

Several descriptors used for human action classification
consist in the combination of features. Laptev et al [7] pro-
posed the combination of HOG with histogram of optic flow
(HOF) to characterize local motion and appearance. These
two features are computed and accumulated in space-time
neighborhoods of detected interest points. Similarly to the
SIFT descriptor [8], normalized histograms are concatenated
to HOG and HOF vectors.

Two-dimensional features derived from histograms of ori-
ented gradients have been shown to be effective for detecting
human actions in videos. However, according to the viewing
angle, local features may be often occluded. One alternative
was proposed by Kläser et al [9] to avoid the problems
presented by HOG2D. The authors presented the HOG3D, a
descriptor based on histograms of 3D gradient orientations and
can be seen as an extension of SIFT descriptor [8]. Gradients
are computed using an integral video representation in spatio-
temporal interest points detected by the Harris operator [10].

Recently, Wang at al [2] extended this idea of combination
by modeling descriptors along dense trajectories. The time
evolution of trajectories, HOG [1], HOF [1] and MBH (motion
boundary histogram) [1], is modeled using a space time grid
along trajectories.

Umakanthan et al [11] evaluated four popular descriptors
(HOG, HOF, HOG/HOF, HOG3D) extracted around spatio-
temporal interest points by Harris3D detector. They showed
that the combination HOG/HOF performed better in all tested
datasets.

In these four works, the signature for the whole video
is computed using the popular bag-of-visual-feature method
[12] and the descriptors are extracted in interest point neigh-
borhood. As this method achieve the best results and is
becoming very popular, there are few recent works that studies
descriptors without using this technique.

Perez et al [6] proposed to combine HOG3D features
into orientation tensors in order to create a global motion
descriptor. It is important to note that histograms of oriented
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gradients are similar to SIFT, but they are not computed only
in salient points.

Chen et al [13] extracted a saliency map of each frame
and accumulated them to form an Accumulative Edge Image
(AEI). Subsequently, grid-based HOG is calculated on AEI to
form a feature vector.

A global descriptor based on the histogram of oriented
gradients is presented by [14], using the Weizmann database.
The descriptor is computed using several time scales. From
each scale, the gradient for each pixel is computed, resulting
in a HOG for each video. Laptev et al [15] improved this
descriptor using multiple temporal scales as the original and
using multiple temporal and spatial scales.

The rest of the paper is organized as follows. In Section II,
we present the fundamentals needed to a better understanding
of our method. In Section III, we provide a detailed description
of our approach. Finally, in Section IV, we carry out experi-
ments on three benchmark action datasets.

II. FUNDAMENTALS

A. Orientation Tensor

An orientation tensor is a representation of local orientation
which takes the form of an m×m real symmetric matrix for
m-dimensional signals. Given a vector ~v with m elements, it
can be represented by the tensor T = ~v~vT . Note that the well
known structure tensor is a specific case of orientation tensor
[16].

The geometric interpretation of this tensor is very attractive
to motion description. Given a tensor of third order (a tensor
in R3), with eigenvalues λ1, λ2 and λ3, it can be interpreted
as following:

• λ1 � λ2 � λ3 corresponds to an approximately linear
tensor, with the spear component being dominant.

• λ1 ≈ λ2 � λ3 corresponds to an approximately planar
tensor, with the plate component being dominant.

• λ1 ≈ λ2 ≈ λ3 corresponds to an approximately isotropic
tensor, with the ball component being dominant, and no
main orientation present.

Thus, for motion description, we are interested in
anisotropic tensors, which has direction information. This
interpretation can be extended to m dimensions.

B. Histogram of gradients

The partial derivatives, or gradient, obtained by the filtering
of the j-th video frame at pixel p is defined as the vector:

~gt(p) = [dx dy dt] =

[
∂Ij(p)

∂x

∂Ij(p)

∂y

∂Ij(p)

∂t

]
,

or, equivalently, in spherical coordinates ~st(p) = [ρp θp ψp]
with θp ∈ [0, π], ψp ∈ [0, 2π) and ρp = ||~gt(p)||. This
gradient indicates brightness variation that might be the result
of local motion.

