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Fig. 1. Generic workflow for the use of unsupervised effectiveness estimation measures in Content-Based Image Retrieval tasks.

Abstract—The main objective of Content-Based Image Re-
trieval (CBIR) systems is to retrieve a ranked list containing
the most similar images of a collection given a query image, by
taking into account their visual content. Although these systems
represent a very promising approach, in many situations is
very challenging to assure the quality of returned ranked lists.
Supervised approaches rely on training data and information
obtained from user interactions to identify and then improve
low-quality results. However, these approaches require a lot of
human efforts which can be infeasible for many systems.

In this paper, we present two novel unsupervised measures
for estimating the effectiveness of ranked lists in CBIR tasks.
Given an estimation of the effectiveness of ranked lists, many
CBIR systems can, for example, emulate the training process,
but now without any user intervention. Improvements can also be
achieved on several unsupervised approaches, such as re-ranking
and rank aggregation methods, once the estimation measures
can help to consider more relevant information by distinguishing
effective from non-effective ranked lists. Both proposed measures
are computed using a novel image representation of ranked
lists and distances among images considering a given dataset.
The objective is to exploit the visual patterns encoded in the
image representations for estimating the effectiveness of ranked
lists. Experiments involving shape, color, and texture descriptors
demonstrate that the proposed approaches can provide accurate
estimations of the quality in terms of effectiveness of ranked
lists. The use of proposed measures are also evaluated in image
retrieval tasks aiming at improving the effectiveness of rank
aggregation approaches.

Keywords-effectiveness estimation, content-based image re-
trieval, rank aggregation

I. INTRODUCTION

A large set of technological advances in image acquisition,
storage, and sharing have contributed to the huge growth of
image collections. A very promising approach for dealing
with all available visual data relies on the use of Content-
Based Image Retrieval (CBIR) systems. Content-Based Image
Retrieval can be broadly defined as any technology that in
principle helps to organize digital picture archives by their
visual content [1]. A common application of these systems
consists in supporting image searches. The main objective of
Content-based Image Retrieval (CBIR) systems is to retrieve
a list containing the most similar images in a collection given
a query image, according to their visual properties (such as,
shape, color, and texture). In the following, collection images
are ranked in decreasing order of similarity, according to a
given image descriptor.

An image content descriptor is characterized by [2]: (i) an
extraction algorithm that encodes image features into feature
vectors; and (ii) a similarity measure used to compare two
images. The similarity between two images is computed as a
function of the distance of their feature vectors. A common
limitation of several approaches is the well-known semantic
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gap between low-level features and higher-level concepts,
which basically consists in the use of visual similarity for
inferring semantic similarity. Motivated by these limitations,
many supervised learning approaches have been proposed.
Relevance Feedback methods [3], [4], for example, were
incorporated into CBIR systems with the aim of exploiting
interactions for learning users needs. Although very effective,
these approaches require a lot of human efforts for obtaining
enough training data, which can be infeasible for many real-
world systems.

Aiming at overcoming these problems, efforts were put on
unsupervised approaches. Methods have been proposed for
analyzing the relations among all images in a given collection,
without the need of user intervention [5]–[12]. Contextual
information has been exploited to improve the effectiveness
of CBIR systems. More specifically, contextual information
refers to information encoded in the ranked lists defined
by a CBIR system [13], which is used to update similarity
scores. Broadly, the general objective of these unsupervised
methods is somehow mimic the human behavior on judging the
similarity among objects by considering specific contexts [14].

Contextual information can also be exploited for unsuper-
vised estimation of effectiveness of CBIR systems. Given an
accurate estimation of the effectiveness of ranked lists, many
CBIR systems can, for example, emulate training procedures,
but now without any user intervention. Improvements can also
be achieved on several unsupervised approaches, such as re-
ranking and rank aggregation methods, once the estimation
measures can help to consider more relevant information as it
allows for distinguishing effective from non-effective ranked
lists.

