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Abstract—This paper presents a method for detection and
recognition of road lane markings using an uncalibrated onboard
camera. Initially, lane boundaries are detected based on a linear-
parabolic model. Then, we build a simple model to represent
pixels related to the pavement, and explore this model to estimate
pixels related to lane markings. A set of features is computed
based on the detected lane markings, and a cascade of binary
classifiers is adopted to distinguish five types of markings:
dashed, dashed-solid, solid-dashed, single-solid and double-solid.
Experimental results show that the proposed method presents
good classification results under a variety of situations (shadows,
varying illumination, etc.).

Keywords-lane detection; lane markings; onboard vehicular
cameras; driver assistance system;

I. INTRODUCTION

Traffic safety is a major concern in present days, particularly
in underdeveloped and developing countries. According to the
World Health Organization (WHO) [1], 90% of the deaths
related to traffic accidents occur in low-income and middle-
income countries, in a total of more than 1.2 million deaths
per year and 50 million injuries every year.

Brazil is considered as an emerging country, presenting
vast natural resources and a strong potential for development
and industrial production. As stated in the Brazilian National
Agency of Land Transport [2], Brazil has approximately 1.7
million kilometers of road network. A study from 2009 [3]
reported that more than 33% of Brazilian roadways were
considered poor or very poor with respect to their overall
condition (signing, geometry and pavement) in 2007, and that
the number of traffic-related accidents in 2006 was over 35,000
in Brazil.

The annual road safety report [4], that was presented in
2011 by the International Traffic Safety Data and Analysis
Group (IRTAD), shows that road deaths keep decreasing in
most IRTAD countries (mostly developed countries), carrying
forward the significant reductions in the number of road
deaths accomplished in 2008 and 2009. On the other hand, a
study by the Brazilian Confederation of Countries (CNM) [5]
shows the high mortality rate due to traffic accident in Brazil.
Death ended accident ratio in Brazil is 2.5 times more than
United States, and 3.7 times more than Europe with respect
to population (See Table I).

1Mortality rate per 100,000 inhabitants.

TABLE I
ROAD FATALITIES IN 2008 [5]

Country Deaths Population (millions) Mortality rate1

Brazil 57,116 189.6 30.1
United States 37,261 304.0 12.5

European Union 38,876 498.0 7.8

As cited by the IRTAD group, many countries have adopted
road safety strategies for reduction of head-on / frontal, rear-
end crashes and side collision. These types of vehicle crashes
are the main reason of traffic accidents, resulting in at least
one death.

In the computer vision research community, there has been
significant effort in the last years towards the development of
vision-based approaches for intelligent roads and intelligent
vehicles [6], [7]. In particular, the development os vision-
based lane detection and lane departure warning systems [8]
are important to warn the driver when the vehicle begins to
move out of its lane, since accidents due to lane crossings
are common and may potentially lead to frontal collisions.
In that context, the detection and recognition of horizontal
lane markings is an important issue, since they indicate road
portions were takeovers (voluntary lane changes) are allowed
or not.

This paper presents a new approach to detect and classify
horizontal lane markings. Our approach employs a lane de-
tection/tracking algorithm, and then applies a cascaded binary
classifier to recognize five different lane marking types. The
remainder of this paper is organized as follows: Section II
revises some existing approaches for detection and recognition
of lane markings, focusing on onboard vehicular cameras. The
proposed approach is presented in Section II, and results are
presented in Section IV. Finally, our conclusions are drawn in
Section V.

II. RELATED WORK

Lane change or overtaking and passing another vehicle
are one of the most dangerous driving maneuvers and have
recently been studied extensively for applications in computer
vision in order to help the driver in the driving process. During
a journey, the driver might encounter a number of different
types of lane boundaries markings, including single (dashed
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Fig. 1. Types of lane boundaries: (a) Dashed. (b) Dashed-solid. (c) Solid-
dashed. (d) Single solid. (e) Double solid.

or solid) or double (dashed and solid, solid and dashed or only
solid) painted lines, as illustrated in Fig. 1.