The gradient of all n pixels of the frame Ij can be compactly
represented by a tridimensional histogram of gradients ~hj =
{hk,l}, k ∈ [1, nbθ] and l ∈ [1, nbψ], where nbθ and nbψ
are the number of cells for θ and ψ coordinates, respectively.

There are several methods for computing the HOG3D and
we chose, for simplicity, a uniform subdivision of the angle
intervals to populate the nbθ · nbψ bins:

hk,l =
∑
p

ρp · wp,

where {p ∈ Ij | k = 1+
⌊
nbθ·θp
π

⌋
, l = 1+

⌊
nbψ·ψp

2π

⌋
} are all

points whose angles map to k and l bins, and wp is a per pixel
weighting factor, which can be uniform or Gaussian as in [8].
The whole gradient field is then represented by a vector ~hj
with nbθ · nbψ elements.

Different from [6], we do not need any extra parameters to
reduce inter-frame brightness unbalance.

III. PROPOSED METHOD

A. Orientation tensor: coding HOG3D coefficients

Given the histogram ~hf of frame f , the tensor of the frame
can be defined as:

Tf = ~hf~h
T
f ,

and carries the information of the gradient distribution of the
frame f . Individually, this tensor has the same information of
~hf , but several tensors can be combined to find component
covariances.

The temporal covariance of the gradient distribution can be
given by T =

∑b
a Tf using all video frames or an interval

of interest. By normalizing T with a L2 norm, we are able
to compare different video clips or snapshots regardless their
length or resolution.

Since T is a symmetric matrix of m-order, it can be stored
with m(m+1)

2 elements, where m = nbθ · nbψ .
This series of orientation tensor can diverge, thus we obtain

an isotropic tensor that does not hold useful motion informa-
tion. However, if the series converge as an anisotropic tensor,
it carries meaningful average motion information of the frame
sequence. The conditions of divergence and convergence need
further studies.

B. Tensor descriptor: analysis in blocks

When the gradient histogram is computed using the whole
frame, the cells are populated with vectors regardless their
position in the frame. This implies in a loss of the correlation
between the gradient vectors and their neighbors. As observed
by [8], the subdivision of the video into cubes of frames
enhances the recognition rate, using a Gaussian weight for
wp.

Suppose the video frame f is uniformly subdivided in ~x
and ~y directions by a grid with nx and ny non-overlapping
blocks. Each block can be viewed as a distinct video varying
in time. The smaller frames result in gradient histograms ~hi,jj ,
i ∈ [1, nx] and j ∈ [1, ny], with better position correlation. The
tensor for each block bi,j is then computed as the addition of
all block tensors throughout the video:

Ti,j =
∑
f

~hi,jf
~hi,jf

T
,



Fig. 1. Framework of the proposed combination of orientation tensors. This is an example of a tensor descriptor obtained from a 4x4 grid and each tensor
block carries the information of the gradient distribution. The steps of our approach are: (a) Extract the 3D histogram of gradients for each subdivision of
each video frame; (b) Code HOG3D into orientation tensors for each block; (c) Accumulate the frame tensor from each block in order to model the temporal
evolution of gradients; and (d) Concatenate each tensor block.

which captures the uncertainty of the direction of the m-
dimensional vectors ~hi,jf for each block.

Perez et al [6] lose this local covariance information when
they aggregated all tensors in a unique series of orientation
tensors. We argue that we could extract more motion informa-
tion by analyzing each tensor block individually.

Thus, the final tensor descriptor is obtained by combining all
blocks of the video. We propose to concatenate the individual
block tensors, to form the final descriptor for the input video:

T = {Ti,j}1≤i≤nx,1≤j≤ny

where the size of the final descriptor depends on the number
of bins and the number of subdivisions.

