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Abstract—Multidimensional Projections (MPs) have become
popular as visual data analysis tools in several application
domains, including Scientific Visualization. Current techniques
are fast, precise and capable of handling local and global data
features, having successfully supported spatial and abstract data
visualizations. However, two major shortcomings hinder their
application for exploratory analysis of time-varying multivariate
volumetric data. Current techniques lack visual coherence when
applied to data collected across consecutive time stamps and offer
little support to investigating attribute-specific questions. Both
are relevant properties when analysing time varying volumes. In
this paper we revisit projection methods from this perspective
and introduce modifications into two existing high-performance
techniques to ensure temporal coherence. We also propose a
hybrid visualization strategy that can assist users investigating
the role of a specific attribute on data behavior through time. We
illustrate how our approaches enhance projection-based visual
exploration of time-varying multivariate volume data with their
application to data sets from three distinct simulations, made
available for editions of the IEEE Visualization Contest.

Keywords-Visualization; Scientific Visualization; Multidimen-
sional Projections; Exploratory Volume Visualization.

I. INTRODUCTION

Volume visualization [1], [2] deals with methods to ex-
plore, analyze and visualize volumetric data, supporting the
investigation of physical phenomena. Volumetric data sets are
acquired by sampling, simulation or modeling techniques and
are typically represented as three-dimensional meshes. Such
spatial representations register observations of multiple scalar
and vector variables acquired or computed over time and
associated to voxels or cell nodes.

Understanding and exploring time varying multivariate vo-
lume sequences is still a major challenge to scientists. In
this paper we investigate the role of tools based on multi-
dimensional projections (MPs) to assist their exploration. Our
hypothesis is that MPs are interesting in this scenario due to
their ability to convey global relationships among the mul-
tivariate cells, particularly in application domains described
by multidimensional data. Two critical issues impair usage of
MPs in this context:

1) Few available projection techniques can handle large
volumes in a time-varying context.

2) Projections offer little support to users investigating the
role of specific attributes in global behavior.

Addressing the above issues requires deriving MP tech-
niques capable of handling time-varying multivariate volumes
in real-time, a scenario that imposes the following require-
ments: (i) speed, i.e., multiple volumes must be projected
at interactive rates; (ii) layout quality, i.e., the 2D layout
must preserve the feature space description so that groups
formed in original space are observable in the projected space;
(iii) temporal coherence, i.e., a sequence of time-stamped
projections of a volume should preserve global organization
and orientation of elements, so that users can maintain a
mental model while focusing on the relevant changes.

Fast techniques such as Fastmap [3] and PLP (the Part-
Linear Projection) [4] could be considered, as they handle
large high-dimensional data at interactive rates. However, they
do not guarantee temporal coherence when projecting a se-
quence of time-stamped volumes. We thus modified their orig-
inal formulation to produce time-coherent layouts. Based on
their novel formulations we propose a hybrid 2D visualization
that combines a 1D projection of a feature sub-space with a 1D
scatterplot of a focus attribute, as an additional functionality
to support investigating the role of specific attributes on global
data behavior.

II. RELATED WORK

MPs are feature-based point placements that can support
exploratory tasks aimed at investigating global and specific
data behavior. In a good layout, voxels with similar properties
are mapped as elements placed in neighboring areas. Several
authors describe exploratory volume visualization solutions
that integrate projection layouts or other multidimensional
visualizations with classical scalar or vector volume visualiza-
tions, typically combining feature space layouts with standard
object space views of the volume data.

Chen et al. [5], for example, provide linked 3D and 2D
views to assist exploration of Diffusion Tensor Imaging (DTI)
fibers. A 2D layout is computed with Classical Scaling [6]
that preserves the spatial relationships of the fiber tracts and
removes the visual clutter characteristic of the 3D visual-
ization. For a similar application Jianu et al. [7] employ a
force direct method [8], adopting the acceleration technique
by Chalmers [9] to achieve interactive performance. Poco et
al. [10] use a fast supervised MP called LAMP [11] to generate
layouts that support exploratory visualization of large fiber



tracking data sets, offering interaction functionalities to select
or change groups of bundled fibers for further inspection.

