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Abstract—Higher order tensors have been applied to model
multidimensional image databases for subsequent tensor de-
composition and dimensionality reduction. In this paper we
address the problem of ranking tensor components in the
context of the concurrent subspace analysis (CSA) technique
following two distinct approaches: (a) Estimating the covariance
structure of the database; (b) Computing discriminant weights
through separating hyperplanes, to select the most discriminant
CSA tensor components. The former follows a ranking method
based on the covariance structure of each subspace in the CSA
framework while the latter addresses the problem through the
discriminant principal component analysis methodology. Both
approaches are applied and compared in a gender classification
task performed using the FEI face database. Our experimental
results highlight the low dimensional data representation of both
approaches, while allowing robust discriminant reconstruction
and interpretation of the sample groups and high recognition
rates.

Keywords-Dimensionality Reduction; Tensor Subspace Learn-
ing; CSA; Face Image Analysis

I. INTRODUCTION

In pattern recognition applications that involve managing
of data sets with large number of features we should apply
dimensionality reduction for discarding redundancy and reduce
the computational cost of further operations. There are numer-
ous works on linear dimensionality reduction including the
classical principal component analysis (PCA), linear discrim-
inant analysis (LDA) and multidimensional scaling (MDS)
[1], [2]. Linear techniques seek for new variables that obey
some optimization criterion and can be expressed as linear
combination of the original ones. These methods can be also
classified as subspace learning methods in the sense that the
output linear space has an optimum subspace for compact data
representation.

All of the mentioned methods consider a gray scale n1×n2

image as a high dimensional vector in ℜn1·n2 space. Tensor
methods, on the other hand, consider gray scale images as
second order tensors and colored images as third order tensors
applying multilinear methods for subspace learning and anal-
ysis. Tensor representation for images was proposed in [3] by
using a singular value decomposition method (SVD). Others
approaches in this area are the concurrent subspace analy-
sis (CSA) [4], multilinear independent components analysis

(MICA) [5], multilinear principal component analysis (MPCA)
[6], tensor discriminant analysis (TDA) [7], [8] and tensor
rank-one decomposition [9], among others. The applications
include face and gait recognition, digital number recognition,
signal processing, content analysis, anomaly detection in data
mining (see [10] for a survey in tensor techniques and appli-
cations).

The problem of ranking tensor components have been
considered in the context of the MPCA and TDA [6], [7],
[8]. This problem is relevant because the most important
components for separating sample groups depend on the kind
of patterns we are considering. Therefore, we must identify
the most discriminant ”directions” for a specific classification
task which may be not the ones that most vary in the samples.

In this paper we address this issue in the context of the
CSA technique following two approaches: (a) Ranking CSA
components using a novel technique for estimating the covari-
ance structure of all the data; (b)Adapt the DPCA technique
presented in [11] for data represented by higher order tensors.
These approaches are the main contribution of this work.
Besides, they are not restricted to the CSA subspace as we
shall see later.

In order to complete the task (a) we apply the tensor product
(also called outer product) of vectors for general higher order
tensor decomposition [9]. We revise this approach and show
that CSA principal components and the associated covariance
structure arise naturally in this algebraic framework. Next, we
address the task (b) by adapting the methodology presented
in [11] to tensor spaces. This approach is a ranking method
that identifies the most discriminant ”directions” for a specific
classification task instead of the features that most vary in
the samples. So, the original dataset is projected in the CSA
subspace. Then, we take the obtained lower dimensional repre-
sentation and propose to rank the tensor principal components
by how well they align with separating hyperplane directions,
determined by the corresponding discriminant weights. Such a
set of tensor principal components ranked in decreasing order
of the discriminant weights is called the tensor discriminant
principal components (TDPCA). In this paper we focus on the
SVM (Support Vectors Machine) [12] method but any other
separating hyperplane could be used.

We investigate the efficiency of both the proposed ranking



methods for tensor components through face image analysis
tasks. The experimental results carried out use a gender
classification task (female versus male samples) performed
using the FEI database 1 The properties of this database are
very attractive to test tensor component analysis because the
background is controlled while scale and orientation are almost
the same in all poses (see first and second paragraphs of
section VII). The results show that the proposed methods allow
robust reconstruction and interpretation of the database, as well
as high recognition rates using less linear features.