In [9], two types of Advanced Driving Assistance Systems
(ADAS) are presented: (i) Lane Change Assistance (LCA)
is a kind of system that warns the driver against collisions
that may occur due to a lane change maneuver; and (ii)
and Lane Departure Warning (LDW) that warns the driver
when an unintentional lane departure is about to occur. These
systems also monitor lane markings and, consequently, a good
lane departure system will be able to detect the type of lane
boundaries.

Although there many approaches for lane tracking [8],
not much work has been devoted to identify lane markings.
Collado et al. [10] split the problem into few parts: create a
bird-eye view of the road, segment the pixels which belong to
longitudinal road markings, extract the lane boundaries by the
Hough Transform and realize adjusts in the pitch angle. Then,
lane boundaries are classified in continuous (also called solid),
broken (known as dashed) or merged (solid-dashed or dashed-
solid, with no distinction between them), computed by the
power spectrum of the Fast Fourier Transform. This scheme
needs a previous camera calibration for the initial procedure
that generates the bird-eye view.

A ridge measure was used to detect the lane markings
in [11]. The dashed type must have high values along the
center line of a region of interest and low values near the
boundaries of the road. The related paper present results
with the presence of continuous (solid) and discontinuous
(dashed) lane markings. However, they do not deal with solid-
dashed, dashed-solid or double-solid lane markings, which are
common in two-way roads.

Another approach for extracting road markings was pro-
posed by Zhao et al. [12] based on threshold segmentation. The
model initially creates a bird-eye view of the road, segments
the remapped image through an adaptive threshold, and applies
some geometrical constraints to remove spurious responses.
The output is a binary image with potential lane markings,
but no higher-level features or classification is performed.

Chira et al. [13] present a system for detection, measurement
and classification of painted objects in real-time using edge
detection and geometric pattern matching. Their focus is
mostly on horizontal traffic signs (forward arrow, forward
right, forward left, right arrow and dashed lane marking), not

being able do discriminate different lane marking types.
In this paper, our goal is to classify each portion of the

road monitored by an onboard camera inside a moving vehicle
into five possible types of lane markings, as shown in Fig. 1:
dashed, dashed-solid, solid-dashed, single-solid and double-
solid. As far as we know, this is the first approach that tries to
classify lane markings into these five categories (in particular,
dashed-solid, solid-dashed, and double-solid markings are
common in two-way roads, and indicate when overtaking is
possible or not). The proposed approach is presented next.

III. PROPOSED APPROACH

The first step of the proposed approach is to detect and
follow lane boundaries [14]. Given the detected lane bound-
aries, we extract some statistical properties of pavement-
related pixels based on a rectangular patch placed in between
detected lane boundaries, and use such parameters to detect
pixels related to lane-markings on a rectangular Region of
Interest (ROI) centered at the bottom of the lane boundary.
As the vehicle moves, the temporal evolution of extracted lane
markings provides cues on the type of lane marking, which
are recognized using a cascaded classifier (output classes are
ω1, ω2,. . ., ω5). These steps are explained in details next.

A. Road marking extraction

To estimate pixels related to lane markings, we firstly
assume that the intensity of lane markings is larger than the
intensity of the road pavement. Next, we estimate the width W
of the lane (in pixels) at the bottom of the image by computing
the horizontal distance between the detected lane boundaries.
To estimate the statistics of pavement-related pixels, we build
a rectangular patch ri with dimensions 0.03W × 0.20W , and
place it at a distance of 0.25W pixels from the lane boundary
to the interior of the lane (another possibility would be to
place it exactly at the center of the lane, but we decided to
place it closer to the lane boundary to avoid the interference
of vehicles in front), computing its mean intensity value µ and
standard deviation σ.

We also consider an external rectangular region re centered
at the bottom-most pixel of the lane boundary with the same
dimensions as ri (See Fig. 2), and we check the consistency of
each pixel (x, y) in patch re with the distribution of pavement-
related pixels. More precisely, we build a binary patch rtb(x, y)
at each frame t defined as

rtb(x, y) =

{
1, if re(x, y) > µ+ kσ
0, otherwise , (1)

where k = 5 is the tolerance (number of standard deviations,
obtained experimentally) used to distinguish pavement and
lane marking pixels.