Daniels et al. [12] employ MPs to assist interactive explo-
ration of vector fields, observing that similar features within
the vector field, even if placed spatially apart, may share
similar neighborhoods in the feature space. The projection
layouts favor the perception of these neighborhoods. Users can
move control points and design a texture over an interactive
canvas to improve layout quality.

Santos et al. [13] describe a visualization strategy to support
identification of vortices in vector data. Authors compute
streamlines from velocity data, extract shape information as
features and project them using the PLP multidimensional
projection [4].

Our contribution shares similarities with that of Guo et
al. [14], who embed MP layouts in a Parallel Coordinates
plot to define transfer functions for volume rendering. The
approach has been designed to be scalable and deliver good
performance on data sets of varying sizes and dimensionalities
[15], but temporal coherence is not preserved when observing
multiple time steps.

In fact, most existing MP techniques do not ensure temporal
coherence. To the best of our knowledge, the only MP applica-
ble to general high-dimensional data and capable of preserv-
ing temporal coherence is the Part-Linear Multidimensional
Projection (PLMP) [16]. This is a fast and precise technique
targeted at supporting interactive exploration of massive data
sets and also handling time-varying volumes. We take it as
the baseline to compare the performance and behavior of
the techniques introduced in this paper. We show that they
exibit comparable or superior performance relative to certain
properties relevant to time varying volume exploration.

III. BACKGROUND

This section introduces the original formulations of Fastmap
and PLP, which will be later modified to ensure time coherence
and better visual grouping of elements when projecting large
time-varying data sets.

A. Fastmap

Fastmap [3] is a fast algorithm for mapping high-
dimensional objects (data instances) into a lower k-
dimensional space. It attempts to preserve distances (or dis-
similarities) among data objects while projecting them onto k
mutually orthogonal directions. The rationale is to recursively
project the objects onto k hyperplanes defined by a subset of
the dimensions to obtain the object coordinate in each pro-
jected dimension. If k = 2, 3 the mapping may be interpreted
as a projection technique.

At each recursion step a projection direction is defined.
Within each hyperplane, two pivot objects (Oa and Ob) are
selected and then all objects are projected on the line defined
by the pivots. The projected coordinates of an arbitrary object
Oi in each hyperplane is computed using the Cosine Law:

d2b,i = d2a,i + d2a,b − 2xida,b (1)

where di,j denotes the distance between any two objects
Oi and Oj , xi is the desired projected coordinate of Oi in the
line ab that connects the pivots Oa and Ob. Equation 1 may
be solved for xi and the distance between any two projected
objects may be computed employing the Euclidean distance:

d′i,j =
√
d2i,j − (xi − xj)2 (2)

Equation 2 allows to project over another line which is
orthogonal to the first.

A final issue is how to select the pair of pivots. The ideal
choice of picking the two data objects farthest apart is com-
putationally expensive. The following heuristic [3] provides
an alternative. First an arbitrary object A is chosen. Then the
object farthest apart from A is found and taken as the first
pivot, Oa. Again, the object farthest apart from Oa is found
and taken as the second pivot, Ob.

However, the selected pivots are not necessarily good rep-
resentatives of the entire data set, as a data point P may fall
outside the area they define. This affects the method’s pre-
cision, which may be improved by running further iterations
of the heuristic, taking the second pivot as the initial object.
Naturally, this solution incurs in higher computational cost.

The computational cost of Fastmap is determined by the
two steps executed as many times as the number of target
dimensions. Choosing the pivots requires three iterations over
the data, resulting in complexity O(3n) = O(n), for n data
points. The second step is just an iteration over the data to
compute the projected coordinates using the cosine law. Thus,
overall cost is O(k(3n+ n)) = O(n), since k is low (1, 2 or
3).