The remainder of this work is organized as follows. The
section II describes the SVM technique. Next, in sections
III-IV, we review the CSA approach and the tensor product
framework, respectively. The proposed ranking methods are
presented in sections V and VI. In section VII we show
the experimental results. In section VIII, we present the
conclusions and future works.

II. SUPPORT VECTOR MACHINES (SVM)

SVM [12] is primarily a two-class classifier that maximizes
the width of the margin between classes, that is, the empty
area around the separating hyperplane defined by the distance
to the nearest training samples [12]. It can be extended to
multi-class problems by solving several two-class problems.

Given a training set that consists of N pairs of
(x1, y1), (x2, y2) . . . (xN , yN ), where xi denote the n-
dimensional training observations and yi ∈ {−1, 1} the corre-
sponding classification labels, the SVM method [12] seeks to
find the hyperplane defined by:

f(x) = (x ·w) + b = 0, (1)

which separates positive and negative observations with the
maximum margin. It can be shown that the solution vector
wsvm is defined in terms of a linear combination of the
training observations, that is,

wsvm =
N∑
i=1

αiyixi, (2)

where αi are non-negative coefficients obtained by solving
a quadratic optimization problem with linear inequality con-
straints [12]. Those training observations xi with non-zero
αi lie on the boundary of the margin and are called support
vectors.

The formulation of the SVM solution does not make any
assumption about the data distribution. It focuses on the
observations that lie close to the separating margin of the
classes, that is, on the observations that most count for
classification given a zoom into the details of group differences
[12]. Therefore, we expect to select the most discriminant
tensor components for a specific classification task when using
SVM for computing discriminant weights.

1http://fei.edu.br/∼cet/facedatabase.html

III. MULTILINEAR DIMENSIONALITY REDUCTION

In the traditional image processing literature, a tensor of
order n is just a generalized matrix X ∈ ℜm1×m2×...×mn [3].
So, it becomes clear that there is an isomorphism between
ℜm1×m2×...×mn and ℜm1·m2···mn . Therefore, the addition of
tensores and the notions of internal product and norm in
ℜm1×m2×...×mn are induced, in a natural manner, from the
ℜm1·m2···mn space [4].

Definition 1. The internal product between two tensors X ∈
ℜm1×m2×...×mn and Y ∈ ℜm1×m2×...×mn is defined by:

⟨X,Y⟩ =
m1,...,mn∑

i1=1,...,in=1

Xi1,..,inYi1,..,in (3)

Other tensor algebra operations are defined to allow to
generate another tensor from one or more input tensors. In
areas of physics and mathematics the addition, contraction and
multiplication are the most usual operations in tensor algebra
[13]. For image processing applications, there are also the
following mode-k product and the mode-k flattening operation
[4]:

Definition 2. The mode-k product of tensor X ∈
ℜm1×m2×...×mn with the matrix A ∈ ℜm′k×mk is given by:

(X×k A)i1,...,ik−1,i,ik+1,...,in
=

mk∑
j=1

Xi1,···,.ik−1,j,ik+1,···inAi,j , i = 1, 2, ...,m′k. (4)

Definition 3. The mode-k flattening of an n-th order tensor
X ∈ ℜm1×m2×...×mn into a matrix Xk ∈ ℜmk×⨿i ̸=kmi ,
denoted by Xk ⇐=k X, is defined by expression:

Xk
ik,j

= Xi1,...,in , where j = 1+
n∑

l=1,l ̸=k

(il−1)⨿n
0=l+1,0̸=km0.

(5)

The Figure 1 pictures a mode-1 flattening operation for
third-order tensors. Observe that the result of the mode-k
flattening operation is a matrix that concatenates side-by-side
each ℜmk array of the input tensor.

Fig. 1. Mode-1 flattening operation for third-order tensors (Source: Adapted
from [4]).