In this paper, we present two novel unsupervised measures
aiming at approximating the human judge of similarity by
estimating the effectiveness measures of ranked lists. Figure 1
illustrates an example of the use of unsupervised effectiveness
estimation measures. The main idea consists in exploiting
contextual information encoded in distances among images
for estimating the effectiveness of ranked lists. Given an
effectiveness estimation of ranked lists, final results provided
to the users can be improved. Both measures proposed in this
paper are computed using a color image representation, named
neighborhood image, based on information extracted from
both ranked lists and distances among images. As discussed
along the paper, the proposed image representations provide
a rich contextual information related to the dataset and the
relationships among images.

We conducted an experimental evaluation by computing the
correlation of proposed measures with established effective-
ness measures. We compared our proposed measures with
a recently proposed approach considering shape, color, and
texture descriptors on different datasets. We also evaluated the
application of proposed measures in rank aggregation methods.
Experimental results demonstrate that the proposed approaches
can provide accurate estimations of the effectiveness of ranked
lists.

II. IMAGE REPRESENTATION OF NEIGHBORHOOD
SIMILARITY

Let C={img1, img2, . . . , imgn} be an image collection. Let
D be an image descriptor which defines a distance function
between two images imgi and imgj as ρ(imgi, imgj). For
readability purposes, we use the notation ρ(i, j) for denoting
the distance between images imgi and imgj .

Based on the distance function ρ, a ranked list τq can be
computed in response to a given query image imgq . The
ranked list τq=(img1, img2, . . . , imgn) can be defined as
a permutation of the subset Cs ⊂ C, which contains the most
similar images to query image imgq , such that |C| = n. A
permutation τq is a bijection from the set Cs onto the set
[n] = {1, 2, . . . , n}. For a permutation τq , we interpret τq(i)
as the position (or rank) of image imgi in the ranked list τq .

Our goal is to create an image representation of the neigh-
borhood similarity of a given image, considering distances
and ranked lists computed by CBIR descriptors. The image
representation approach provides a visual representation of
the neighborhood similarity and enables the use of image
processing techniques, a well-established area. We propose
a novel color image representation, inspired by a recently
proposed gray scale image representation [15], [16] used by
re-ranking an rank aggregation algorithms. As discussed in
next section, information encoded in the image representation
can be exploited for computing the unsupervised measures for
effectiveness estimation.

We can formally define the proposed image representation
as follows. Let the neighborhood image Î be a color image
defined by the pairs (DI ,r), (DI ,g), and (DI ,b), where DI is
a finite set of pixels (points in N2, defined by a pair (x, y))
and r, g, b : DI → N are functions that assign to each pixel
p ∈ DI a natural number for each color channel red, green,
and blue. We define the values of functions in terms of the
distance function ρ and the ranked list τq of the query image
imgq .

Let τq=(img1, img2, . . . , imgn) be the ranked list com-
puted by the image descriptor for the query image imgq . The
axis of neighborhood image Î are ordered according to the
order defined by ranked list τq . Let p(x, y) be the pixel at the
position (x, y) and let imgi, imgj be images in the ranked list
τq , such that the position of imgi is given by τq(i) = x and
τq(j) = y.

The value of r(x, y) (function that defines the red scale of
pixel p(x, y)) is defined as the distance between imgi and
imgj as follows: r(x, y) = ρ̄(i, j), where ρ̄ is defined by the
distance function ρ normalized in the interval [0,255]. The
values returned by functions g(x, y) and b(x, y) are defined as
the distances to imgi and imgj according to the query image
imgq , that is, as the difference between distances from imgq
to imgi and imgj . The value of these functions are computed
as follows: g(x, y) = b(x, y) = |ρ̄(q, i) − ρ̄(q, j)|. Figure 6
illustrates how the neighborhood image is constructed.

Our hypothesis is that the neighborhood image can provide



Fig. 2. High-effective ranked list. Fig. 3. Low-effective ranked list.

Fig. 4. Image representation for high-effective ranked list. Fig. 5. Image representation for low-effective ranked list.