B. Piecewise Laplacian-based Projection

The Piecewise Laplacian-based Projection (PLP) [4] is fast
enough to support real-time interaction with large data sets.
The method comprises three major steps: sampling, building
a neighborhood graph and solving a Laplacian linear system.

The sampling step selects a small representative subset from
the original data, and may be performed automatically by
taking samples from clusters obtained from the data. These
samples are projected with a Multidimensional Scaling (MDS)
technique such as the Least Squares Projection (LSP) [17].
Then, the neighborhood relations are defined by a k-nearest
neighbor graph (kNNG).

Finally, a Laplacian linear system is built based on the
assumption that each data object Oi can be written as a convex
combination of its nearest neighbors in the visual space. Under
this hypothesis, the projected coordinates of the data objects
may be written as:

xi =
∑

Oij
∈kNN(Oi)

αij(xOij
, yOij

) (3)

where αij > 0 and
∑
αij = 1.

From Equation 3 a linear system may be assembled as:
Lx = 0 (and likewise Ly = 0). The coefficients in matrix
L are defined as 1 when i = j, −αij/

∑
Oij

∈kNN(Oi)
αij if



Oij ∈ kNN(Oi) and 0 otherwise. The value of αij can be
the inverse of the distance between data objects Oi and Oj ,
or simply equal to one.

To ensure the system has a unique solution, some constraints
are imposed on the choice of control points:

√
ni control

points are extracted from each cluster Ci, with |Ci| = ni,
and projected in the visual space employing a precise (and
usually costly) method. Their projected coordinates provide
the required constraints for the system.

PLP has cost O(S+C+P +I), where S is the complexity
of the initial sampling, C is the complexity of creating the
clusters, P is the complexity of projecting the control points,
and I is the complexity of projecting each individual cluster.
Sampling is O(n), since a subset is chosen randomly from
the original data. Bisecting k-means, projection of the control
points, and projection of the clusters are each O(n

√
n).

Therefore PLP has complexity O(n+ 3 ∗ n
√
n) = O(n

√
n).

IV. NEW METHODS FOR TIME COHERENT PROJECTIONS

In this section we describe how we have modified Fastmap
and PLP to preserve temporal coherence, thus enabling their
application to time-varying data.

A. TC-Fastmap - Time Coherent Fastmap

As described in Section III-A, Fastmap requires solving
Equation 1 to obtain a projected coordinate xi for each
object, given a pair of pivots Oa and Ob. Applying the
pivot selection heuristic to time-varying data will output very
different pivot pairs at subsequent time steps, introducing some
unexpected variations over time, as illustrated in Figure 1. The
visualizations shown refer to the IEEE Visualization 2008 data,
further detailed in Section V.

(a) time step 30. (b) time step 120. (c) A single view of
both time steps.

Fig. 1. Fastmap layouts relative to two distinct time steps of the (VisContest
2008) simulation data. The layout obtained for time step 120 is rotated as
compared with that of time step 30. The rightmost figure highlights this
limitation of current projection techniques.

Pivot selection should thus consider the time domain. How-
ever, a solution that requires traversing the data several times
over the whole temporal domain is not feasible at interactive
rates. We thus select pivots from a representative sub-set taken
across multiple time steps. Tests indicated that the best rep-
resentative pivots were extracted from the sub-set containing
the original points of the first, final and middle time steps,
applying the same heuristic as the original formulation. This
approach relies on the assumption that spatial and temporal
coherence hold in time-varying data, i.e., no sudden large
variations occur within a small time window. This is a valid

assumption when handling time-varying volumes resulting
from a simulation of a single phenomenon at a suitable
temporal resolution.

Moreover, computing coordinate xi for each data object
does not require traversing the data multiple times. Since pivot
selection is independent of the projection step, running more
iterations of the heuristic may result in a more representative
pairs of pivots.