B. Road marking classification

The patches rtb(x, y) contain binary data related to the
existence of lane markings within the ROI for each frame
t. A set of features is extracted from rtb(x, y), aiming to
discriminate all the five classes in a hierarchical model. In fact,
a three-level cascaded classifier was developed, as illustrated in
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Fig. 2. Typical frame and rectangular regions used to estimate the length
of lane markings, along with the detected lane boundaries (green).

Fig. 3, and next we described our choices for the four binary
classifiers C1, C2, C3 and C4, as well as the feature vectors
used for each classifier. Also, let Ωi1 and Ωi2 denote the two
possible output classes of classifier Ci, for i = 1, 2, 3, 4.

Ω42 = ω3

Ω21 = ω1

C1

C2

Ω11 = ω1 ∪ ω2 ∪ ω3

C3
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Fig. 3. Schematic illustration of the cascaded classifier used in our approach.

1) Classifier C1: The first classifier C1 aims to separate lane
markings with dashed components (Ω11) from those with solid
components only (Ω12). There are a few parameters that can
be used to discriminate these two classes: in road portions with
solid components only, rtb(x, y) tends to present roughly the
same number of pixels related to lane markings; in contrast,
the number of such pixels in road portions containing dashed
components tends to present more variations (and in a periodic
fashion). In this work, C1 is fed with a three dimensional
feature vector f1(t) = (f11(t), f12(t), f13(t))

T , containing
elements that quantify the variations mentioned above.

The fraction of marking-related pixels (within the rectangu-
lar patch) at each frame t is given by

m(t) =

∑
x,y

rtb(x, y)

#rtb
, (2)

where #rtb is the total number of pixels in rtb.
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Fig. 4. Plots of the function m(t) for different lane marking types.

Function m(t) should oscillate when dashed components
are presents, and remain roughly constant when only solid
lane marking components are present, as illustrated in Fig. 42.
Based on this fact, for each frame t we evaluate a temporal
window T (t) = {t−T+1, t−T+2, · · · , t−1, t} and compute
the weighted amplitude variation of m(t) within the window:

f11(t) =
1

µT (t){m}

(
max
T (t)
{m} −min

T (t)
{m}

)
, (3)

where µT (t), max
T (t)

and max
T (t)

represent the average, maximum

and minimum values within T (t), respectively.
To explore features related to the possible periodicity of

m(t), we compute an autocorrelation-like measure of m within
the T (t):

Rtmm(τ) =
1

T ′

T ′−1∑
u=0

m(t− u)m(t− u− τ), (4)

where T ′ < T is the overlap window between m(t − u) and
m(t − u − τ), and τ = 0, 1, ..., T − T ′ − 1 is the range of

2In Fig. 4, the plot for a solid-dashed marking was omitted, since it is very
similar to the dashed-solid case.
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Fig. 5. Plot of autocorrelation function Rt
mm(τ) for different lane marking

types (normalized by the largest autocorrelation value).

signal displacements that can be computed with the finite-size
signal. If m(t) is periodic, Rtmm(τ) should produce a sharp
peak when τ equals the value of the period. On the other hand,
constant functions generate constant autocorrelation functions.
As an illustration, the autocorrelation functions related to the
plots of m(t) shown in Fig. 4 are depicted in Fig. 5.

Since our estimates m(t) are noisy, larger support values
T ′ to compute the autocorrelation function lead to better noise
suppression. On the other hand, if T ′ (and consequently T ) are
too large, the values m(t) used in the analysis may correspond
to portions of the road with different lane marking types (i.e.,
the signal m(t) may not be stationary). As a compromise, we
used T = 100 and T ′ = 70, defined experimentally.

Given a frame t, we compute Rtmm(τ), and retrieve the
first local maximum Rtmm(τmax)3 and the first local minimum
Rtmm(τmin), computing the normalized difference

f12(t) =
1

Rtmm(0)

(
Rtmm(τmax)−Rtmm(τmin)

)
(5)

3To avoid spurious local maxima, we impose that Rt
mm(τmax) must be

at least half of Rt
mm(0).

as the second feature. For lane markings with only solid
components, f12(t) is expected to be small, since the auto-
correlation function should be (ideally) constant. On the other
hand, f12(t) is expected to be larger when dashed components
are involved, due to the periodic nature of m(t).

