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Abstract—The ever-growing access to high-resolution images
has prompted the development of region-based classification
methods for remote sensing images. However, in agricultural
applications, the recognition of specific regions is still a challenge
as there could be many different spectral patterns in a same
studied area. In this context, depending on the features used,
different learning methods can be used to create complementary
classifiers. Many researchers have developed solutions based
on the use of machine learning techniques to address these
problems. Examples of successful initiatives are those dedicated
to the development of learning techniques for data fusion or
Multiple Classifier Systems (MCS). In MCS, diversity becomes
an essential factor for their success. Different works have been
using diversity measures to select appropriate high-performance
classifiers, but the challenge of finding the optimal number of
classifiers for a target task has not been properly addressed
yet. In general, the proposed solutions rely on the a priori use
of ad hoc strategies for selecting classifiers, followed by the
evaluation of their effectiveness results during training. Searching
by the optimal number of classifiers, however, makes the selection
process more expensive. In this paper, we address this issue by
proposing a novel strategy for selecting classifiers to be combined
based on the correlation of different diversity measures. Diversity
measures are used to rank pairs of classifiers and the agreement
among ranked lists guides the classifier selection process. A
fusion framework has been used in our experiments targeted
to the classification of coffee crops in remote sensing images.
Experiment results demonstrate that the novel strategy is able to
yield comparable effectiveness results when contrasted to several
baselines, but using much fewer classifiers.
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I. INTRODUCTION

Remote sensing images (RSI) are widely used as data
source in agricultural studies. The recognition of regions in
the images, given a pattern of interest, is a major application.
It is typically addressed by using supervised classification
techniques [1], [2], [3], [4].

With the increase in sensor technology, large collections of
RSIs have become available for research and new techniques
have been proposed to process such data. Concerning the high-
resolution images, region-based classification methods have
become a trend in the literature [5].

Despite advances in sensors and computational techniques,
the classification of agricultural regions is still a challenging
task. A typical problem is the presence of multiple patterns

in the same area of study. Coffee crops, for example, are
usually cultivated in mountainous regions (for example, in
Brazil) [2]. In these areas, shadows and distortions usually
impact the quality of available spectral information. Moreover,
the growing of coffee is not a seasonal activity, and, therefore,
in the same region, there may be coffee plantations of different
ages, which also affects the observed spectral patterns.

With all these particularities, it is essential to use several
image descriptors to properly encode the different existing
patterns [6]. Furthermore, the use of several classifiers is a
suitable alternative, since their results may be complementary
in the sense they may differ depending on the application and
the used features [7].

Many ensemble techniques for remote sensing are reported
in [8], [9]. More recently, Faria et al. [10], for example,
proposed an innovative and effective ensemble system by using
meta-learning based on support vector machines.

The use of diversity measures [11] has been observed in the
literature as an important tool for identifying potential classi-
fiers for fusion. These measures assess the degree of agreement
or disagreement between classifiers. According to Kuncheva et
al. [11], [12], the good performance of an ensemble system is
related to the diversity between the learning methods involved.
The authors studied different diversity measures as well as
discussed their impacts on the final accuracy of ensemble
systems.

In [13], many diversity measures are employed in an en-
semble strategy for produce recognition. In [14], the authors
used a single measure of correlation to assess the combina-
tion of descriptors at different scales of segmentation. They
showed that it is possible to reduce the number of selected
classifiers in an ensemble by selecting only the pairs with
less correlation. In [15], the authors evaluated several Multiple
Classifier Systems (MCS) in remote sensing and used different
strategies to improve those systems (e.g., classifier ensemble
approaches, pairwise and non-pairwise diversity measures, and
some modified algorithms).