Once the pivots have been obtained, each data object can
be projected separately with an iterative implementation of
the Cosine Law, which calculates the values of a vector V ′ =
(V ′

1 , V
′
2) where V ′

d is obtained by:

V ′
d =

(d Oa V )2 + (d Oa Ob)
2 − (d Ob V )2

2d Oa Ob

and the value of dist Oi Oj comes from:

d Oi Oj =

{
d(Oi, Oj) if d = 1√
|d(Oi, Oj)2 − (O′

id−1
−O′

jd−1
)2| otherwise

B. TC-PLP- Time Coherent Part-linear Projection

In Section II we singled out PLMP [16] as the projection
technique capable of preserving temporal coherence. However,
it does have some limitations when applied to time-varying
volumes, some shared by TC-Fastmap
. In particular, both techniques produce layouts with data
points smoothly distributed (i.e., poor visual clustering) and
both achieve better results on low-dimensional data. The first
limitation will cause multiple groups of similar data objects
to appear mixed in the visualization, which hinders interactive
exploration. The second limitation may prevent effective usage
on higher-dimensional data sets, for example, when handling
volumes with many derived attributes.

Seeking an alternative we have modified PLP (see Sec-
tion III-B) to handle time-varying volumetric data. The under-
lying rationale is to recursively apply the idea of identifying
small data clusters based on neighborhoods defined in the
original space, embracing all time steps at once. We define
the concept of “local control points” and “temporal control
points”, which are, respectively, the data cluster representatives
at an arbitrary time step and the data cluster representatives
that span multiple time steps.

The approach has been called TC-PLP and comprises two
major steps: preprocessing and projection. In the preprocessing
step, each time-stamped data volume is clustered separately, in
order to obtain the local control points that will determine the
projected coordinates of all the remaining data objects in this
particular volume. Then, the complete set of all local control
points found is clustered to identify the temporal control
points. Local and temporal control points are chosen from
their original clusters by selecting the

√
size(ci) data objects

closest to the cluster centroid, with size(ci) being the cluster
size.

As shown in Procedure 1, at each recursion step a volume
is partitioned into balanced clusters of similar data objects.
Then, the set of all temporal control points is projected with



Fastmap (or another projection technique). In the projection
step, a neighborhood graph is built and a Laplacian linear
system is solved for each recursion, first to find the projected
coordinates of the local control points and then to compute
the projections relative to each time stamp.

Procedure 1 Algorithm for extracting control points.
Input: D: Time-varying data set.
Output: Control points.

1) For each time-stamped volume Dt:
a) apply the bisecting k-means on volume Dt to

obtain clusters Cti.
b) For each cluster Cti:

i) create the kNN graph for Cti.
ii) CPti ← select control points from Cti.

c) save the neighborhood information for later and
return the control points in CPti.

V. DATA SETS

We illustrate how the proposed techniques may assist explo-
ration of time-varying volumes on three data sets describing
multivariate simulations of 3D spatial phenomena, made made
available for editions of the IEEE Visualization Contest.

Hurricane Isabel

The VisContest 2004 [18] data refers to a simulation of
the Hurricane Isabel by the National Center for Atmospheric
Research. 500× 500× 100 regular grid volumes describe the
behavior of several variables along 48 time steps. Volumes
have been reduced with regular sampling to 125× 125× 25.
Each voxel is associated with 10 scalar variables and one
velocity vector. 6 scalars are values of primary mixing ratios,
2 are derived mixing ratios, 2 are values for pressure and
temperature. The magnitude of the velocity vector has been
considered, resulting in a voxel feature vector with 11 scalar
attributes.

