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Abstract—Multiple-labeling classification approaches attempt
to handle applications that associate more than one label toa
given sample. Since we have an increasing number of systems
that are guided by such assumption, in this paper we have
presented a multiple-labeling approach for the Optimum-Path
Forest (OPF) classifier based on the problem transformation
method. In order to validate our proposal, a multi-labeled video
classification dataset has been used to compare OPF against three
other classifiers and another variant of the OPF classifier based
on a k-neighborhood. The results have shown the validity of the
OPF-based classifiers for multi-labeling classification problems.

Keywords-Image motion analysis, Video signal classification,
multi-label learning, Optimum-Path Forest

I. I NTRODUCTION

Traditional pattern recognition techniques employ a training
set S in order to learn a functionh ∈ H that maps a given
feature vectors ∈ S to a labell ∈ L, obtained from a set of
labelsL [1]. In this context, we haveh : S → L, whereH
is the set of all functions. If we have|L| = 2, the learning
problem is often referred as a binary classification problem,
while we have a multi-class problem when|L| > 2.

In the context of multi-label classification, each sample
s can be associated with a label setL′ ⊆ L. One of the
main reasons for using techniques that support multiple labels
concerns with applications that associate with a given sample
more than one label, e.g., systems to aid medical diagnosis
and text categorization. In the first case, a patient may be
affected by more than one disease, while in the case of
categorizing documents, a newspaper article, for instance,
may be categorized, at the same time, as belonging with two
different areas (e.g., religion and arts).

Currently, new applications that require methods with sup-
port to multiple labels have grown widely. Ogihara and Li [2],
for example, employed such approaches to categorize songs.
Boutell et al. [3] performed semantic classification of scenes,
since a picture can be labeled as being a beach and also can
have buildings at the same time (city). The idea of their work
is to reduce the problem of learning with multiple labels in
various sorts of binary problems, where each imagei was
associated with a setBi, such that|Bi| = |L|. In this case, each
elementbj ∈ Bi had the value1 if the image was associated
with a classj, and0 otherwise.

McCallum [4] proposed a Bayesian approach to the problem
of multi-label document classification, where a probabilistic
mixture model was assumed to generate each document, and
an Expectation-Maximization [5] strategy was used to learnthe
mixture weights and word distribution in each one of them.
Additionally, Zhou and Zhang [6] adapted the algorithm of
the k-nearest neighbour classification in the context of multi-
labeling, which is called ML-kNN (Multi-label-k-NN).

However, in many cases, the employed learning mechanism
produces a ranking functionf ′ : S × L → R, such that,
for a given instances ∈ S, the label set inL should be
ordered according tof ′(x, ·). Thus, a labell1 is considered
better ranked than another labell2 if f ′(x, r1) > f ′(x, r2).
In this fashion, a ranking of labels requires post processing
in order to provide a set of labels with the highest score
according to some loss function. When the labels in a dataset
belong to a hierarchical structure, i.e., the set of labels for
a given sample can be represented as a tree, where each
node indicates a possible class, then we have a multi-label
hierarchical classification task. Jin and Ghahramani [7] define
a problem of multiple labels as an unsupervised classification
problem, where each instance is associated with more than
one class, but only one of them is the true class.

In this work, we propose to evaluate the Optimum-Path For-
est (OPF) classifier [8], [9], [10] for multi-label learningtasks,
since OPF has never been studied in this context. OPF is a
graph-based approach widely used in several applications [8],
[9], [10]. The use of OPF is motivated by its fast training and
classification procedures, as well its good recognition rates.
Another point is that OPF can easily handle different distance
metrics, which is very important in the context of classification
tasks.

In our study concerning the use of OPF in multi-label
tasks, we have employed a public multi-label video dataset
composed of human actions and scenes, and two different
video descriptors were used to extract the video contents. We
also used two OPF variants for comparison purposes together
with a decision three, a Bayesian classifier and a Support
Vector Machines (SVM) classifier. It is also important to
highlight that OPF has never been applied for video content
classification.