Now, let us consider a database with N element that
can be represented through n − th order tensors Xi ∈
ℜm1×m2×...×mn , i = 1, 2, ..., N . Let us also consider n
projection matrices U1, U2,...,Un, where Uk ∈ ℜmk×m′k and
mk > m′k, k = 1...n (the superscript k in Uk just means the
projection matrix index). So, the projection of a tensor Xi in
the space ℜm′1×m′2×...×m′n (that means, its low dimensional



representation) is given by a tensor Yi ∈ ℜm′1×m′2×...×m′n

computed by expression [4]:

Yi = Xi ×1 U
1T ...×n UnT

, i = 1...N. (6)

Therefore, it can be shown that the reconstruction is a tensor
XR

i ∈ ℜm1×m2×...×mn , defined by [4]:

XR
i = Xi ×1 U

1U1T ...×n UnUnT

(7)

We must define an optimality criterion to seek for suitable
matrices U1, U2,...,Un. In [4] this point is addressed by the
least square optimization problem:

(U j |nj=1) = arg min
Uj |n

j=1

N∑
i=1

||Xi×1U
1U1T ...×nU

nUnT

−Xi||2,

(8)
which solution has the following property [4].

Theorem 1: If (U1, ..., Uk−1, Uk+1, ..., Un) are known then
the ideal matrix Uk is composed by the m′k principal eigen-
vectors of the covariance matrix Ck =

∑N
i=1 X

k
i X

kT

i , where
Xk

i is the matrix generated through the mode-k flattening of
the tensor Xk

i = Xi×1U
1T ...×k−1U

k−1T ×k+1U
k+1T ...×n

UnT

.
Starting from this result it is possible to develop an iterative

algorithm, called Concurrent Subspaces Analysis (CSA) in [4],
to compute the optimum projection matrices. The CSA input
are the image database and lower dimensions m′k, k = 1...n.
It starts with an initial guess for the projection matrices Uk

0 ∈
ℜmk×m′k , k = 1, ...n, by using columnly-orthogonal matrices
(UkT

Uk = I), which are usually obtained by truncating the
number of columns of the identity matrix.

Algorithm 1 CSA Algorithm
1: Projection matrices initialization Uk

0

2: Distribution centroid: CM = (1/N)
∑N

i=1 Xi

3: Translation to distribution centroid: Xk ⇐= Xk − CM,
k = 1, ..., N

4: for t = 1, ... to Tmax do
5: for k = 1, ... to n do
6: Mode-k tensor products Xk

i =Xi ×1 U1T

t . . . ×k−1

U
(k−1)T

t ×k+1 U
(k+1)T

t−1 . . .×n UnT

t−1

7: Mode-k flattening Xk
i for Xk

i : Xk
i ⇐=k Xk

i

8: Covariance matrix: Ck =
∑N

i=1 X
k
i X

kT

i

9: Compute the first m
′

k leading eigenvectors of Ck,
CkUk

t = Uk
t Λ

k, which constitute the column vectors
of Uk

t

10: end for
11: if (t > 2 and Tr[abs(UkT

t Uk
t−1)]/m

′

k > (1 − ϵ), k =
1, ..., n) then

12: break;
13: end if
14: end for
15: Output the matrices Uk = Uk

t , k = 1, ..., n.

Once the initialization ends, the two main loops start with
a sequence of operations derived from the Theorem 1. The
outer loop depends on the parameter Tmax that represents
the max number of updates for the projection matrices Uk

t ,
k = 1, 2, ..., n, which are computed in the inner loop fol-
lowing the philosophy of Theorem 1: taking the matrices
U1
t , ..., U

k−1
t , Uk+1

t−1 , ..., U
n
t−1 we seek for the optimum Uk

t−1

by solving the optimization problem given by equation (8)
with respect to the matrix Uk

t−1.

IV. TENSOR PRODUCT AND DIMENSIONALITY
REDUCTION

The concept of tensor can also be introduced following
an algebraic approaches, as performed in [9], which is more
suitable for CSA tensor component analysis than the one
presented in section III. So, let us consider the vector spaces
ℜm1 ,ℜm2 , · · ·,ℜmn . The tensor product of these spaces,
denoted by ℜm1 ⊗ℜm2 ⊗ · · · ⊗ ℜmn ,

is another vector space whose elements can be represented
by the Kronecker product of collumn vectors vi ∈ ℜmi , i =
1, 2, · · ·, n. Given individual basis

{
eikk , ik = 1, 2, · · ·,mk

}
⊂

ℜmk then a natural basis B for the vector space ℜm1 ⊗ℜm2 ⊗
· · · ⊗ ℜmn is generated by:

B =
{
ei11 ⊗ ei22 ⊗ · · · ⊗ einn , eikk ∈ ℜmk

}
. (9)