Star explosion: ionization front

This data has been released for the VisContest 2008 [19] and
consists of multifield scalar volumes output by a simulation
designed to understand the formation of galaxies, particularly
the effect of shadow instabilities where radiation ionization
fronts scatter around primordial gas. Data is organized in
600 × 248 × 248 regular meshes over 200 time steps. Each
cell describes 10 scalar values: total particle density, gas
temperature, and 8 types of mass abundances (H, H+, He,
He+, He++, H-, H2, H2+), plus a velocity vector, from which
additional scalar values may be extracted, namely magnitude,
divergence and curl magnitude.

We downsampled each volume by a factor of 4 by randomly
selecting one cell from each group of 4×4×4 cells, generating
volumes with 576, 600 voxels. The temporal series was also
reduced to 21 steps, corresponding to time stamps 0, 10, 20,
30, . . . 170, 180, 190, 199).

Centrifugal pump

This data, released for the VisContest 2011, is from a
simulation of a centrifugal pump described by three models,
namely RANS, LES and a Hybrid LES/RANS [20]. Each
volume describes one full rotation of the pump, and the
simulation covers 80 time steps. Each volume is represented
as an irregular volume mesh with 6 associated attributes per
cell. The scalar variables are pressure (static pressure), total
pressure (static pressure plus kinetic energy of the relative
velocity in pressure units), total pressure in stn frame and
turbulence kinetic energy (static pressure plus kinetic energy
of the absolute velocity); the vector variables are velocity (in
the relative system) and velocity in stn frame (the absolute
system). The meshes actually describe several parts, of which
we focused specifically on the rotor.

We computed 22, 478 streamlines from an equal number
of random cells, and extracted feature vectors by applying
the Fourier Transform to the streamlines and taking relevant
FT coefficients. The resulting data comprises 39 time-stamped
volumes, each with 22, 478 streamlines. Each streamline is
described by a vector with 57 features; details of data prepro-
cessing may be found elsewhere [13].

VI. RESULTS AND EVALUATION

We now illustrate the applicability of the proposed tech-
niques to time-varying volumes, assessing the layouts regard-
ing projection time, layout quality, as measured by stress
and as perceived by a human observer, and support to high
dimensionality.

Stress is a measure of the layout’s capability of preserving
the dissimilarity between data objects, taking as reference the
original data space, and is usually adopted to objectively com-
pare layouts generated by MP techniques. It takes values in the
range [0, 1], with lower values indicating better preservation
of dissimilarities. We shall see later that the perceived layout
quality does not necessarily bear a direct relationship with the
stress value: layouts with high stress happen to prove useful,
e.g., to assist identification of internal structures in volumes.
The “support to high dimensionality” refers to the technique’s
capability of producing good quality layouts even when the
input feature vectors have many dimensions.

In the following we describe the results of this evaluation
conducted with the projections capable of preserving temporal
coherence, namely PLMP, TC-Fastmap and TC-PLP.

A. Computational Times

Table I details the time to project a single volume (in
seconds) by TC-Fastmap, TC-PLP, PLMP, Fastmap and PLP:
we have arbitrarily picked time steps 20, 90 and 01 for the
Isabel, Explosion and Pump data sets, respectively. Prepro-
cessing times are also shown when applicable – notice that
preprocessing is not required for each projection, rather it is
executed once for the complete series.

We compare Fastmap with a sequential implementation of
TC-Fastmap and a parallel CPU implementation, identified in
the Table as mTC-Fastmap. Best results were obtained on the



Isabel Explosion Pump
Technique pre(t) proj(t) pre(t) proj(t) pre(t) proj(t)

PLMP 0.58 0.296 0.812 0.064 0.041 0.014
Fastmap 1.926 1.488 0.194
TC-Fastmap 1.691 0.327 1.387 0.395 0.177 0.043
mTC-Fastmap 1.589 0.13 1.457 0.176 0.190 0.027
PLP 56.13 301.84 3.503
TC-PLP 12.575 13.205 29.272 220.18 18.037 12.153

TABLE I
EXECUTION TIMES OF THE MP TECHNIQUES, IN SECONDS. pre(t) AND

proj(t) REFER TO PRE-PROCESSING AND TO PROJECTION TIMES,
RESPECTIVELY (FASTMAP AND PLP REQUIRE NO PRE-PROCESSING).