The remainder of the paper is organized as follows. In



Section II and Section III we revisit the Optimum-Path Forest
theory background. Section IV and V introduce the video con-
tent dataset and the video descriptors employed in this work,
respectively. Experimental results are discussed in Section VI.
Finally, conclusions are stated in Section VII.

II. M ULTI -LABEL CLASSIFICATION

Multi-class classification aims to associate a samplesi ∈
S = {s1, ...sm} with a single labellj ∈ L = {l1, ..., ln}, for
m = |S| and n = |L|. Unlike, the multi-label classification
task may associatesi with a set of labelsL′ ⊆ L. Mathe-
matically, a multi-label classifier aims to build a functionh :
si → L′

i. In this context, multi-label classification algorithms
can be categorized into two different groups [1]: i)problem
transformation methods, and ii)algorithm adaptation methods.

Problem transformation methods handle with a multi-label
problem by transforming it into one or more single-label
classification task. Binary Relevance (BR) is a popular trans-
formation method that maps the original multi-labeled dataset
into |L| binary classification problems. However, BR suffers
from not considering the dependency between the labels.
Label Powerset (LP) is also a transformation method, which
considers a set of labelsL′ as a unique label, allowing the
dataset to be handled as multi-classes problem. As such,
consider a set of labels as a unique class, LP takes into account
the dependency between the labels. However, LP may build a
large amount of classes with a small number of samples by
each class, which may increase the classification complexity.

Algorithm adaptation methods extend and customize exist-
ing machine learning algorithm for the multi-label task [11].
Boosting,k-nearest neighbors, decision trees and neural net-
works are examples of machine learning algorithms extended
to multi-label domain. The most famous adaptation method is
the Multi-label k-Nearest Neighbours [6], which is derived
from the traditionalk-NN algorithm and uses maximum a
posteriori (MAP) principle to determine the label set for a
testing instance.

A. Multi-label evaluation measures

In order to evaluate experiments using multi-label classi-
fication methods, the reader can face several different and
contrastive measures [11]. In what follows, we introduce some
of the most common evaluation measures, which are used in
our experiments. The following formulations briefly describe
the measures:

Hamming loss(h) =
1

m

m
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i=1

1

|L|
|h(si)∆L′

i| , (1)

where∆ denotes the symmetric difference between two set
of labels. Thus, the lower hamming loss the higher classifier’s
efficacy. For the following measures, greater values indicate
better performance:
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and

Subset accuracy(h) =
1

m

m
∑

i=1

I(h(si) = L′

i), (6)

where, I(true) = 1 e I(false) = 0. This is a very strict
evaluation measure as it requires an exact match of the
predicted and true set of labels.

III. O PTIMUM-PATH FOREST CLASSIFIERS

The OPF classifier works by modeling the problem of pat-
tern recognition as a graph partition in a given feature space,
where the graph nodes are represented by feature vectors. The
partition of the graph is carried out by a competition process
between some key samples (prototypes), which offer optimum
paths to the remaining nodes of the graph. Each prototype
sample defines its optimum-path tree (OPT), and the collection
of all OPTs defines an optimum-path forest, which gives the
name to the classifier [8], [9].

The OPF can be seen as a generalization of the well-known
Dijkstra’s algorithm to compute optimum paths from a source
node to the remaining ones [12]. The main difference relies
on the fact that OPF uses a set of source nodes (prototypes)
with any smooth path-cost function [13]. In case of Dijkstra’s
algorithm, a function that summed the arc-weights along a
path was applied.

Let Z = Z1 ∪ Z2 ∪ Z3 ∪ Z4 be a dataset labeled with a
function λ, in which Z1, Z2, Z3 andZ4 are, respectively, a
training, learning, evaluating, and test sets. LetS ⊆ Z1 a set
of prototype samples. Essentially, the OPF classifier creates
a discrete optimal partition of the feature space such that
any samples ∈ Z2 ∪ Z3 ∪ Z4 can be classified according
to this partition. This partition is an optimum path forest
(OPF) computed inℜn by the Image Foresting Transform
(IFT) algorithm [13]. The OPF algorithm works with a training
and a testing phase. In the former step, the competition
process begins with the prototypes computation. The OPF
algorithm may be used with anysmoothpath-cost function
which can group samples with similar properties [13]. Next,
we introduce two examples of path cost functions employed
on the OPF supervised classifiers with complete andk-NN
graph, respectively:

fmax(〈s〉) =

{

0 if s ∈ S,
+∞ otherwise

fmax(π · 〈s, t〉) = max{fmax(π), d(s, t)} (7)



and

fmin(〈s〉) =

{

+∞ if s ∈ S,
0 otherwise

fmin(π · 〈s, t〉) = min{fmin(π), d(s, t)}, (8)

in which d(s, t) means the distance between sampless and
t, and a pathπ is defined as a sequence of adjacent samples.
In such a way, we have thatfmax(π) computes the maximum
distance between adjacent samples inπ, whenπ is not a trivial
path; andfmin(π) computes the minimum distance between
adjacent samples inπ, whenπ is not a trivial path.

A. OPF with complete graph

We are interested in finding the elements that fall on the
boundary of the classes with different labels. For that purpose,
we can compute a Minimum Spanning Tree (MST) over the
original graph (Figure 1a) and then mark as prototypes the
connected elements with different labels. Figure 1b displays
the MST with the prototypes at the boundary. After that, we
can begin the competition process between prototypes in order
to build the optimum-path forest, as displayed in Figure 1c.
The classification phase is conducted by taking a sample from
the test set (orange diamond in Figure 1d) and connecting it
to all training samples. The distance to all training nodes are
computed and used to weight the edges. Finally, each training
node offers to the test sample a cost given by a path-cost
function (maximum arc-weight along a path - Equation 7), and
the training node that has offered the minimum path-cost will
conquer the test sample. This procedure is shown in Figure 1e.

(a) (b)

(c) (d)

(e)

Fig. 1. OPF pipeline: (a) complete graph, (b) MST and prototypes bounded,
(c) optimum-path forest generated at the final of training step, (d) classification
process and (e) the orange diamond sample is associated to the green circle
class. The values above the nodes are their costs after training, and the values
above the edges stand for the distance between their corresponding nodes.

B. OPF withk-NN graph

The OPF withk-NN graph (OPFkNN) also models the
training samples as graph nodes. However, it makes use of the

k-nearest neighborhood as adjacency relation, and both arcs
and nodes are weighted [10]. The basic difference between
OPFkNN and the standard OPF is the fact the latter estimates
the prototypes at the boundaries of the classes, while OPFkNN
estimates the prototypes on the regions with high concentration
of samples. To fulfill this task, a probability density function is
used to estimate the density of each sample. Figure 2a displays
a k-NN optimum-path forest with two prototypes (bounded
nodes). For the classification phase, the probability density
of a testing sample is computed, and then the testing sample
is connected with itsk nearest neighborhood (Figure 2b). The
training node that offered the maximum path-cost will conquer
the test sample, as shown in Figure 2c.

(a) (b)

(c)

Fig. 2. OPFkNN pipeline: (a) optimum-path forest generatedat the final of
training step, in which the bounded nodes are the prototypes, i.e. the nodes
with the maximum densities (b) classification process (c) the orange diamond
sample is associated to the green circle class. The values(x, y) above the
nodes are their density value and class label, respectively.

IV. DATASET DESCRIPTION

In this work, we use a benchmarking dataset, namely
HOLLYWOOD-2 1, composed of video clips from 69 different
movies. The dataset is divided into image videos with 12
classes of human actions and 10 classes of scenes distributed
over 3669 video clips and approximately 20.1 hours of video
in total. It contains approximately 150 samples per action class
and 130 samples per scene class in training and test sub-
sets [14]. Figure 3 shows some samples from HOLLYWOOD-
2 dataset.

Action samples were collected by means of automatic
script-to-video alignment in combination with text-basedscript
classification [16]. Video samples generated from training
movies correspond to the automatic training (AUTO-TRAIN)
subset with noisy action labels. Based on this subset a clean
training (CLEAN-TRAIN) subset is constructed with action
labels manually verified to be correct. The test subset is also
composed of action labels manually checked.