In this contex, a tensor X of order n is defined as an element
X ∈ ℜm1 ⊗ ℜm2 ⊗ · · · ⊗ ℜmn ;that is, an abstract geometric
entity that can be expressed as [9]:

X =
∑

i1,i2,···,in

Xi1,i2,···,ine
i1
1 ⊗ ei22 ⊗ · · · ⊗ einn . (10)

Now, let us consider the subspaces ℜm′k , k = 1, 2, · · ·, n,
where m′k ≤ mk, and a basis for ℜm′1 ⊗ℜm′2 ⊗ · · · ⊗ℜm′n

given by:

B̃ =
{
ẽi11 ⊗ ẽi22 ⊗ · · · ⊗ ẽinn , ẽikk ∈ ℜm′k

}
, (11)

as well as Uk ∈ ℜmk×m′k , the projection matrix in ℜm′k

defined by:

eikk =

m′k∑
jk=1

Uk
ikjk

ẽjkk , k = 1, 2, ···, n and ik = 1, 2, ···,mk.

(12)
In the tensor product framework, to get the new represen-

tation (projection) of the tensor X in the basis B̃ it is just
a matter of inserting expression (12) in the tensor product
representation given by equation (10); that is:

Y =
∑

i1,i2,···,in

Xi1,i2,···,in

(
m′1∑
j1=1

U1
i1j1

ẽj11

)
⊗···⊗

(
m′n∑
jn=1

Un
injn

ẽjnn

)
.

(13)
A fundamental result for our work is summarized as follows.



Theorem 2: The elements of the tensor Y ∈ℜm′1⊗ℜm′2⊗··
·⊗ℜm′n defined by expression (13) can be computed through
equation (6); that means:

Y =
∑

j1,j2,···,jn

Yj1,j2,···,jn ẽ
j1
1 ⊗ ẽj22 · · · ⊗ẽjnn , (14)

where:

Yj1,j2,···,jn =
(
X×1 U

1T ×2 U
2T ...×n UnT

)
j1,j2,···,jn

.

(15)
Proof: See [14].
So, the Theorem 2 shows that the expression (6) can be

viewed as a dimensionality reduction in each one of the
component spaces of the tensor product ℜm1⊗ℜm2⊗···⊗ℜmn .
This fact will be explored in the next section.

V. SPECTRAL STRUCTURE OF CSA SUBSPACE

In this paper, the elements of the new basis:

B̃ =
{
ẽi11 ⊗ ẽi22 ⊗ · · · ⊗ ẽinn , ẽikk ∈ ℜm′k

}
, (16)

where the projection matrices Uk ∈ ℜmk×m′k , k = 1...n,
are computed by the CSA Algorithm are called CSA tensor
components.

The point is how to sort these components according to the
variance explained by each one? The Appendix A of the report
[14] shows that we can not perform this task by computing
the spectrum of a covariance matrix, in contrast to the PCA or
MPCA [1], [6]. However, in the CSA algorithm each subspace

{
ẽjkk , jk = 1, 2, · · ·,m′k

}
, k = 1, 2, · · ·, n,

is obtained by taking the first m′k leading eigenvectors of the
covariance matrix Ck. So, let

{
λk
jk
, jk = 1, 2, · · ·,m′k

}
, k = 1, 2, · · ·, n,

the associated eigenvalues. The data distribution in each sub-
space can be represented by the vector:

vk =

m′k∑
jk=1

λk
jk
ẽjkk , k = 1, 2, · · ·, n. (17)

Therefore, the variance explained by each element of basis
B̃ in expression (16) can be estimated by calculating:

v1⊗v2⊗···⊗vn =
∑

j1,j2,···,jn

λ1
j1λ

2
j2 ···λ

n
jn ẽ

j1
1 ⊗ẽj22 ⊗···⊗ẽjnn .

and taking the corresponding coefficient in order to estimate
the covariance structure of the CSA subspace. Consequently,
we can rank the CSA tensor components by sorting the
elements of the set:

E =
{
λj1,j2,···,jn = λ1

j1λ
2
j2 · · · λ

n
jn , jk = 1, 2, · · ·,m′k

}
,

(18)

to obtain the principal CSA tensor components. The sorted
sequence {λj1,j2,···,jn} can be re-indexed by just using one
index {λi; i = 1, 2, ...,

∏n
k=1 m′k} that tells the number

of the principal CSA component in the sorted sequence.
The expression (17) is the key of this proposal. Once this
expression is computed the ranking method proposed can be
applied whatever the tensor decomposition used.