MTC-Fastmap REFERS TO A CPU PARALLEL IMPLEMENTATION OF
TC-Fastmap.

Data set TC-Fastmap TC-PLP PLMP
Isabel (t=12) 3, 93E − 09 0, 016490323 0, 3453625
Isabel (t=24) 4, 40E − 09 0, 011871725 0, 40194863
Isabel (t=36) 5, 62E − 09 0, 014642373 0, 3356113

Explosion (t=40) 0, 004308424 0, 007838739 0, 007070283
Explosion (t=100) 0, 005870595 0, 017687509 0, 013870152
Explosion (t=160) 0, 009910159 0, 020783341 0, 018278432

Pump (t=8) 0, 5842294 0, 36870223 0, 598145
Pump (t=15) 0, 60382056 0, 35293133 0, 67759186
Pump (t=22) 0, 56639427 0, 29616678 0, 50004995

TABLE II
STRESS VALUES OF TC-Fastmap, TC-PLP AND PLMP LAYOUTS.

Isabel data. Considering projection times, the sequential and
parallel implementations of TC-Fastmap executed nearly 6 and
nearly 15 times faster, respectively, than the original Fastmap.
The table also shows a speed gain of nearly 4 of TC-PLP over
PLP.

Comparing the novel approaches with PLMP one observes
that TC-Fastmap executed twice as fast on the Isabel data,
although in general PLMP was much faster considering overall
(preprocessing + projection) times. Finally, PLP and TC-
PLP are very slow on the Explosion data, preventing their
application in interactive exploratory scenarios.

B. Layout quality: stress

The results regarding stress are summarized in Figure 2 and
Table II. Stress values for layouts obtained with TC-Fastmap,
TC-PLP and PLMP were computed relative to three distinct
time steps for each data set considered.

Figure 2a shows the results for the Isabel data: stress values
of TC-Fastmap and TC-PLP are very close to 0, whereas
those of PLMP are higher, close to 0.4. For the Explosion
data, one observes in Figure 2b that TC-Fastmap achieved
the best stress values, followed by PLMP and finally TC-
PLP. The differences have not been found to be statistically
significant, however. Finally, Figure 2c depicts the stress
values of the Pump layouts. The layouts by TC-PLP have
the lowest stress values, followed by TC-Fastmap and PLMP.
The good results of TC-PLP on the Pump data set, which
has higher dimensionality than the other two, suggest that it
is more robust to higher dimensionalities than the other two
techniques

Observing the stress values in Table II one notices that
with regards to stress the new techniques are comparable with
PLMP, having resulted in similar or lower values.

(a) Stress of Isabel layouts at time steps 12, 24 and 36.

(b) Stress of Explosion layouts at time steps 40, 100 and 160.

(c) Stress of Pump layouts at time steps 8, 15 and 22.

Fig. 2. Stress values of Fastmap, TC-Fastmap, TC-PLP and PLMP layouts,
on the three data sets at distinct time steps.

C. Analyzing the 2D layouts

Let us now compare the 2D layouts obtained from the data
sets with the proposed techniques with those obtained with
PLMP, taken as the baseline.

Figures 3, 5 and 7 depict layouts obtained TC-Fastmap
or TC-PLP for the Isabel, Star Explosion and Pump data
sets, respectively, and the corresponding PLMP layout. Notice
that PLMP and TC-Fastmap layouts are generally smoother
than those of TC-PLP, i.e., data points appear more evenly
distributed spatially. Because it attempts to preserve neigh-
borhoods, TC-PLP favors the formation of clusters in the
projected space.