Scene classes are selected automatically from scripts such
as to maximize co-occurrence with the given action classes
and to capture action context as reported in [14]. Scene video

1http://www.di.ens.fr/∼laptev/actions/hollywood2/

http://www.di.ens.fr/~laptev/actions/hollywood2/


(a) (b)

(c) (d)

Fig. 3. Examples of samples from HOLLYWOOD-2 dataset: (a) eating-
coffee, (b) eating-kitchen, (c) running-road and (d) running-street [15].

samples are then generated using script-to-video alignment.
The labels of test scene samples are manually verified to be
correct.

Finally, another interesting characteristic of this dataset is
that samples may contain instances of several actions. For
instance, a sample may belong to both kissing and hugging
classes, which make HOLLYWOOD-2 handleable by methods
with multi-label support. Tables I and II provide information
about each subset, as well as the distribution of the classes.

TABLE I
ACTION DATASET DESCRIPTION.

Feature # Training subset # Training subset # Test subset
(clean) (automatic) clean

AnswerPhone 66 59 64
DriveCar 40 44 33
Eat 54 33 70
FightPerson 51 40 57
GetOutCar 32 38 45
HandShake 64 27 66
HugPerson 135 187 103
Kiss 104 87 108
Run 24 26 37
SitDown 132 133 146
SitUp 823 810 884
StandUp 66 59 64

Total samples 823 810 884

V. V IDEO REPRESENTATION

To encode visual properties from the video content, we have
used two main approaches. One encodes local spatio-temporal
features and is based on thebag-of-featuresapproach [14].
The other approach specifically encodes motion information
by usinghistogram of motion patterns[17].

A. Bag-of-Features (BoF)

Following previous works on action and scene recognition,
we built a Bag-of-Features (BoF) model upon local space-
time features, as described in [14]. For that, we extracted local
features using the on-line implementation2 of Spatio-temporal

2http://www.di.ens.fr/∼laptev/download.html

TABLE II
SCENES DATASET DESCRIPTION.

Feature # Training subset # Test subset
(automatic) clean

EXT-House 81 140
EXT-Road 81 114
INT-Bedroom 67 69
INT-Car 44 68
INT-Hotel 59 37
INT-Kitchen 38 24
INT-LivingRoom 30 51
INT-Office 114 110
INT-Restaurant 44 36
INT-Shop 47 28

Total samples 570 582

Interest Points (STIP) [18] combined with HOG/HOF descrip-
tors [16].

In the BoF framework, visual words [19] are obtained
by quantizing local feature descriptors according to a pre-
learned dictionary. Thus, a video sequence is represented as
a normalized frequency histogram of visual words associated
with each local feature. In this work, we construct a visual
dictionary using K-Means with K = 4000 visual words, as
suggested in [14], [16].

B. Histogram of Motion Patterns (HMP)

Besides encoding visual properties using a bag-of-features
model, we also adopted a simple and fast algorithm to compare
video sequences described in [17]. It consists of three main
steps: (1) partial decoding; (2) feature extraction; and (3)
signature generation.

For each frame of an input video, motion features are
extracted from the video stream. For that,2 × 2 ordinal
matrices are obtained by ranking the intensity values of the
four luminance (Y) blocks of each macroblock. This strategy
is employed for computing both the spatial feature of the 4-
blocks of a macroblock and the temporal feature of corre-
sponding blocks in three frames (previous, current, and next).
Each possible combination of the ordinal measures is treated
as an individual pattern of 16-bits (i.e., 2-bits for each element
of the ordinal matrices). Finally, the spatio-temporal pattern of
all the macroblocks of the video sequence are accumulated to
form a normalized histogram. For a detailed discussion of this
procedure, refer to [17].

VI. EXPERIMENTAL RESULTS

In this section we present the experiments to evaluate the
robustness of OPF-based classifiers in multi-label tasks.