Figure 1 shows an example of a tensor descriptor obtained
from a 4x4 grid. To a better understanding of the method, the
tensors are represented as an ellipsis (that is a second-order
tensor). In our case, all tensors are m-order, where m is the
number of bins of the histogram (nbθ · nbψ).

We could also improve the descriptor by accumulating the
tensor obtained with the video frame flipped horizontally. The
video frame is flipped and the rest of the framework remains
the same. Then, this new information is simply added to the
original tensor of the block. This flipped version enforces
horizontal gradient symmetries that occur on the video, even
those between multiple frames.

IV. EXPERIMENTAL RESULTS

In our experiments, we used three benchmark video
datasets: KTH [17], UCF11 [18] and Hollywood2 [19]
datasets. We evaluated our descriptor in a classification task
and followed the same evaluation protocol proposed by the
authors of the datasets with a SVM classifier. For each dataset,
we vary the number of subdivisions of the video (4x4, 8x8) in
order to have a more local motion information. We also vary
the number of bins of the HOG3D (2x4, 3x6, 4x8, 8x16) to
have more orientations of the motion.

A. KTH Dataset

The KTH action dataset [17] consists of 6 human action
classes. Each action class is performed several times by 25
subjects. The sequences were recorded in four different sce-
narios: outdoors, outdoors with scale variation, outdoors with
different clothes and indoors. The background is homogeneous
and static in most sequences. In total, the database consists of
2391 video samples (Figure 2).

Boxing Hand Clapping Hand Waving

Jogging Running Walking

Fig. 2. Examples of videos from KTH dataset [17].

The performance of our method on the KTH dataset is
reported in Table I. The confusion matrix for the best result
is presented in Table II.

TABLE I
RECOGNITION RATE FOR KTH DATASET FOR SEVERAL PARAMETER SETS.

Parameters Recognition Rate (%)
Grid 4x4 HOG 2x4 74.2
Grid 4x4 HOG 3x6 83.2
Grid 4x4 HOG 4x8 89.7

Grid 4x4 HOG 8x16 92.5
Grid 8x8 HOG 2x4 79.0
Grid 8x8 HOG 3x6 87.3
Grid 8x8 HOG 4x8 88.9

Perez et al [6] reported that the best result is 92.0% achieved
with an 8x8 grid and a HOG 8x16. We can see that our new
combination slightly improved the recognition rate, however,
the mean difference of classification of each class for the best
result is 0.48 ± 3.63, with 99.0% of confidence, that is, it is



TABLE II
CONFUSION MATRIX FOR KTH DATASET WITH A SUBDIVISION OF 4×4

AND A HOG WITH nbθ=8 AND nbψ=16.

Box HClap
HW

av
Jo

g
Run W

alk

Box 95.8 0.0 0.0 0.0 0.0 4.2

HClap
2.8 97.2 0.0 0.0 0.0 0.0

HW
av

0.7 6.9 92.4 0.0 0.0 0.0

Jo
g

0.0 0.0 0.0 93.1 4.9 2.1

Run 0.0 0.0 0.0 18.1 81.9 0.0

W
alk

0.0 0.0 0.0 5.6 0.0 94.4

not statistically significant. Indeed, the KTH dataset has only
simple actions and this new combination does not extract much
more information. This could happen because several tensors
per block became isotropic, as they model parts of the video
that do not contain significant motion. Nevertheless, the best
result is achieved using less subdivisions.

B. UCF11 Dataset

The UCF11 dataset [18] (also known as UCF YouTube)
consists in 11 action categories extracted from Youtube video
sequences. The sequences can vary regard camera motion,
viewpoint, background, illumination and object appearance,
pose and scale. The dataset contains a total of 1168 sequences
(Figure 3).

Shooting Biking Diving

Golf Riding Juggle

Swing Tennis Jumping

Spiking WalkDog

Fig. 3. Examples of videos from UCF11 dataset [18].