Figure 3 shows layouts of the Isabel data obtained with
PLMP and TC-PLP.̇ The latter reveals small clusters that can
be selected for further exploration. The TC-PLP layout shall
be considered to further illustrate the exploratory capabilities



(a) Isabel: PLMP (b) Isabel: TC-PLP

Fig. 3. PLMP and TC-PLP layouts of the Isabel data (volume 20).

afforded by projections. Figure 4 depicts views of a particular
volume of the Isabel data. Two user selections are shown in
the feature space view given by the layout, indicated by the
red and yellow curves. A volume rendering of the voxels in
the corresponding red and yellow selections is shown at the
top, revealing internal structures in the hurricane – the yellow
region corresponds to the center of the storm. The thick red
and orange lines indicate the two major spatial directions, and
inspection shows that the placement of the feature vectors in
the layout reflects the height of the spatial structures and their
distance to the storm center. By mapping structure height to
color intensity in the red line, and distance to the center to
color intensity in the orange line, one observes increasing color
intensities along both lines.

Fig. 4. Feature space projected layout of a volume from the Isabel data
computed with TC-PLP (bottom). The user selections delimited by the yellow
and red borders correspond to internal structures in the hurricane, for which
an object space view is shown at the top.

For the Explosion data, both techniques compute very
similar layouts for the volume at time step 90, shown in Figure

(a) Explosion: PLMP (b) Explosion: TC-Fastmap

Fig. 5. PLMP and TC-Fastmap layouts of the Star Explosion data (volume
90).

5. Further inspecting the layout by TC-Fastmap, Figure 6
illustrates selections of six clusters that actually correspond
to distinct spatial structures. For each selection a surface
rendering view of the corresponding voxels is shown in the
figure – except for the selection indicated by the black border,
which corresponds to the background voxels. Again, this
example illustrates that selections in the feature space allow
identifying meaningful spatial structures.

Fig. 6. Selecting groups in the TC-Fastmap layout of the Star Explosion
data and observing the corresponding object space views.

TC-Fastmap and PLMP produced similar results on the
Pump data, as illustrated in Figure 7 by the layouts relative to
time step 01. The TC-PLP layout shows a spatial distribution
of the feature vectors in which data points are more clustered.

Figure 8 shows the feature space view given by the layout
and a spatial view: 8a depicts the projection of the streamline
features, with a user selection indicated, for which the corres-
ponding streamlines are shown highlighted in Figure 8b. One
observes the selected streamlines describe vortical structures
in the flow.

D. High-dimensionality

We now investigate the quality of layouts generated with
TC-PLP and TC-Fastmap as a function of data dimensionality.



(a) Pump: PLMP (b) Pump: TC-PLP

Fig. 7. PLMP and TC-PLP layouts of the Pump data (volume 01).

(a) streamline projection view with a
selection highlighted.

(b) streamline spatial view highlighting
vortical structures selected in (a).

Fig. 8. TC-PLP projected layout of the streamline feature space of the Pump
data and spatial view of the streamlines.

Since none of the previous data sets is characterized by
very high dimensionality, for this investigation we took a
textual corpus of 574 scientific articles (only title, abstract,
and references considered). We generated multiple ‘bag-of-
words’ vector representations [21] for this corpus, varying
the number of ‘words’ (features) to obtain data sets with the
following dimensionalities: 118, 144, 283, 307, 641, 2, 548,
2, 591, 3, 000, 18, 694 and 22, 313. Notice that representations
with 600 or more features characterize very sparse data spaces.
Figure 9 shows the stress [22] values computed for TC-
PLPand TC-Fastmap (PLMP cannot handle data with a point
per attribute ratio above one). Stress values of TC-PLP are
consistently smaller and increase slowly as data dimensionality
increases, as compared to TC-Fastmap.

The previous discussion confirmed that the new techniques
are suitable for handling volumetric data sets, and moreover
TC-PLP has been shown robust to situations that require
handling high-dimensional data. This, along with the support
for temporal variation renders them as possible alternatives
for MP-based visualization environments devised to assist
exploratory investigation of simulation data.