In this paper, we address the problem of selecting the
most important classifiers for fusion by proposing a novel
strategy for selecting classifiers to be combined based on the
correlation of different diversity measures. Diversity measures
are used to rank pairs of classifiers and the agreement among
ranked lists guides the classifier selection process. We evaluate



the use of the proposed classifier selection and fusion targeted
to support RSI classification tasks. Experiment results show
that we can improve the classifier selection process of the
investigated framework towards developing an effective and
lightweight approach for classifying RSIs.

The remainder of this paper is organized as follows. Sec-
tion II presents related concepts necessary for understanding
this paper. Section III describes a new strategy for selecting
classifiers that has been implemented in a recently proposed
framework for classifier fusion. Section IV shows the ex-
perimental protocol we devised to validate our work, while
Section V discusses the results. Finally, Section VI presents
the conclusions and future research directions.

II. RELATED CONCEPTS

The following subsections describe related concepts neces-
sary for the understanding of this paper.

A. Support Vector Machine (SVM)

Support Vector Machine is a machine learning method
introduced in [16]. The goal is to construct an optimum
separation hyperplane or set of hyperplanes, which can be used
to separate an n-dimensional feature space. The hyperplane
is calculated such that it maximizes the margin between two
classes (the standard SVM is a two-class classifier). The
margin can be seen as the minimum distance of one point
of one class to the other. It can be interpreted as a separation
measure between two classes and represents the separability
degree between them (quality measure of classification). The
points on borders between the classes are called support
vectors. When it is not possible to find a linear separator
for the classes, the data are mapped on-the-fly onto higher
dimensional spaces through a non-linear mapping using the
kernel trick [17]. The reason for choosing SVM in this work
is that by using the kernel, SVMs gain flexibility in the choice
of the form of the threshold separating the classes of interest,
which do not need to be linear and even do not need to have
the same functional form for all data. Also, SVMs deliver a
unique solution, since the optimality problem is convex.

B. Pairwise Diversity Measures

Let M be a matrix 2 × 2 containing the relationship
between a pair of classifiers with percentage of agreement.
This relationship matrixM has the percentage of hit and miss
for each classifier ci and cj . The value a is the percentage of
images that both classifiers ci and cj classified correctly in the
validation set. Values b and c are the percentage of images that
cj classified correctly but ci missed and vice-versa. The value
d is the percentage of images that both classifiers missed.

In [11], Kuncheva et al. presented several measures to assess
diversity, considering pairs of classifiers. Following their work,
in our experiments, we have used Correlation Coefficient p
(COR), Double-Fault Measure (DFM ), Disagreement Mea-
sure (DM ), Interrater Agreement k (IA), and Q-Statistic
(QSTAT ). Those measures are defined as follows:

COR(ci, cj) =
ad− bc√

(a+ b)(c+ d)(a+ c)(b+ d)
, (1)

DFM(ci, cj) = d, (2)

DM(ci, cj) =
b+ c

a+ b+ c+ d
. (3)

QSTAT (ci, cj) =
ad− bc
ad+ bc

, (4)

IA(ci, cj) =
2(ac− bd)

(a+ b)(c+ d) + (a+ c)(b+ d)
, (5)

The diversity is greater if the measures Double-Fault Mea-
sure, Q-Statistic, Interrater Agreement k, and Correlation
Coefficient p are lower among pairs of classifiers ci and cj . In
the case of the Disagreement Measure, the greater the measure,
the greater the diversity [11].

C. The Classifier Fusion Framework

This section presents a framework for classifier selection
and fusion, as devised in [13].

1) Overview: Given a visual classification problem, one has
a set of characterization or description techniques (descriptors)
and a set of learning methods that will be used to learn patterns
from available instances for training in order to classify new
and unseen instances.

Once one trains all necessary classifiers along with dif-
ferent image descriptors, the learned knowledge undergoes a
selection process of the most relevant learning methods and
descriptors to be combined by another learning method (meta-
learning approach) aiming at selecting the most discriminative
methods as well as boosting the classification performance at
test time by selecting less, but more effective, classifiers.