VI. TENSOR DISCRIMINANT PRINCIPAL COMPONENTS

In this section we assume that there are only two classes to
separate. Then, following the reference [11], we consider to
approach the problem of ranking tensor principal components
by estimating a linear classifier.

Firstly, we perform dimensionality reduction by computing
the low dimensional representation Yi of each tensor Xi

through expression (6). The goal of this step is to discard
redundancies of the original representation. Then, the linear
SVM classifier is estimated (through expressions (1)-(2)) using
the projected training examples Yi ∈ ℜm′1×m′2×...×m′n

and the corresponding labels (details are given next). The
separating hyperplane is defined through a discriminant tensor
W ∈ ℜm′1×m′2×...×m′n while the discriminant features given
by:

ỹ1 = ⟨Y1,W⟩,
ỹ2 = ⟨Y2,W⟩, (19)

...

ỹN = ⟨YN ,W⟩,

are used for classification (⟨., .⟩ means internal product given
in expression 3).

We can investigate the components Wi1,..,in of the dis-
criminant tensor W to determine the discriminant contribution
for each feature. So, following the same idea proposed in
[11] for PCA subspaces, these components are weights in
expression (19) that determine the discriminant contribution
of each feature Yi;i1,..,in . Therefore, if a weight Wi1,..,in is
approximately 0 this fact indicates that the corresponding fea-
ture Yi;i1,..,in is not significant to separate the sample groups.
In contrast, largest weights (in absolute values) indicate that
the corresponding features contribute more to the discriminant
score and consequently are important to characterize the
differences between the groups [15].

Therefore, we are selecting among the CSA components
the ”directions” that are efficient for discriminating the sample
groups rather than representing all the samples, as performed
in section V. The obtained components, ordered in decreasing
order of the discriminant weights, are called here the tensor
discriminant principal components (TDPCA).

Such idea can be seen from a matrix viewpoint using the
Kronecker product. It can be shown that we can vectorize the
database tensors Xi and the reduced representations Yi in the
column arrays xv

i and yv
i , respectively, such that yv

i = PTxv
i ,

where P = Un
⊗

Un−1
⊗

, ...,
⊗

U1, with the matrices U j

given by the CSA algorithm [14]. Therefore, the expressions
in (19) can be re-written as:



ỹ1 = yv11w1 + yv12w2 + ...+ yv1mwm,

ỹ2 = yv21w1 + yv22w2 + ...+ yv2mwm, (20)
...

ỹN = yvN1w1 + yvN2w2 + ...+ yvNmwm,

where m = m′1 · m′2 . . .m′n and [w1, w2, ..., wm] are the
weights corresponding to the principal component features
calculated by the linear classifier, and [yvi1, y

v
i2, ..., y

v
im] are the

attributes of each data vector i, where i = 1, ..., N , projected
on the full rank CSA space [11].

In other words, the zero mean data vectors are projected on
the CSA components and reduced to m-dimensional vectors
representing the most expressive features. Afterwards, the
N × m data matrix and their corresponding labels are used
as input to calculate the SVM separating hyperplanes [11].
Finally, instead of selecting the tensor principal components by
estimating their spectral structure (sorting the set E in expres-
sion (18) in decreasing order), we select as the first principal
TDPCA components the ones with the highest discriminant
weights, that is, [p1,p2, ...,pm], where pi, i = 1, 2, . . . m,
are the columns of P corresponding to the largest discriminant
weights |w1| ≥ |w2| ≥ . . . ≥ |wm| given by the separating
hyperplane computed through the linear classifier; in this case,
the SVM one. We must highlight that SVM can be replaced by
any other separating hyperplane. Besides, from expression (19)
we conclude that the TDPCA methodology is not restricted to
the CSA components.