A. Classification methods

In order to evaluate the performance of OPF-based clas-
sifiers, we compare them against with three different base
single-label classifiers, being them implemented in Weka Java
Framework3. We chose the J48 classifier, which is a decision
tree learning algorithm and the well-known Naı̈ve Bayes (NB)

3http://www.cs.waikato.ac.nz/ml/weka/

http://www.di.ens.fr/~laptev/download.html
http://www.cs.waikato.ac.nz/ml/weka/


TABLE III
PERFORMANCE OVER THEACTIONS DATA WITH AUTO-TRAIN SUBSET.

Evaluation J48 NB OPF OPFkNN SMO

BR LP BR LP BR LP BR LP BR LP

Accuracy 0.1037 0.1162 0.1312 0.1482 0.1586 0.16420.1604 0.1604 0.1246 0.2511
F2-score 0.1244 0.1241 0.1581 0.15160.1716 0.1736 0.1696 0.1696 0.1339 0.2581
Hamming Loss 0.1593 0.1631 0.1794 0.1486 0.1628 0.1522 0.1524 0.1524 0.1194 0.1304
Precision 0.1113 0.1243 0.1387 0.1584 0.1714 0.17780.1735 0.1735 0.1339 0.2698
Recall 0.1652 0.1318 0.2206 0.1482 0.1844 0.1787 0.1742 0.1742 0.14310.2540
Subset Accuracy 0.0509 0.0950 0.0679 0.1380 0.1210 0.13690.1335 0.1335 0.0973 0.2308

TABLE IV
PERFORMANCE OVER THEACTIONS DATA WITH CLEAN-TRAIN SUBSET.

Evaluation J48 NB OPF OPFkNN SMO

BR LP BR LP BR LP BR LP BR LP

Accuracy 0.1315 0.1296 0.1460 0.2521 0.2175 0.23200.2289 0.2289 0.1833 0.3273
F2-score 0.1518 0.1364 0.1703 0.25660.2392 0.2488 0.2385 0.2385 0.1923 0.3362
Hamming Loss 0.1414 0.1580 0.1316 0.1308 0.1554 0.1439 0.1375 0.1375 0.0916 0.1179
Precision 0.1408 0.1399 0.1502 0.2653 0.2310 0.24750.2459 0.2459 0.1934 0.3473
Recall 0.1861 0.1401 0.2285 0.2526 0.2713 0.2668 0.2410 0.2410 0.2002 0.3337
Subset Accuracy 0.0769 0.1109 0.0871 0.2387 0.1595 0.18550.2014 0.2014 0.1561 0.3009

TABLE V
PERFORMANCE OVER THESCENES DATA WITH AUTO-TRAIN SUBSET.

Evaluation J48 NB OPF OPFkNN SMO

BR LP BR LP BR LP BR LP BR LP

Accuracy 0.1278 0.1690 0.2082 0.2431 0.2148 0.22420.2182 0.2182 0.0972 0.2706
F2-score 0.1507 0.1813 0.2439 0.2560 0.2415 0.2360 0.2314 0.2314 0.10890.2847
Hamming Loss 0.1787 0.1804 0.1753 0.1600 0.1885 0.1680 0.1662 0.1662 0.1244 0.1538
Precision 0.1436 0.2010 0.2249 0.2818 0.24130.2552 0.2552 0.2552 0.1148 0.3127
Recall 0.1787 0.1735 0.3153 0.2431 0.2698 0.2285 0.2208 0.2208 0.11340.2706
Subset Accuracy 0.0670 0.1323 0.1168 0.2045 0.1409 0.18900.1787 0.1787 0.0636 0.2285

and the support vector machines SMO learning algorithms.
Those classifiers are used in most of the works that address
multi-label classification tasks with transformation methods.
In order to deal with multi-label, we use two transformation
methods: Binary Relevance (BR) and Label Powerset (LP).
Both methods are implemented in Mulan Java library for
multi-label learning4.

B. Experiments with HMP descriptor

Table III displays the classifier performances over the Ac-
tions dataset with AUTO-TRAIN as training set. Considering
the LP method, we notice that the SMO classifier achieved
the best results for all measures. OPF and OPFkNN achieved
the second and third best results, respectively. NB performed
slightly better than OPF classifiers considering the Hamming
Loss and Subset Accuracy measures. The J48 classifier ob-
tained the lowest results, which can be evidenced speciallyby
the low rate according to Subset Accuracy. For the BR method,
the OPF classifiers were the best performers in almost all
measures, being them more balanced considering all measures.
Although SMO achieved a low Hamming Loss rate, we can
note it performed unsatisfactorily according to the remaining

4http://mulan.sourceforge.net/

measures, performing better only than J48, which was the
worst classifier again. NB achieved the highest recall rate,but
did not perform well, specially according to Hamming Loss.