VII. Scatter Projection

Similarity-based MP layouts can be valuable tools for visual
exploration, as users may interact to identify and analyze

Fig. 9. Comparing stress values of TC-Fastmap and TC-PLP layouts as a
function of data dimensionality.

groups of similar data elements. However, they fail to reveal
relationships amongst data attributes, or simulation variables.
We introduce a hybrid visualization to support investigating
the role of specific variables, which combines the familiarity
of scatterplots with the segregation capability of projections.

This visualization adopts a 2D Cartesian coordinate layout,
with the horizontal axis mapping a user-defined focus data
variable (attribute) and the vertical axis mapping a 1-D pro-
jection of a user-selected sub-set of features. This projection
may be obtained, e.g., with Fastmap on a single iteration. The
resulting visualization allows focusing on the global similarity
between data elements while simultaneously investigating how
a target variable affects global behavior, as illustrated next.

We show how the Scatter Projection helps answering a
question about the star explosion simulation posed at the
2008 Visualization Contest, namely: H2 enables primeval gas
clouds to collapse and form the first stars before galaxies later
coalesce. Where is H2 most prevalent in the simulation?

Two Scatter Projection views of a particular time step of the
simulation are shown in Figure 10. We picked time step 99,
so that findings would be comparable with reports from the
literature on this problem [23]. In Figure 10a the horizontal
axis maps the target attribute H2 Mass Abundance and the
vertical axis maps a 1D projection obtained considering a
two-dimensional feature space of density and temperature.
Cold/warm glyph colors map low/high values of the target
variable. In the projection axis one observes that higher values
of H2 are concentrated in the middle region. In Figure 10b
turbulence is the target in the horizontal axis, whereas the ver-
tical axis again maps a projection of density and temperature.
Unlike H2, higher values of turbulence are not concentrated in
a particular region of the projection, reflecting the prevalence
of H2 at this moment in the simulation. The view 10c shows
a volume rendering of the voxels corresponding to the two



selections delimited by the red and green borders in the Scatter
Projections. Notice that the higher values of H2 in Figure 10a
appear in the volume view concentrated in the central and back
regions of the advancing ionization front. The volume view
reveals that high values of turbulence occur in the middle of
the two regions depicting high values of H2. Linsen et al. [23]
discuss the prevalence of H2 and report similar results.

(a) Scatter Projection
focused on H2 Mass
Abundance.

(b) Scatter Projection
focused on Turbulence.

(c) Object space view of
selections in (a) and (b).

Fig. 10. Scatter projection visualizations of H2 Mass Abundance (a) and
Turbulence (b) versus 1D projection of density and temperature, and (c) object
space volume rendering of selections indicated. (Star Explosion).

VIII. CONCLUDING REMARKS

We have reformulated Fastmap and PLP multidimensional
projection techniques, introducing the TC-Fastmap and TC-
PLP as projection techniques with enhanced support to volume
exploration and feature space investigation of time varying
volume data. They preserve temporal coherence across all
time stamps. TC-Fastmap incorporates a pre-processing step
in which pivots are selected from a representative data sample
that considers the whole temporal domain. TC-PLP also en-
ables selecting representative control points over the temporal
domain, in this case adopting a hierarchical strategy to identify
relevant control points. These techniques have been shown
to produce time-coherent projections while achieving stress
values that are comparable to or better than those of existing
time-varying projections. The new techniques produce layouts
with improved group separability, which helps to identify
spatial regions in which voxels share similar properties, and
in particular TC-PLP has been shown to be robust to handling
high dimensional data. Additionally, the Scatter Projection
hybrid visualization supports investigating the effect of specific
data attributes on data behavior in this scenario. Further
validation of the techniques is required, and we are also
interested in investigating their application to further assist
attribute related exploratory investigation of temporal data,
including hierarchical visual attribute selection.
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