The classifiers (one classifier is a tuple learning/descriptor)
are selected in a selection process that uses diversity measures
calculated at training time to show the degree of agree-
ment/disagreement between involved classifiers pointing out
the most interesting ones to be further used in a combination
scheme.

Sections II-C2 and II-C3 present a formal description of
a framework for classifier selection and fusion along with
examples when necessary.

2) Formalization: Let L be any set of learning methods
(e.g., Decision Tree, Naïve Bayes, kNN, etc.) and F be a
set of image descriptors (e.g., Color Histogram). Suppose that
classifiers are created by combining each available learning
method with each image descriptor. For example, three clas-
sifiers could be created by combining the learning methods
Decision Tree, Naïve Bayes, and kNN with the Color His-
togram descriptor. Let C be the set of classifiers created by
that combination, where |C| = |L| × |F|.

Let S be a set of images, where the class of si ∈ S (1 < i ≤
|S|) is known. The set S is used to construct both the training
(T ) and validation (V ) sets, where T ∪V = S and T ∩V = ∅.
As the scenario of interest is a supervised learning scenario,



the actual classes for training and validation data points are
known a priori.

Initially, all classifiers cj ∈ C (1 < j ≤ |C|) are trained on
set T . Next, the outcomes of each classifier on the validation
set V is computed and stored into a matrix MV , where |MV | =
|V | × |C|.

In the following, MV is used as input to select a set C∗ ⊂ C
of classifiers that are good candidates to be combined. In this
framework, diversity measures are employed to determine C∗
(see Section II-C3). Note that a new matrix M∗V ⊂ MV is
created by using the selected classifiers in C∗.

Given a new image I , one can use each classifier
ck ∈ C∗ (1 < k ≤ |C∗|) to determine the class of I , producing
k outcomes. The k outcomes are used as input of a fusion
technique (e.g., majority voting, SVM, etc.) that takes the final
decision regarding the definition of the class of I . In the case
of a fusion technique that requires prior training (e.g., SVM),
M∗V is used.

Figure 1 illustrates a framework for combining classifiers.

Figure 1. Framework for classifier selection and fusion [13]. Given a
classification problem with training examples, one trains different classifiers
and image descriptors and by means of diversity measures, he/she selects the
most discriminative ones to be combined in a meta-level using any other
classifier. Notice that, in this particular example, the SVM technique has
been used for classifier fusion. The classifier selection process is delimited
by dashed red line

3) Classifier Selection: Figure 2 illustrates the proposed
five-step approach for selecting classifiers based on diversity
measures [13].

Figure 2. The five steps for classifier selection are: (a) Compute diversity
measures from the validation matrix MV ; (b) R lists sorted by diversity
measures scores; (c) Rt lists with top t; (d) counts the number of occurrences
of each classifier that satisfy a defined threshold; (e) Selected classifiers |C∗|.

Consider the previously defined C (set of classifiers) and
MV (a matrix such that |MV | = |V | × |C|), containing the
outcomes of classifiers cj ∈ C from the validation set V .

Let D be a set of diversity measures. Each diversity measure
dl ∈ D is used to compute the agreement and disagreement
between two classifiers cjn , cjm ∈ C, considering all possible
combinations of classifiers (arrow (a) in Figure 2).

LetRdl
= {(cjn , cjm), scoredl

(cjn , cjm),mean(cjn , cjm)},
be a ranked list of pairs of classifiers defined by the score of

the diversity measure dl and the mean accuracy of pairs of
classifiers (cjn , cjm).

Let R = {Rd1 ,Rd2 . . .Rd|D|} be the set of ranked lists
defined for each available diversity measure. This process
is illustrated by arrow (b). Let Rt be a set of ranked lists,
where each ranked list contains the top t pairs of classifiers
(t pairs of classifiers that are good candidates to be com-
bined) – arrow (c), and H be a histogram that counts the
number of occurrences of a classifier that satisfy the condition
mean(cjn , cjm) > T (where T is a threshold representing
the average accuracy among all mean(cjn , cjm) of pairs of
classifiers) in all ranked lists of Rt – arrow (d).