Fig. 6. Computation of RGB channels of neighborhood image.

useful information about the effectiveness of the ranked list τq .
An example of an effective ranked list (from MPEG-7 [17] col-
lection) is illustrated in Figure 2. The first image (with green
border) represents the query image and remaining images the
computed ranked list by the CFD [18] shape descriptor. The
non-similar images to the query image are presented with red

borders. The respective neighborhood image representing this
ranked list is illustrated in Figure 4. An analogous example
for a non-effective ranked list is illustrated in Figures 3 and 5.

As we can observe, the two neighborhood images present
very dissimilar visual patterns. Low distance values (similar
images) are associated with red dark pixels in the image, while
high values (non-similar images) refers to red bright pixels.
Considering an effective ranked list, a dark region in shades
of red is produced in the top left corner of the neighborhood
image specially around the main diagonal (as we can observe
in Figure 4).

The other visual pattern that differs the two images (from
effective and non-effective ranked lists) is concerning with the
shades of blue and green. Shades of blue and green represent
the difference between distances from imgq to imgi and
imgj . Small differences between distances ρ(q, i) and ρ(q, j)
indicate low confidence of the image descriptor to differ imgi
from imgj concerning with their similarity to imgq .

For non-effective ranked lists, the combination of bright
shades of red and dark shades of blue and green produces
a region with shades of blue and green in the top left corner
of the image (as we can observe in Figure 5). Our objective is
to exploit these visual patterns for estimating the effectiveness
of ranked lists, as described in next section.



III. EFFECTIVENESS ESTIMATION MEASURES

In this section, we present two unsupervised effectiveness
estimation measures based on the representation defined by
the neighborhood image. For both measures, we consider the
top-left corner of the image, with size of k × k. This region
is related to the beginning of ranked lists, where the precision
of results is higher than any other region of the image.

A. Neighborhood Distance Measure (NDM)

This Neighborhood Distance Measure (NDM) is computed
based on occurrence of dark pixels in the red channel at
the top-left corner of the neighborhood image. These pixels
indicate a low distance among images at first positions of the
ranked lists being analysed. The NDM measure is computed
as follows:

NDM =

k−1∑
i=0

k−1∑
j=0

1

1 +
√
i2 + j2 × |i− j|

× t(i, j), (1)

where t(i, j) represents a threshold function for identifying
dark pixels, so that t(i, j) = 1 if r(i, j) < l and t(i, j) = 0
otherwise. The threshold l is computed based on average and
maximum distance values contained in k×k square in top left
corner:

l =
avg(ρ(i, j))

max(ρ(i, j))
× 255 (2)

with i, j < k. The dividend terms aim at assigning higher
weights to pixels at the beginning of ranked lists and close to
the main diagonal.

B. Neighborhood Distance Variation Measure (NDVM)

The Neighborhood Distance Variance Measure (NVM) is
computed based on the occurrence of high values of blue and
green channels at the top left corner of image. These pixels
indicate the capacity of the image descriptor for discriminating
images at the first positions of the ranked lists. In this way, the
greater the variation of distances, the greater are the values of
blue and green channels and higher the expected effectiveness
of the ranked list. The NVDM measure is computed as follows:

NVDM =

k−1∑
i=0

k−1∑
j=0

(g(i, j) + b(i, j))× (
√
i2 + j2 × |i− j|).

(3)
As for NDM measure, higher weights are assigned to pixels

at the beginning of ranked lists and close to the main diagonal,
which present higher precision.

IV. EXPERIMENTAL EVALUATION

This section presents conducted experiments for demonstrat-
ing the applicability of proposed measures. We analyzed the
measures under several aspects, considering different descrip-
tors and datasets. We also introduce the use of the proposed
measures in rank aggregation tasks.

A. Datasets and Descriptors

Three datasets and eleven CBIR descriptors (five shape de-
scriptors, three color descriptors, and three texture descriptors)
are considered. We briefly describe the datasets and descriptors
in the following.

B. Shape

We evaluate the use of our method with five shape de-
scriptors: Segment Saliences (SS) [19], Beam Angle Statis-
tics (BAS) [20], Inner Distance Shape Context (IDSC) [21],
Contour Features Descriptor (CFD) [18], and Aspect Shape
Context (ASC) [22].