From Table IV, we can see the classifiers’ results over the
Actions dataset, but now with CLEAN-TRAIN as training
set. As expected, the CLEAN-TRAIN set provided better
classification results than AUTO-TRAIN set. The classifiers
presented the same behavior observed over AUTO-TRAIN,
but the classification rates were improved for all classifiers.
SMO was the best combined to LP method, and the OPF-
based classifers were the best performers considering the BR
method.

Table V displays the classifiers’ performances over the
Scenes dataset. As we can note, SMO with LP achieved the
best classification rates according all measures, and NB was
the second best performer. The OPF-based classifiers were the
third best ones, followed by J48. For BR method, OPF and
OPFkNN achieved the best classification rates, respectively.
NB were the second, with the highest values according to F2-
score and Recall. We can see that both SMO and J48 had
difficulties to dealing with the binary classifications provided
by BR, since they achieved low classification rates, specially
SMO, which was the worst performer.

http://mulan.sourceforge.net/


TABLE VI
PERFORMANCE OVER THEACTIONS DATA WITH AUTO-TRAIN SUBSET.

Evaluation J48 NB OPF OPFkNN SMO

BR LP BR LP BR LP BR LP BR LP

Accuracy 0.1180 0.1713 0.2112 0.3113 0.1708 0.1719 0.1557 0.1557 0.2099 0.3026
F2-score 0.1359 0.1788 0.2417 0.3186 0.1831 0.1833 0.1663 0.1663 0.2322 0.3120
Hamming Loss 0.1548 0.1496 0.1230 0.1196 0.1532 0.1520 0.1580 0.1580 0.1237 0.1212
Precision 0.1221 0.1823 0.2214 0.3331 0.1876 0.1887 0.1702 0.1702 0.2227 0.3284
Recall 0.1740 0.1827 0.3092 0.3118 0.1933 0.1910 0.1752 0.1752 0.2656 0.3056
Subset Accuracy 0.0747 0.1493 0.13240.2896 0.1369 0.1403 0.1267 0.1267 0.1471 0.2749

TABLE VII
PERFORMANCE OVER THEACTIONS DATA WITH TRAIN SUBSET.

Evaluation J48 NB OPF OPFkNN SMO

BR LP BR LP BR LP BR LP BR LP

Accuracy 0.1878 0.2186 0.2544 0.3865 0.2809 0.2836 0.2853 0.2853 0.3096 0.4595
F2-score 0.2151 0.2280 0.2951 0.3956 0.2988 0.2999 0.3011 0.3011 0.3261 0.4695
Hamming Loss 0.1352 0.1412 0.1215 0.1062 0.1357 0.1345 0.1354 0.1354 0.0900 0.0952
Precision 0.1971 0.2336 0.2674 0.4135 0.2964 0.2994 0.30000.3000 0.3217 0.4847
Recall 0.2651 0.2311 0.3861 0.3871 0.3181 0.3158 0.3169 0.3169 0.34990.4646
Subset Accuracy 0.1154 0.1912 0.1527 0.3597 0.2296 0.2364 0.2398 0.2398 0.2636 0.4299

TABLE VIII
PERFORMANCE OVER THESCENES DATA WITH AUTO-TRAIN SUBSET.