VII. EXPERIMENTAL RESULTS

In our experiments we have used the image face database
maintained by the Department of Electrical Engineering of
FEI, São Paulo, Brazil. There are 14 images for each of 200
individuals, a total of 2800 images. All images are colorful and
taken against a white homogenous background in an upright
frontal position with 11 neutral profile rotation of up to about
180 degrees, one facial expression (smile) and two poses with
variations in illumination. Scale might vary about 10% and
the original size of each image is 640× 480 pixels. All faces
are mainly represented by students and staff at FEI, between
19 and 40 years old with distinct appearance, hairstyle, and
adorns. The number of male and female subjects are exactly
the same and equal to 100 [11], [15].

Figure 2 shows an example of 11 neutral profile rota-
tions that have been used in all experiments. For memory
requirements, we convert each pose to gray scale before
computations. We observe that the images are well scaled and
aligned. These features make the FEI database very attractive
for testing dimensionality reduction in tensor spaces.

In the first part of the experimental results (section VII-A)
we have carried out a gender image analysis (female versus
male samples) and visualization. Next, in section VII-B, we
have investigated the efficiency of the ranking approaches on
recognizing samples.

Fig. 2. The 11 neutral profile rotations of an individual in the FEI database.

A. Understanding and Visualizing the Tensor Components
To avoid the trivial solution for CSA, we run the Algorithm

1 for U1
0 ∈ ℜ480×479, U2

0 ∈ ℜ640×639 and U3
0 ∈ ℜ11×11

which performs a total of 479·639·11 = 3366891 ≈ 3, 36·106
CSA tensor components, according to expression (16). These
components are sorted according to their variances that are
computed following expression (18). We have observed that
the variances fall in the range [1.0333 × 104, 2.3 × 10−3].
Therefore, we retain all the tensor components performing a
full rank CSA subspace with dimension m = 3366891.

Now, we determine the discriminant contribution of each
CSA component by investigating the weights of the tensor
”direction” found by the SVM approach. Table I lists the 60
CSA components with the highest weights in absolute values
for discriminating the gender samples (see [14], page 17, for
top 100 list). We observe that TDPCA with SVM has selected
the 235th, 184th, 94th, and 91th principal CSA components
between the top 10 most discriminant tensor components.
Among the top 60 we get the 2008th, 945th and 829th
principal CSA components. Since principal components with
lower variances describe particular information related to few
samples, these results confirm the SVM ability of zooming
into the details of group differences.

Gender Experiment: TDPCA components given by SVM
3 47 91 235 11 184 35 31 4 94

204 132 15 1 24 48 37 66 34 52
64 98 336 469 61 113 23 12 42 54
9 6 157 702 105 190 173 100 608 530

277 543 656 25 143 8 14 862 167 89
945 829 21 782 96 2008 72 214 29 20

TABLE I
TOP 60 (FROM LEFT TO RIGHT AND TOP TO BOTTOM ) TENSOR

DISCRIMINANT PRINCIPAL COMPONENTS, RANKED BY SVM
HYPERPLANE, USING THE FEI DATABASE.

The total variance explained by the 400 CSA most expres-
sive and TDPCA components for the gender experiment is
illustrated in Figure 3. This figure shows that as the dimension
of the CSA most expressive subspace increases, there is an
exponential decrease in the amount of total variance explained
by the first CSA tensor principal components. A similar
behavior for standard PCA was also reported in [11].

However, the corresponding variances explained by the
TDPCA components do not follow the same behavior. Specif-
ically, we observe in Figure 3 some oscillations along the



SVM spectrum. For instance, the amount of the total variance
explained by the 101 − 120 TDPCA components is a local
maximum for the SVM distribution while the amount of the
total variance explained by the 181− 200 is a local minimum
(page 18 of [14] highlights this fact by considering total
variance for 1400 components).

Fig. 3. Amount of total variance explained by the 400 CSA most expressive
tensor components (black columns), and 400 SVM most discriminant tensor
components (green columns).

These results indicate that despite of the substantial dif-
ferences between male and female there are some artifacts
that vary on several images but they are not related to
gender characteristics. So, they should not be considered as
discriminant information.