The experiments with shape descriptors were conducted on
the MPEG-7 dataset. The MPEG-7 [17] dataset is a well-
known shape collection, commonly used for shape descriptors
and post-processing methods evaluation and comparison. It is
composed of 1400 shapes divided into 70 classes of 20 images
each. The size of images range from (50 × 48) to (526 ×
408) pixels. Figure 7 presents some examples of images of
the MPEG-7 dataset.

Fig. 7. Examples of shapes in the MPEG-7 dataset.

C. Color

We evaluate our method with three color descriptors: Bor-
der/Interior Pixel Classification (BIC) [23], Auto Color Correl-
ograms (ACC) [24], and Global Color Histogram (GCH) [25].
The experiments were conducted on a dataset used in [26]
and composed of images from 7 soccer teams, containing
40 images per class. The size of images range from (198 ×
148) to (537 × 672) pixels. Some samples of this dataset are
illustrated in Figure 8.



Fig. 8. Examples of images in the Soccer dataset [26].

D. Texture

The experiments consider three well-known texture de-
scriptors: Local Binary Patterns (LBP) [27], Color Co-
Occurrence Matrix (CCOM) [28], and Local Activity Spec-
trum (LAS) [29]. We used the Brodatz [30] dataset, a popular
dataset for texture descriptors evaluation was considered. The
Brodatz dataset is composed of 111 different textures of size
(512 × 512) pixels. Each texture is divided into 16 blocks
(128 × 128) pixels of non-overlapping sub images, such that
1776 images are considered. Some examples of textures are
presented in Figure 9.

Fig. 9. Examples of Brodatz [30] texture images.

E. Effectiveness Correlation Analysis

This section aims at evaluating the use of the proposed
measures as an unsupervised estimation of the effectiveness
of ranked lists. We analyzed the correlation between the
proposed measures and the well-known average precision
measure, considering shape, color, and texture descriptors and
dataset. The objective of the correlation analysis is to assess
if the proposed measures are correlated with a traditional and
widely used CBIR effectiveness score (MAP). If the proposed
measures are correlated with MAP, that means they can be
used to estimate the quality of ranked list in an unsupervised
way.

We also compared the measures presented in this paper
with a recently proposed cohesion [10] measure. The cohesion
measure is used in re-ranking algorithms to estimate the
quality of ranked lists and to define convergence criterion1.

1) Experimental Protocol: We compared the proposed mea-
sures with the Average Precision (AP), which is is one of the
most used effectiveness measure. Let q be a query item and let
Nr be the number of relevant items in a collection for a given
query q. Let 〈ri|i = 1, 2, . . . , d〉 be a ranked relevance vector
to depth d, where ri indicates the relevance of the ith ranked
document scored as either 0 (not relevant) or 1 (relevant), the
AP is defined as follows:

1We used k=8 for cohesion measure, according to [10].

AP =
1

Nr

d∑
i=1

(
ri
i

i∑
j=1

rj

)
. (4)

We use an statistical measure to evaluate the magnitude of
a relationship among the proposed measures and the average
precision. We analyze this relationship by using Pearson’s
Correlation Coefficient, given by:

r =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y )2
. (5)

Pearson’s correlation coefficient r for continuous data
ranges from -1 to +1, where r = 1 indicates a perfect positive
linear relationship and r = −1 a perfect decreasing linear
relationship The closer the coefficient is to 1, the stronger the
correlation between the variables.

2) Impact of Parameters: The computation of the proposed
measures considers the parameter k, which represents the num-
ber of neighbors considered for the effectiveness estimation.
To evaluate the influence of this parameter and for determining
the best value of k, we conducted a set of experiments. We use
the MPEG-7 [17] dataset and the CFD [18] shape descriptor.
The Pearson correlation between the proposed measures and
the average precision are computed ranging k in the interval
[5, 100] with variations of 5.

Figure 12 illustrates the results of correlation score for
different values of k. We observed that best correlation score
converged for values k = 35 for NDM and k = 50 for NVDM.
We used these values in all experiments.