Also, if the distance between dashed lane markings is
constant within a portion of the road, the position of the local
maximum should occur approximately at the same location,
which corresponds to the period of m(t). On the other hand,
when only solid markings are present, Rtmm(τ) is expected to
be roughly constant, and the first local maximum may occur
at spurious locations due to small fluctuations in Rtmm(τ).
Hence, the third feature used in C1 explores the variation of the
local maximum position within T (t). Although the standard
deviation provides such metric, we decided to use:

f13(t) = MAD
u∈T (t)

{τmax(u)} (6)

= median
u∈T (t)

{|τmax(u)−median
u∈T (t)

{τmax(u)}|}

where τmax(u) is the location of the first local maxima of
Rumm(τ), and MAD is the Median Absolute Deviation, which
is less affected by outliers than the standard deviation.

As for the classifier C1 itself, we have chosen to use a
Support Vector Machine (SVM), and our experimental results
indicated that the Radial-Based-Function (RBF) kernel pre-
sented the best results. More details on training and test data
will be presented in Section IV.

2) Classifier C2: As shown in Fig. 3, classifier C2 is fed
with samples that have dashed components according to C1
(classes ω1, ω2 and ω3), and classify them as dashed (Ω21 =
ω1) or solid-dashed/dashed-solid (Ω22 = ω2 ∪ ω3).

For that purpose, we first estimate the amount of lane mark-
ings detected along the horizontal direction. More precisely,
for each frame t we compute

ρtb(x) =
∑
y

rtb(x, y), (7)

which provides the accumulated lane marking evidence in the
vertical direction y within the rectangular ROI. For dashed lane
markings, the shape of ρtb(x) will alternate from a flat (low)
plateau when no lane marking is locally present at frame t, to
a single-peaked plot when a lane marking is present. On the
other hand, in dashed-solid or solid-dashed markings, ρtb(x)
will alternate from a single-peaked plot (solid component only)
to a double-peaked plot (solid and dashed component). As
an illustration, Fig. 6 shows image plots corresponding to
the surfaces ρtb(x) as a function of t and x for solid-dashed
(Fig. 6(a)) and dashed-solid (Fig. 6(b)) portions of the road.

We then compute the number of peaks (local maxima) np(t)
present in ρtb(x) along the x axis, and define as feature f2 for
classifier C2 the average number of peaks within a temporal
window T2:

f2(t) =
1

T2

T2−1∑
u=0

np(u), (8)
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Fig. 6. Example of accumulated lane marking evidence ρtb(x) for (a) solid-
dashed and (b) dashed-solid lane marking. High values in red, low values in
blue.

where T2 = 20 frames was defined experimentally. Clearly, for
samples belonging to dashed markings, f2(t) should be close
to 0.5, whereas samples related to dashed-solid or solid-dashed
markings should present values f2(t) close to 1.5. Hence, a
simple rule is adopted for classified C2: if f2(t) < 1, the
sample is assigned to class ω1; otherwise, it is assigned to
class Ω22 (classifier C4 will discriminate ω2 and ω3).

3) Classifier C3: The goal of C3 is to discriminate between
single-solid (Ω31 = ω4) and double-solid lane markings
(Ω32 = ω5). In single-solid lane markings, the plot of
ρtb(x) at all frames t is expected to produce a single peak
related to the lane marking, while two distinct peaks are
expected when double-solid markings are present. Hence, we
use f3(t) = f2(t) for classifier C3, as defined in Equation (8).
The decision rule is also very similar to C2: if f3(t) < 1.5,
the sample is assigned to class ω4; otherwise, it is assigned to
class ω5.

It is important to point out that the same feature f2(t) is
used in both classifiers C2 and C3, and its expected value
for classes Ω21, Ω22, Ω31 and Ω32 are, respectively, 0.5,
1.5, 1 and 2. Hence, the reader might wander if a single
multi-class classifier based on f2(t) could replace C1, C2 and
C3. Although this is in fact possible, results are worse than
using the proposed cascade: classes Ω21 - Ω22 and Ω31 - Ω32

presents larger pairwise separation (which is important for the
chosen two-class classifiers) than all the four classes together
in a single multi-class classifier. In fact, Fig. 7 shows the
distribution of f2 for different classes, and it can be observed
that classes Ω22 and ω5 present considerable overlap, and
classes Ω21 - Ω22 and Ω31 - Ω32 presents significant pairwise
separation.