To understand the changes described by the principal tensor
directions, we have reconstructed the CSA most expressive
features by varying each principal tensor component. Firstly,
we shall observe that each CSA tensor component in expres-
sion (16) can be written as:

Φαβγ =

αβγ∑
j1j2j3

Φαβγ
j1j2j3

ẽj11 ⊗ ẽj22 ⊗ ẽj33 , (21)

where Φαβγ
j1j2j3

= 1 if (j1, j2, j3) = (α, β, γ) and Φαβγ
j1j2j3

=
0 otherwise. Therefore, expression (7) allows to write the
reconstruction of Φαβγ as:

Φαβγ
R =

∑
i1i2i3

(
Φαβγ ×1 U1 ×2 U2 ×3 U3

)
i1i2i3

ei11 ⊗ei22 ⊗ei33

(22)
So, by performing the operation:

T (λ) = CM+ λΦαβγ
R , λ ∈ ℜ, (23)

with CM been the centroid computed in line 2 of Al-
gorithm 1, we can visualize each CSA tensor component
in the original data space. The Figure 4 shows the frontal
pose of tensor CM. Following the work [11], we choose

λ ∈
{
±3
√
λαβγ ,±2

√
λαβγ

}
, where λαβγ is the correspond-

ing variance of the tensor component computed in expression
(18).

Fig. 4. Average frontal pose.

Figure 5 illustrates the changes on the first two CSA most
expressive components against the first two tensor discriminant
principal components selected by the SVM hyperplane in
the gender experiment. For simplicity, in Figure 5 we are
visualizing only the frontal poses of T (λ). It can be seen that
the first CSA most expressive directions captures essentially
the changes in illumination and some aspects of gender, which
are the major variations of all the training samples.

Fig. 5. Visualization of the changes described by the tensor principal
components for gender. From top to bottom: the first two CSA most expressive
component (first and second rows), the first two TDPCA components selected
by SVM (third and fourth rows).

When we compare these results with the ones reconstructed
by the TDPCA selected by SVM, illustrated in the third and
fourth rows of Figure 5, we observe that it is more noticeable
the changes from female (left most) to male (right most) in
the third row.

Therefore, even in this situation where the classes are well
separated, we observe that the discriminant tensor principal
components ranked by SVM are more effective for extracting
group differences than the principal CSA ones. This fact
should have consequences in the classification rate when
considering CSA subspaces selected by both criteria, as we
shall see in section VII-B.

For the principal components selected by the SVM sepa-
rating hyperplane, we must be careful about the above limits
for λ because some λj1,j2,j3 can be very small in this case,
showing no changes between the samples when we move along



the corresponding principal components. For instance, let us
consider the 199th TDPCA principal components selected by
SVM (the 90th principal CSA tensor component). According
to the Figure 3, this component counts for less than 5%
of the total variance explained by the tensor components.
Therefore, if we use only the associated variance, we get
no changes, as observed in the first row of Figure 6. Also,
the mean variance λ̄ = (

∑i=m
i=1 λi)/m, used in [11], is not

efficient in this case as we see in the second row (middle)
of Figure 6. Other possibility is to observe that the first 90
principal CSA tensor components corresponds to a 51, 17%
of the total variance. So, we can try to use the partial mean
variance λ̄90 = (

∑i=90
i=1 λi)/90 in expression (23), which is

visualized on the third row of Figure 6 showing few changes
in the gender features. Therefore, we decided to use the
max{λi, i = 1, 2, ..., 3366891} whose results are observed in
the forth row (bottom) of the Figure 6. In this case the changes
in gender features are more noticeable.

Fig. 6. Visualization of the changes described by the 199th TDPCA principal
components selected by SVM (the 90th principal CSA component). The first
row (top) uses λ90;the second row uses the global mean λ̄; the third row
applies the partial mean λ̄90 and the last rows (bottom) uses max{λi, i =
1, 2, ..., 3366891}.

In order to quantify the discriminant power of the principal
components, we present in Figure 7 the amount of total
discriminant information, in descending order, explained by
each one of the first 400 tensor principal components selected
by the SVM approach. The proportion of total discriminant
information t described by the kth tensor principal component
can be calculated as follows:

tk =
|wk|∑m
j=1 |wj |

, (24)

where m = 3366891, k = [1, 2, ...,m] and [w1, w2, ..., wm]
are the weights corresponding to the tensor principal compo-
nents ranked by the SVM separating hyperplane.

Figure 7 shows that as the dimension of the TDPCA
subspace increases there is an exponential decrease in the

Fig. 7. Amount of total discriminant information calculated in equation (24)
and explained by SVM tensor principal components for gender experiment.

amount of total discriminant information described by the
SVM principal components.