Fig. 12. Impact of parameters: different values of k.



TABLE I
PEARSON CORRELATION WITH PRECISION FOR EFFECTIVENESS ESTIMATION MEASURES.

Descriptor Type Dataset MAP NDM NVDM Cohesion [10]
SS [19] Shape MPEG-7 37.67% 0.71 0.81 0.80
BAS [20] Shape MPEG-7 71.52% 0.79 0.76 0.53
CFD [18] Shape MPEG-7 80.71% 0.79 0.67 0.50
IDSC [21] Shape MPEG-7 81.70% 0.76 0.60 0.36
ASC [22] Shape MPEG-7 85.28% 0.75 0.58 0.36
GCH [25] Color Soccer 32.24% 0.13 0.26 0.15
ACC [24] Color Soccer 37.23% 0.28 0.49 0.34
BIC [23] Color Soccer 39.26% 0.23 0.44 0.46
LBP [27] Texture Brodatz 48.40% 0.45 0.54 0.54
CCOM [28] Texture Brodatz 57.57% 0.08 0.71 0.68
LAS [29] Texture Brodatz 75.15% 0.67 0.71 0.68

Average 0.51 0.60 0.49

Fig. 10. Example of correlation between the NDM measure and average
precision.

Fig. 11. Example of correlation between the NVDM measure and average
precision

3) Correlation Results: Table I shows the obtained results
for the correlation analysis. For each pair dataset-descriptor,
we report the MAP (Mean Average Precision) obtained by
the descriptor and correlation between effectiveness estimation
measures and the average precision. For each descriptor, the
highest correlation is presented in bold. We can observe that
the NDM measure presents the best correlation scores for the
MPEG-7 [17] dataset (which presents higher MAP scores),
reaching 0.79 for some descriptors.

The NVDM measure presents high correlation scores for
most of descriptors, including low and high MAP scores. The
NVDM measure also overcomes the cohesion [10] measure for
almost all descriptors, achieving an average correlation score
of 0.6 and the highest score of 0.81 for the SS [19] descriptor.

Figures 10 and 11 illustrate examples of correlation between
effectiveness estimation measures and average precision. Both
examples considered the MPEG-7 [17] dataset and the SS [19]
shape descriptor. Figure 10 presents results for the NVM mea-

sure, while Figure 11 shows results for the NVDM measure.
Each point in the graph represents a collection image. We can
observe that the graphs approximate a linear relationship with
a positive slope.

F. Rank Aggregation Methods

A direct application of our proposed effectiveness esti-
mation measures consists in their use on rank aggregation
methods. Different CBIR descriptors produce different results.
Further, it is intuitive that different descriptors may provide
different but complementary information. Basically, rank ag-
gregation methods aim at combining different ranked lists in
order to obtain a more accurate one.

However, rank aggregation approaches operate on unsuper-
vised way, without training data. In this way, our estimation
measures can be used for improving the effectiveness of
combined ranked lists. In our experimental evaluation, we
consider two methods: the traditional Borda [31] and the



TABLE II
MAP SCORES RELATED TO THE USE OF PROPOSED MEASURES FOR RANK AGGREGATION.

Descriptor Type Dataset Method Measure Score
(MAP)

CFD [18]+ASC [22] Shape MPEG-7 Borda - 91.12%
CFD [18]+ASC [22] Shape MPEG-7 Borda NDM 91.21%
CFD [18]+ASC [22] Shape MPEG-7 Borda NVDM 91.83%
CFD [18]+ASC [22] Shape MPEG-7 Reciprocal - 93.80%
CFD [18]+ASC [22] Shape MPEG-7 Reciprocal NDM 94.02%
CFD [18]+ASC [22] Shape MPEG-7 Reciprocal NVDM 93.80%
BIC [23]+ACC [24] Color Soccer Borda - 38.81%
BIC [23]+ACC [24] Color Soccer Borda NDM 38.81%
BIC [23]+ACC [24] Color Soccer Borda NVDM 38.86%
BIC [23]+ACC [24] Color Soccer Reciprocal - 38.88%
BIC [23]+ACC [24] Color Soccer Reciprocal NDM 38.89%
BIC [23]+ACC [24] Color Soccer Reciprocal NVDM 38.94%
LAS [29]+CCOM [28] Texture Brodatz Borda - 73.92%
LAS [29]+CCOM [28] Texture Brodatz Borda NDM 73.92%
LAS [29]+CCOM [28] Texture Brodatz Borda NVDM 74.49%
LAS [29]+CCOM [28] Texture Brodatz Reciprocal - 75.49%
LAS [29]+CCOM [28] Texture Brodatz Reciprocal NDM 75.53%
LAS [29]+CCOM [28] Texture Brodatz Reciprocal NVDM 76.43%