The performance of our method on the UCF11 dataset is
reported in Table III. The classification per action class is
presented in Table IV.

The results with this dataset are not reported in [6]. Thus,
we evaluated the descriptor using the same parameters as ours.
Table V presents recognition rates for several subdivisions for
the descriptor proposed by [6]. We chose to use only HOG3D
with 8x16 bins as they achieved the best results in [6]. The best

recognition rate was 68.9% using a grid 32x32 and a HOG3D
of 8x16 bins. In that way, we show that our descriptor is more
robust than the descriptor previously described in [6].

The mean difference of classification of each class for the
best result is 6.5 ± 4.9, with 99.0% of confidence. So, we
can conclude that our descriptor improved significantly the
recognition rate.

TABLE III
RECOGNITION RATE FOR UCF11 DATASET FOR SEVERAL PARAMETER

SETS.

Parameters Recognition Rate (%)
Grid 4x4 HOG 2x4 57.3
Grid 4x4 HOG 3x6 63.9
Grid 4x4 HOG 4x8 70.1

Grid 4x4 HOG 8x16 75.4
Grid 8x8 HOG 2x4 58.9
Grid 8x8 HOG 3x6 64.7
Grid 8x8 HOG 4x8 71.0

TABLE IV
AVERAGE PRECISION (AP) FOR EACH CLASS OF UCF11 DATASET WITH A

SUBDIVISION OF 4×4 AND A HOG WITH nbθ=8 AND nbψ=16.

Action AP(%)
Biking 77.6
Diving 97.0
Golf 92.5

Juggle 50.0
Jumping 73.3
Riding 86.1

Shooting 61.2
Spiking 83.0
Swing 80.1
Tennis 68.9

WalkDog 59.8
Mean 75.4%

TABLE V
RECOGNITION RATES OF UCF11 DATASET FOR SEVERAL PARAMETER

SETS FOR THE DESCRIPTOR PROPOSED BY [6].

Parameters Recognition Rate (%)
Grid 4x4 HOG 8x16 65.0
Grid 8x8 HOG 8x16 67.5

Grid 16x16 HOG 8x16 68.4
Grid 32x32 HOG 8x16 68.9

C. Hollywood2 Dataset

The Hollywood2 dataset [19] consists of a collection of
video clips extracted from 69 movies and categorized in 12
classes of human actions. In total, there are 1707 action
samples divided into a training set (823 sequences) and a
test set (884 sequences), where training and test samples are
obtained from different movies (Figure 4).

The performance of our method on the Hollywood2 dataset
is reported in Table VI. The average precision is shown in
Table VII.

The best result reported by [6] is 34.0% achieved with
a 4x4 grid and a HOG 8x16. It is interesting to note that



with the same parameters we could improve the result in 6%,
which demonstrates that our descriptor carries more useful
information than the descriptor previously proposed by [6].

The mean difference of classification of each class is 4.9 ±
4.8, with 99.0% of confidence. So, we can conclude that our
descriptor improved significantly the recognition rate.

AnswerPhone DriveCar Eat

FightPerson GetOutCat HandShake

HugPerson Kiss Run

SitDown SitUp StandUp

Fig. 4. Examples of videos from Hollywood2 dataset [19].

TABLE VI
RECOGNITION RATE FOR HOLLYWOOD2 DATASET FOR SEVERAL

PARAMETER SETS.

Parameters Recognition Rate (%)
Grid 4x4 HOG 2x4 23.4
Grid 4x4 HOG 3x6 31.2
Grid 4x4 HOG 4x8 34.5

Grid 4x4 HOG 8x16 40.3
Grid 8x8 HOG 2x4 25.2
Grid 8x8 HOG 3x6 33.0
Grid 8x8 HOG 4x8 36.7

TABLE VII
AVERAGE PRECISION (AP) FOR EACH CLASS OF HOLLYWOOD2 DATASET
USING A SUBDIVISION OF 4×4 AND A HOG WITH nbθ=8 AND nbψ=16.