B. Recognition Rates of Tensor Components

In this section, we have investigated the effectiveness of the
TDPCA components on a recognition task against the CSA
components ranked according to the variances computed in
expression (18).

The 10-fold cross validation method is used to evaluate the
classification performance of the most expressive (CSA largest
variances) and most discriminant tensor components selected
through SVM weights. In these experiments we have assumed
equal prior probabilities and misclassification costs for both
groups. We calculate the mean of each class i on the CSA
subspace and, given a test observation Xt, we compute the
Mahalanobis distance from each class mean Xi to assign that
observation to either the male or female groups. That is, we
have assigned Xt to class i that minimizes:

di(Xt) =

k∑
j=1

1

λj
(Xt;j −Xi;j)

2 (25)

where λj is the corresponding variance and k is
the number of tensor principal components retained.
In the recognition experiments, we have considered
different number of tensor principal components (k =
2, 5, 50, 100, 200, 400, 900, 1000, 1200, 1400, 1800, 2000) to
calculate the recognition rates of the corresponding methods
of selecting principal components.

Figure 8 shows the average recognition rates of the 10-
fold cross validation. For the smaller numbers of components
considered (k = 2 and k = 5) we observe that TDPCA
achieves higher or equal recognition rates than the CSA
highest variances components. When taking k ∈ [50, 1400)
the TDPCA approach using SVM weights performs better
than CSA largest variation subspaces. On the other hand, for
k ∈ [1400, 2000] the principal CSA tensor components gets
higher recognition rates.

By using the standard deviation reported on Table II and
the average recognition rate pictured on Figure 8 we compute



Fig. 8. Gender experiments using the FEI database. Average recognition
rate of CSA components selected by the largest variances, and largest SVM
weights criteria.

the statistical t-student test [2]. For 50 ≤ k ≤ 400 we get p <
0.0204 which shows that the observed superiority of TDPCA
in this range is statistically significant.

Number of Principal Components (k) × Standard Deviation %
k 2 5 50 100 200 400 800 1000 1200 1400 1800 2000
CSA 9,5 6,8 8,3 5,5 7,0 8,2 7,4 7,1 6,8 6,7 6,2 6,3
TDPCA 11,7 8,1 4,4 3,7 3,7 3,3 5,0 5,0 6,1 5,1 6,8 8,1

TABLE II
SECOND AND THIRD LINES REPORT STANDARD DEVIATIONS WHEN

INCREASING k.
Despite of these nuances the recognition rates for k > 100

are higher than 0.875 for both approaches. In particular, for
k = 100 they are higher than 0.9 which is impressive, since
we have retained only 100 components of a full rank subspace
with dimension m = 3366891. The fact that for smaller
numbers of components (k = 2) the TDPCA with SVM
performs better than the CSA largest variation components
can be explained by returning to the Figure 5 and observing
that the TDPCA first component (third row) is more efficient
to describe the changes from female to male then the CSA
one (first row). On the other hand the fact that CSA largest
variation components perform quite better than TDPCA for
k > 1400 may be related with incorporating some noisy
information.

The TDPCA approach is limited to two-class problems
and its computational cost is higher than the covariance
structure estimation because TDPCA includes the separating
hyperplane computation. By observing the recognition rates
reported above we consider that both approaches are compet-
itive for two-class classification tasks depending on the trade-
off between complexity and precision.

VIII. CONCLUSIONS AND FUTURE WORKS

In this paper we addressed the problem of sorting tensor
components, in the context of the CSA technique. We follow

two distinct approaches: (a) Estimating the covariance struc-
ture of all the data; (b) Computing discriminant weights, given
by separating hyperplanes, to select the most discriminant CSA
tensor components (TDPCA technique). In the experimental
results, we show a low dimensional data representation of both
tensor ranking techniques in a gender experiment performed
using the FEI database. Although the TDPCA achieves quite
better results, we observe robust discriminant reconstruction
and high recognition rates in the classification task of both
techniques.

Further research directions are to consider the LDA sep-
arating hyperplanes for the TDPCA methodology, test the
approaches for colorful image analysis using FEI and FERET
2 databases and compare the methods with MPCA and TDA.
Respect to the former, we shall observe that in [11] it is
reported that since PCA explains features that most vary in
the samples the first principal components do not necessarily
represent important discriminant directions to separate sample
groups. We will check this fact for MPCA as well.
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