recently proposed Reciprocal Rank Fusion [32] methods. In
the following, we describe the rank aggregation methods
and how them can be improved by our proposed estimation
measures.

Both Borda [31] and Reciprocal [32] methods consider the
rank information, i.e., the positions of images in ranked lists
produced by different descriptors. Let D={D1, D2, . . . , Dm}
be a set of CBIR descriptors and let a imgq be a query image.
For each descriptor Dj ∈ D, we can compute a different
ranked list τq,Dj for the image query imgq . A given image
imgi is ranked at different positions (defined by τq,Dj (i))
according to each descriptor Dj ∈ D. The objective is to
use these different rank positions to compute a new distance
between images imgq and imgi.

1) Borda: The Borda [31] method considers directly the
rank information for computing the new distance FBorda(q, i)
between images imgq and imgi. Specifically, the distance is
scored by the number of images not ranked higher than image
imgi in the different ranked lists [33]. The new distance can
be computed as follows:

FBorda(q, i) =

m∑
j=0

τq,Dj
(i). (6)

The Borda method does not differ between positions given
by high-effective and low-effective ranked lists. In this way, we
propose to use the effectiveness estimation measures for com-
puting weights for ranked lists computed by each descriptor,
as a linear combination. The new distance can be computed
as follows:

FBordaW (q, i) =

m∑
j=0

τq,Dj (i)× fDj (q), (7)

where the function fDj (q) can be computed by the proposed
NVM and NVDM estimation measures using the image rep-
resentations of imgq .

2) Reciprocal Rank Fusion: The Reciprocal Rank Fusion
also uses the rank information for computing a similarity score
between images imgq and imgi. The scores are computed
according to a naı̈ve scoring formula:

FReciprocal(q, i) =

m∑
j=0

1

k + τq,Dj
(i)
, (8)

where k is a constant. Analogous to Borda method, we propose
to use the effectiveness estimation measures for computing
weights for ranked lists computed by each descriptor. The
NVM and NVDM estimation measures can be used to compute
the function fDj

(q).

FReciprocalW (q, i) =

m∑
j=0

1

k + (τq,Dj (i)× fDj (q))
, (9)

3) Rank Aggregation Results: Table II presents the results
obtained for rank aggregation tasks considering the three
datasets (shape, color, and texture). We present the results of
original rank aggregation methods and their combination with
proposed estimation measures, with best values in bold. For
all datasets, the combination of proposed measures reached
the best results.



V. CONCLUSIONS

In this work, we have presented two unsupervised measures
for estimating the effectiveness of ranked lists on CBIR
tasks. First an image representation is proposed to encode
contextual information extracted from ranked lists and distance
scores. In the following, visual patterns found in this image
representation are used to define measures for estimating the
effectiveness of ranked lists.

Experiments involving shape, color, and texture descriptors
demonstrated the applicability of proposed measures. Obtained
results demonstrate that our approaches can provide accurate
estimations of effectiveness of ranked lists. The use of pro-
posed measures are also evaluated on image retrieval tasks
aiming at improving the effectiveness of rank aggregation
approaches.

Future work focuses on: (i) considering the combination of
different estimation measures for more accurate prediction of
effectiveness; (ii) using proposed methods aiming at improving
the effectiveness of other rank aggregation methods; (iii) using
proposed measures on other unsupervised approaches as image
re-ranking algorithms.
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