The set C∗ of classifiers that are combined by the proposed
fusion approach is the h = |C∗| most frequent classifiers in
H. This step is represented by arrow (e).

For more details about the classifier selection process, please
refer to [13].

III. CLASSIFIER SELECTION BASED ON THE
CORRELATION OF MULTIPLE DIVERSITY MEASURES

In this section, we expand upon previous work in the
literature [13] and introduce a new strategy for guiding the
selection of classifiers based on the opinion of multiple diver-
sity measures.

A. Formalization

We propose to use multiple diversity measures to determine
which classifiers should be combined. Our hypothesis is that
by exploring complementary information provided by different
diversity measures, more appropriate classifiers are selected to
be combined.

Recall from Section II-B that a diversity measure indicates
the agreement of pairs of classifiers. In that sense, different
diversity measures would rank pairs of classifiers differently.
Therefore, we propose to explore different strategies to select
classifiers based on correlation scores among ranked lists
of pairs of classifiers. Ranked lists are defined by different
diversity measures.

1) Defining ranked lists of pairs of classifiers: As men-
tioned before, let C be the set of classifiers created by the
combination of learning methods and image descriptors. Let
P = {p1, p2, . . . , p|C×C|} be a set of all possible pairs of
classifiers, i.e., pl = (ci, cj), where (ci, cj) ∈ C × C.

Let D = {d1, d2, . . . , d|D|} be a set of diversity measures,
such that each diversity measure dk ∈ D defines a distance
function ρ : P → R, where R denotes real numbers. Eqs. 1–
5 define different criteria for implementing the function ρ.
Consider ρ(pl) ≥ 0 for all pl ∈ P and ρ(pl) = 0, with
pl = (ci, cj), if ci = cj . The distance ρ(pl) among all pairs of
classifiers pl = (ci, cj) ∈ C × C can be computed to obtain a
|C| × |C| distance matrix A.

Given a diversity measure dk ∈ D, we can compute a ranked
list Rdl

by taking into account the distance matrix A. The
ranked list Rdl

={p1, p2, . . . , p|C×C|} (where pl = (ci, cj)
is a pair of classifiers) can be defined as a permutation of
the collection P , such that, if pl is ranked at lower positions



than pm, i.e., pl is ranked before pm, then ρ(pl) < ρ(pm).
In this way, pairs of classifiers are ranked according to their
agreement score defined in terms of a diversity measure.

2) Measuring the correlation of ranked lists: We propose
to exploit the correlation of ranked lists of pairs of classifiers
to select the more appropriate ones to be combined. In this
paper, we use the Kendall tau rank correlation coefficient (τ )
to measure the degree of concordance between two different
ranked lists of the same set of observed samples. We will use
only the term ‘Kendall’ for Kendall tau rank, thus avoiding
possible confusion with ‘tau’ index (evaluation measure).

The Kendall correlation τ(Rdi
,Rdj

) between two ranked
lists Rdi

and Rdj
is defined in terms of the number of con-

cordant pairs NC in Rdi and Rdj , the number of discordant
pairs ND, and the number of positions n in the ranked lists.
Eq. 6 defines the Kendall correlation:

τ(Rdi ,Rdj ) =
NC −ND
1
2n(n− 1)

, (6)

Figure 3 shows an example to illustrate the use of the
Kendall correlation. In this example, we consider four clas-
sifiers c1, c2, c3, and c4 whose agreement is measured by
means of three diversity measures (d1, d2, and d3). Each
diversity measure defines three ranked lists (Rd1

, Rd2
, and

Rd3
). We highlight in red the differences of Rd2

, and Rd3

when compared to Rd1
. Note that, in Rd2

, just two pairs of
classifiers are inverted. Pairs of classifiers in Rd3 , in turn, are
ranked in the inverse order, when compared to Rd1 .