Evaluation J48 NB OPF OPFkNN SMO

BR LP BR LP BR LP BR LP BR LP

Accuracy 0.1507 0.1604 0.1932 0.2543 0.1720 0.1744 0.1589 0.1589 0.14650.2732
F2-score 0.1740 0.1675 0.2448 0.2703 0.1837 0.1850 0.1667 0.1667 0.16600.2858
Hamming Loss 0.1686 0.1869 0.2332 0.1558 0.1818 0.1794 0.1823 0.1823 0.1416 0.1548
Precision 0.1682 0.1770 0.2116 0.3024 0.1964 0.1993 0.1778 0.1778 0.16350.3110
Recall 0.2027 0.1649 0.3952 0.2543 0.1821 0.1813 0.1632 0.1632 0.18730.2732
Subset Accuracy 0.0911 0.1392 0.0773 0.20620.1375 0.1426 0.1357 0.1357 0.0945 0.2354

C. Experiments with BoF descriptor

Considering BoF descriptor, all classifiers have improved
their classification rates. Table VI displays the results over
Actions dataset with AUTO-TRAIN as training set. As one
can note, the NB classifier was the best performer, especially
when allied with the LP method, achieving the best rates in
all measures. NB also kept the highest recall using BR as
transformation method. SMO was the second best regarding to
LP, and improved considerably its results with BR, compared
to those presented with HMP descriptor. The OPF-based
classifiers were the third best ones, and they also kept the
similarity between them. Finally, J48 was the worst performer.

With the CLEAN-TRAIN as training set, the classification
rates were even better, as can be seen in Table VII. However,
SMO achieved the best recognition rates with both LP and
BR. OPFkNN and OPF achieved similar classification rates,
being them the second best using BR. NB was the second best
allied to the LP methods, and the best with BR according to
the Recall measure.

Finally, Table VIII shows the classification rates over Scenes
dataset. Considering the LP method, SMO and NB were the
first and second best classifiers, respectively. OPF performed
slight better than OPFkNN and J48. In regard to the BR

transformation, NB achieved the best rates in four of six
measures. However, we can note that NB was the worst
classifier according to Hamming Loss and Subset Accuracy,
which shows an unbalance, specially whether we consider
its low value for Subset Accuracy, which demonstrates some
difficulties to predict an exactly set of label to a sample. SMO
and J48 achieved the best Hamming Loss rates, but they did
not perform well regarding the other measures. The OPF-based
classifiers achieved the best Subset Accuracy rate, showing
they were good performers to match exactly a set of label.

D. Analysis and considerations

As the reader may have noticed, the OPFkNN perform
equally using both LP and BR methods. This may happen
due to the fact that OPFkNN generates the same collection
of optimum-path trees for both cases, where the same set
of prototypes propagates their labels when the training phase
occurs. Even when BR is employed, the propagated labels
always form the same set of label that compose the Label
Powerset for a given training sample.

Unlike, the traditional OPF with BR method may generate
different optimum-path trees for each binary classifier required
by BR. This behaviour is determined by the prototypes set,



once a sample may be a prototype in a binary training set and
may be not in another one. However, both OPF and OPFkNN
performed similarly, and presented better results when allied
to BR, overcoming traditional classifiers. A possible reason
to explain the low classification rates with LP may stand for
the high number of classes that this method generates, in the
expense of the low number of samples by classes. This may
imply in many trivial trees, i.e., trees with only one node,
reducing the OPF-based classifiers effectiveness.

VII. C ONCLUSIONS

In this work we addressed the video content as a multi-label
problem. We also evaluated the performance of two OPF-based
classifiers to accomplish this task. We employed a public video
content dataset composed of human actions and scenes, and
two video descriptors were also employed in order to evaluate
the classifiers’ performances.

In order to handle with the multi-label provided by the
dataset, we opted to use two different problem transformation
methods, which employ traditional classifiers as core. Three
multi-classes classifiers were used to compare the OPF-based
classifiers, which had not yet been evaluated in the multi-label
context.

The results showed that the OPF-based classifiers have
potential to be employed in multi-label tasks, specially when
the focus are build binary classifiers, where they can overcome
traditional classifiers as Naı̈ve Bayes and SVM.

Future work includes the evaluation of other visual features
and similarity metrics (e.g., camera motion [20]). In addition,
the proposed method can be augmented to consider temporal
segmentation [21] and/or summarization methods [22]. Finally,
we also plan to apply the OPF-classifiers allied to different
multi-label methods, and to explore domains with hundreds
of labels, i.e., texts and musical categorization, for instance.
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