4) Classifier C4: The last classifier in the cascade aims
to distinguish dashed-solid (Ω41 = ω2) and solid-dashed
markings (Ω42 = ω3). In both cases, the number of peaks
np(t) along the x axis in ρtb(x) alternates between one and two
as a function of t. However, in the former case the position of
the first peak is consistent for all frames t, and the second
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Fig. 7. Distribution of feature f2 for samples belonging to all five classes
ωi. Samples from different classes are shown in different horizontal lines.

peak arises only at some frames (please see Fig. 6(a)); in
the latter, the opposite behavior is expected: the second peak
is consistent, and the first one appears at some frames only
(please see Fig. 6(b)).

To detect such behavior, we maintain two “buffers” p1 and
p2 with the position(s) of the peak(s) in the previous frames.
When only one peak is detected at a given frame t, its position
is compared to the last values stored in p1 and p2, respectively,
and assigned to the buffer that presents the smallest difference
(in the other buffer, the value −1 is stored to indicate the
absence of a peak at that frame).

At each frame t, we count the number of valid peak
positions (i.e. values different than −1) at each buffer in
the last T frames: the buffer pi with the largest number
of valid peaks relates to the solid marking, while buffer pj
relates to dashed markings. We then compute the average
peak position Ppi(t) and Ppj (t) of each buffer (considering
only valid peaks), and decide for class ω2 (dashed-solid) if
Ppi(t) < Ppj (t), and for class ω3 (solid-dashed) otherwise.

IV. EXPERIMENTAL RESULTS

In our experiments, we have used 10 video sequences
acquired with two different cameras, 2 sequences from the
publicly available Environment Perception and Driver Assis-
tance dataset4 - set3 (Suburban Bridge and Trailer Follow)
and one video from the Cambridge-driving Labeled Video
Database5 (CamVid) (See Table II).

For the first classifier C1, we use a Gaussian Radial Basis
Function (RBF) kernel, defined by:

Kγ(x, y) = e−γ‖x−y‖
2

, (9)

where γ > 0 is the width parameter. We have used a SVM
with flexible margin, controlled by parameter C > 0. We have
experimentally evaluated different values for both C and γ
with the holdout cross-validation randomly selecting a fraction
g < 1 for training (the training set is indicated in Table III) the
model6, and a fraction 1−g for validation. The achieved cross
validation accuracy was 100.0% and the estimated parameters
were: C = 1 and γ = 4.

4http://www.mi.auckland.ac.nz/
5http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/
6We used g = 0.5 in all experiments.



TABLE II
VIDEO SEQUENCES USED

Video sequence Acquired Public Resolution
Assis Brasil x 480× 640
BR-116 1: Pelotas - POA x 480× 640
BR-116 6: Pelotas - POA x 480× 720
BR-290 x 480× 640
Cambará x 240× 320
Cambridge x 600× 800
Castelo Branco x 480× 640
Germany x 240× 320
Ipiranga x 480× 640
RS-040 x 480× 640
RS-287: São Francisco - Canela x 240× 320
Suburban Bridge x 640× 800
Trailer Follow x 640× 800

The training set was composed by 527 instances containing
the three dimensional feature vector f1(t). Its important to
note that the video sequences used in the training process were
split in multiple clips containing the same type of the lane
marking. For test set 1, we used the remaining 527 samples
including other video clips (126 frames), each one with a
single type of lane marking. To evaluate the transition between
different lane marking types, another test set (called number
2) containing longer video sequences interspersing different
kinds of markings was used. The characteristics of the clips
used in the two datasets are summarized in Table III.