Figure 3 also shows in the table on the right side, the τ
correlation scores among the three ranked lists. The correlation
coefficient value τ(Rd1 ,Rd2), as expected, is high, which
means that ranked lists Rd1

and Rd2
have high degree of

concordance. However, the correlation between ranked lists
Rd1

and Rd3
is low (−1.0 stands for the lowest possible

correlation score).

Figure 3. Example of three computed ranked lists (Rd1 , Rd2 , and Rd3 )
and Kendall scores between them. Both ranked lists (R) and Kendall are
computed by using the validation matrix MV (see Section II-C3).

B. A Novel Strategy for Selecting Classifiers

We propose a novel strategy, named Kendall classifier
selection (KCS), to define appropriate classifiers to be used
in the classification framework presented in [13]. KCS makes
use of the degree of agreement of different diversity measures.
This agreement is measured in terms of the Kendall correlation
among ranked lists of classifiers, as presented in Section III-A.

Let dH1
and dH2

be the diversity measures with the highest
correlation scores, which are defined by the Kendall corre-
lation. Let RdH1

and RdH2
be the ranked lists of pairs of

classifies defined by dH1 and dH2 , respectively. KCS defines
the top-ranked pairs of classifiers in RdH1

and RdH2
as

the most appropriate ones to be used in the classification
framework presented in [13].

We also tested in our experiments selected classifiers defined
in terms of the lowest correlated diversity measures (dL1

and
dL2 ). In this case, we use classifiers defined in the top-ranked
positions of RdL1

and RdL2
.

Figure 4 summarizes in six steps the new approach for
selecting classifiers based on Kendall correlation.

Finally, it is important to highlight that all steps regarding
the selection of classifiers for fusion are performed during
the training phase of the decision-making framework. Us-
ing a validation set separated during training allows us to
evaluate different descriptors and learning techniques, assess
their outcomes when classifying the validation examples, and
properly selecting, by means of the proposed Kendall-based
methodology, the most suitable classifiers for deployment
during testing.

IV. EXPERIMENTAL METHODOLOGY

This section presents our experimental goals and evaluation
criteria, the used image dataset, image descriptors, learning
methods, evaluation measures, and the validation protocol.

A. Experimental Goals and Evaluation Criteria

In these experiments, we aim at showing the performance
of the selection process on the framework of selection and
fusion regarding the best baselines of the literature.

This performance evaluation considers both effectiveness
and efficiency aspects. Effectiveness analysis is based on
accuracy, kappa, and tau results in coffee crop classification
tasks. Efficiency analysis, in turn, is based on the number of
classifiers on the framework to achieve the same effectiveness
results than the best baselines.

Finally, statistical tests are performed to assess which classi-
fier selection strategy yields the best effectiveness results while
boosting efficiency.

B. Baselines

Five different diversity measures are considered in our
study (see Section II-B). Two different baselines, each one
with different strategies to select classifiers based on the
available diversity measures, are considered: the 1-Diversity
Classifier Selection (Single), and the 5-Diversity Classifier
Selection (ALL). The 1-Diversity Classifier Selection (Single)
refers to the use of only one diversity measure to define
appropriate classifiers to be selected. The 5-Diversity Classifier
Selection (ALL) considers the opinion of all available diversity
measures.



Figure 4. The six steps for new classifier selection are: (a) Compute diversity measures from the validation matrix MV ; (b) Sort R lists by diversity measures
scores; (c) Compute Kendall correlation coefficients among all ranked lists of classifiers R; (d) Select RdH1

and RdH2
or RdL1

and RdL2
ranked lists to

be used in the next step; (e) Rt lists with top t; (f) Count the number of occurrences of each classifier that satisfy a defined threshold; (g) Select the most
appropriate classifiers |C∗|.