Action AP(%)
AnswerPhone 20.6

DriveCar 71.6
Eat 28.1

FightPerson 57.7
GetOutCar 20.3
HandShake 24.4
HugPerson 26.2

Kiss 55.2
Run 59.2

SitDown 54.4
SitUp 19.9

StandUp 45.5
Mean 40.3%

D. Comparison to the state-of-the-art
A comparison with the state-of-the-art methods is presented

in Table VIII. We show published results reported in the

literature. For all datasets, we reported the best recognition
rate of our method which is achieved with a subdivision of
4×4 and a HOG with nbθ=8 and nbψ=16.

TABLE VIII
COMPARISON WITH STATE-OF-THE-ART FOR KTH, UCF11 AND

HOLLYWOOD2 DATASETS.

KTH
Method Recognition Rate(%)

Laptev et al [15] 72.0
Mota et al [4] 86.4
Klaser et al [9] 91.4
Laptev et al [7] 91.8
Perez et al [6] 92.0

Umakanthan et al [11] (HOG3D) 92.6
Wang et al [2] 94.2
Our Method 92.5

UCF11
Method Recognition Rate(%)

Chen et al [13] 67.5
Perez et al [6] 68.9
Wang et al [2] 84.2
Our Method 75.4

Holywood2
Method Recognition Rate(%)

Perez et al [6] 34.0
Klaser et al [9], [20] 43.7
Laptev et al [7], [20] 45.2

Umakanthan et al [11] (HOG3D) 46.9
Wang et al [2] 58.3
Our Method 40.3

The proposed method achieved a competitive accuracy with
a much simpler approach, using only the information of
histograms of oriented gradients, without any bag-of-feature
strategy [2], [7], [9], [11], that is, without the cost of a
codebook computation.

In all datasets we improved the performance of the descrip-
tors previously proposed by [6] and showed better results than
other HOG based descriptors [7], [9], [13]. It is interesting to
note that the recognition rates of our descriptor were close to
the bag-of-feature approach evaluated in [11] using HOG3D
and interest points. Moreover, they used a one-against-the-rest
approach while we used a two-fold approach for classification.

Thereby, we can conclude that our descriptor aggregates
useful information from HOG3D, enhancing the recognition
rate. Moreover, it achieved promising results in all datasets
without the cost of a bag-of-feature based method. The draw-
back of our method lies on the the descriptor size, which could
become very large. One may select some tensors in order
do reduce this problem. For example, an anisotropy measure
could be used to rank the most interesting tensors.

V. CONCLUSION

In this work, we presented an improved tensor motion
descriptor based on HOG3D. It is a simple and effective ap-
proach reaching 92.5% of recognition rate with KTH dataset,
comparable to the state-of-the-art methods. However, for more
challenging datasets, as the UCF11 and Hollywood2, we
note that interest points information plays an important role



and bag-of-feature approaches improved overall recognition.
Our recognition rate is lower than those obtained by these
approaches but is fairly competitive in both datasets, even
using only HOG information.

The main advantage of our method is that it reaches good
recognition rates using only HOG information, which shows
how promising is this technique. Moreover, it is possible to
aggregate more information from other features in order to
improve the results.

It is interesting to note the behavior of our method when we
add more subdivisions. In some cases, increasing this number
does not necessarily leads to a better classification, such as in
UCF11 dataset. Indeed, the higher the number of subdivisions,
the grater is the chance of the tensor block becomes isotropic,
as it might represent a part of the video that does not have
meaningful motion.

In order to improve the recognition rate of our descriptor,
we intend to further analyze the combination of other video
features. Furthermore, since the result improves when analyz-
ing individual tensors, we need to study how our descriptor
behaves with a bag-of-feature based method.
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