TABLE III
VIDEO CLIPS

Excerpt Type Frames Train Test 1 Test 2
Assis Brasil dashed 86 x x
BR-116 (1) dashed 86 x x
BR-116 (6) double solid 86 x x
BR-290 dashed 86 x x
Cambará (1) dashed/solid 36 x x
Cambará (3) dashed/solid 66 x x
Cambará (5) solid/dashed 55 x x
Cambridge (1) single solid 46 x x
Cambridge (2) dashed 46 x x
Castelo Branco dashed 86 x x
Germany dashed 86 x x
Ipiranga (1) dashed 86 x x
Ipiranga (2) dashed 36 x x
RS-040 (1) more than one 10797 x
RS-287 (1) solid/dashed 35 x x
RS-287 (2) more than one 706 x
Suburban (1) dashed 126 x
Suburban (2) single solid 46 x x
Suburban (4) more than one 717 x
Trailer Follow dashed 86 x x

The confusion matrix related to classification results for test
set 1 are shown in Table IV. The global accuracy for test set 1
was 99.32%, with just a samples from class ω1 being classified
as ω2 or ω4.

As mentioned before, test set 2 contains longer video
sequences with different lane marking types. Since all the
features used in the proposed classification scheme explore
a temporal window, transitions among the different lane types
are problematic (the temporal window contains samples from
different lane markings). The plots in Fig. 9 illustrate the

TABLE IV
CONFUSION MATRIX FOR TEST SET 1

Target Class
ω1 ω2 ω3 ω4 ω5

O
ut

pu
t

C
la

ss ω1 802 0 0 0 0 100%
ω2 7 102 0 0 0 93.58%
ω3 0 0 90 0 0 100%
ω4 1 0 0 92 0 98.92%
ω5 0 0 0 0 86 100%

99.01% 100% 100% 100% 100% 99.32%

ground truth values (over time) for the three video sequences
used in the test set, as well as the classification results
produced by the proposed approach.

The first plot shows that there are a few fluctuations around
the classes, but results are mostly coherent. We can also
observe that there is a lag when there are changes in the
lane marking type. In fact, this behavior is expected, since we
use a temporal window of T = 100 frames to compute our
features (the lag is approximately 50 frames, which is half of
the temporal window size). The full confusion matrix is shown
in Table V, and the worst results were the misclassification of
several samples from class ω5 as ω2, related to the change of
lane marking type around frame 550. Nevertheless, the overall
classification rate was 71.53%.

TABLE V
CONFUSION MATRIX OF RS-287 (2)

Target Class
ω1 ω2 ω3 ω4 ω5

O
ut

pu
t

C
la

ss ω1 199 2 0 0 0 99.00%
ω2 13 160 0 0 79 63.49%
ω3 15 22 100 0 0 72.99%
ω4 0 2 22 0 21 0.00%
ω5 0 0 25 0 46 64.79%

87.67% 86.02% 68.03% — 31.51% 71.53%

In the second video, Suburban (4), we can also observe the
lag during changes in the lane marking types (around frames
280 and 750). Table VI shows the confusion matrix for this
experiment, and the classification rate was 77.27%.

The last plot shown in Fig. 9(c) relates to the longest video
sequence (RS-040 (1), with over 10,000 frames). As in the two
previous examples, it also presents some spurious fluctuations
around the classes, particulary around frames 4000-5000 and
8700-10000. Part of these fluctuations can be explained by the
presence of horizonal traffic signs (as illustrated in Fig. 11),
so that the training patch used for extracting lane markings
does not fall on unmarked pavement regions. The overall
classification rate for this long video sequence was 85.42%,
and the full confusion matrix is shown in Fig. VII. It is also
important to point out that none of the frames of this video
sequence were used to train the SVM in classifier C1.

The number of correctly classified objects is highly depen-
dent on the quality of the road markings.

The proposed system was implemented in C++ (GCC
4.2.1 compiler), using the Open source Computer Vision
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Fig. 8. Examples of different lane marking types contained in dataset 1.

(a) (b) (c) (d) (e)

Fig. 10. Frames of sequence RS-287 (2).

(a) (b) (c) (d) (e)

Fig. 11. Frames of sequence RS-040 (1).

TABLE VI
CONFUSION MATRIX OF Suburban (4)

Target Class
ω1 ω2 ω3 ω4 ω5

O
ut

pu
t

C
la

ss ω1 196 0 0 12 0 94.23%
ω2 0 0 0 0 0 —
ω3 0 0 0 116 0 —
ω4 35 0 0 358 0 91.09%
ω5 0 0 0 0 0 —

84.85% — — 73.66% — 77.27%

TABLE VII
CONFUSION MATRIX OF RS-040 (1)

Target Class
ω1 ω2 ω3 ω4 ω5

O
ut

pu
t

C
la

ss ω1 1156 6 319 0 47 75.65%
ω2 0 374 76 0 623 34.86%
ω3 8 44 5296 0 26 98.55%
ω4 0 37 95 0 253 0.00%
ω5 0 2 38 0 2397 98.36%

99.31% 80.78% 90.93% — 71.64% 85.42%

library (OpenCV) Version 2.4.47 to implement the lane de-
tection/tracking algorithm and to extract the required features,
and the libSVM library [15] for the SVM classification. All
experiments were conducted on a 2.53GHz Core 2 Duo laptop

7http://opencv.willowgarage.com/wiki/

computer with 8GB RAM memory. The average execution
time for each frame, for different resolutions, was described
in Table VIII. As it can be observed, the proposed system runs
at 30 FPS for resolutions up to VGA (480 × 640), and code
can be further optimized to reduce running time.

TABLE VIII
AVERAGE EXECUTION TIME.

Resolution Time (ms)
240× 320 7.82 ms
480× 640 25.10 ms
480× 720 94.53 ms
600× 800 165.65 ms

The video results of the identification of the type of the
lane markings can be viewed online at http://www.inf.ufrgs.
br/∼mbpaula/publications/.

V. CONCLUSIONS

This paper presented a real-time algorithm to detect and
identify different types of lane markins using an onboard
vehicular camera in a fully automatic manner. In the proposed
approach, a simple statistical model is used to represent pixels
related to the pavement, which is then used to extract lane
markings. A set of features is computed based on the temporal
evolution of the detected lane markings, and a cascaded

http://www.inf.ufrgs.br/~mbpaula/publications/
http://www.inf.ufrgs.br/~mbpaula/publications/
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Fig. 9. Ground truth (red) and our results (blue) for three video sequences
used in test set 2.

classifier is used to recognize five types of markings (shown
in Fig. 1).

Our experimental results show that classification results are
very good when using video clips with the same lane marking
at all frames, but the performance decreases when longer video
sequences with several transitions are present (in particular,
there is a lag around the transitions of lane marking types).
Nevertheless, we believe that the overall results of around
78.07% for a five-class problem is promising. It is important
to mention that classification results are affected by errors
along the whole pipeline: strong shadows and/or illumination
changes may affect the lane tracker (as well the quality of
extracted features), particularly when the training patch and
the test patch present different illuminations (See Fig. 10(b)
and Fig. 10(c)). Obviously, poorly painted lane markings pose
an additional challenge.

Our main goal as future work is to improve classification
results when the type of lane marking changes. We think that
the key for that is to adjust the size T of the temporal window
used to compute the features. At the moment, temporal coher-
ence is induced at the feature level (when more samples of the
same lane marking type are present, the extracted features are

less noisy). One possibility would be to reduce T and impose
temporal coherence after the classification procedure using, for
instance, a Hidden Markov Model (HMM).

ACKNOWLEDGMENT

This work was partially supported by Brazilian agencies
Capes and CNPq.

REFERENCES

[1] W. H. Organization, Global status report on road safety. World
Health Organization, 2009. [Online]. Available: http://whqlibdoc.who.
int/publications/2009/9789241563840 eng.pdf

[2] ANTT, “Transporte de passageiros,” 2013. [Online]. Available:
http://www.antt.gov.br/passageiro/apresentacaopas.asp

[3] E. A. Vasconcellos and M. Sivak, “Road safety in Brazil: Challenges
and opportunities,” The University of Michigan, Tech. Rep. UMTRI-
2009-29, 2009.

[4] I. R. Traffic and A. Database, “Road safety annual report 2011,”
International Road Traffic and Accident Database, Tech. Rep.,
2011. [Online]. Available: http://www.internationaltransportforum.org/
irtadpublic/pdf/11IrtadReport.pdf

[5] C. N. dos Municı́pios, “Mapeamento das mortes por acidentes
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