C. Dataset

In this paper, we consider 4, 885 images created via the
method for multi-scale segmentation proposed by Guigues
et al. [18], which separated into regions a SPOT satellite
image of resolution 1, 000× 1, 000 pixels. The SPOT satellite
image corresponds to the Monte Santo de Minas county,
in the State of Minas Gerais, Brazil, a traditional place of
coffee cultivation. The region where this image was captured
is mountainous. Therefore, the spectral patterns tend to be
affected by the topographical differences and interference
generated by the shadows. Another problem is that coffee
is not a seasonal crop. Thus, in the same area, there may
be crops of different ages. Concerning classification aspects,
we have several completely different patterns representing the
same class while some of these patterns are much closer to
other classes.

To evaluate the accuracy, we use a ground truth that in-
dicates all coffee regions in the image. As the experiments
were performed with region level image and the ground truth
is in pixel level, it was necessary to define a rule to label
each region: if more than 80% of a region contains pixels of
coffee, that region was labeled as “coffee”; otherwise it is a
non-coffee region.

D. Image Descriptors

As we stated in Section I, there is no silver bullet to
solve all image classification problems with just one machine
learning classifier or even with just one image characterization
technique. To choose the most appropriate descriptors is also
a hard task.

Agricultural specialists usually perform analysis of agri-
cultural targets by exploiting vegetation indices, such as
NDVI [19]. With those indices, it is possible to estimate
production and differentiate some objects in the surface.

Thus, in this work, the feature extraction algorithms are
performed mainly on the bands corresponding to Red (R),
Green (G) and Near-Infrared (NI). These bands are the most
interesting for agricultural targets since are the basis for the
computation of the main vegetation indices.

The used framework can consider a diverse set of classifiers
and descriptors and point out the most interesting ones to
solve a problem. In this sense, here we have used several

image descriptors comprising color-, and texture-based meth-
ods. The used color descriptors include Border/Interior Pixel
Classification (BIC) [20], Color Coherence Vector (CCV) [21],
and Global Color Histogram (GCH) [22]. The used texture
descriptors include Quantized Compound Change Histogram
(QCCH) [23], Steerable Pyramid Decomposition (SID) [24],
and Unser [25].

The criteria for choosing the image descriptors in this work
are based on extensive experiments performed in [26], [6]
pointing out to some of the most interesting image descriptors
in the current computer vision literature.

E. Learning Methods

We used six learning methods in the framework of selection
and fusion: Decision Tree (DT), Naïve Bayes (NB), Naïve
Bayes Tree (NBT), and k-Nearest Neighbours (kNN) using
k = 1, k = 3, and k = 5. Those methods are simple and fast,
being suitable to be combined in a recognition system. The
framework aims at automatically finding suitable combinations
of classifiers formed by descriptors and learning methods.
We have used the implementation of those learning methods
available in the WEKA1 data mining library. All learning
methods were used with default parameters which means we
did not optimize them whatsoever.

F. Evaluation Measures

In the experiments, we have calculated evaluation measures
on the confusion matrix. The three evaluation measures are:
accuracy, kappa [27], and tau [28] indices.

G. Cross-validation Protocol

We consider a k-fold cross-validation protocol for all ex-
periments we perform. In this protocol, the original dataset is
randomly separated into k non-overlapping subsets. A subset
is chosen for testing set, and the k − 1 subsets are used for
training a learning technique. The cross-validation process is
repeated k times (rounds) and each subset is used only once
as test set. The final result (the classification accuracy) from
this process can be the arithmetic mean among all subsets.
In the experiments, we have considered k = 5 fold cross-
validation protocol. Each training set (consisting of four folds)

1http://www.cs.waikato.ac.nz/~ml/weka (As of May 2013).

http://www.cs.waikato.ac.nz/~ml/weka


can be further divided into validation and actual training (for
instance, three folds can be used for training and the fourth
for assessing the classifier being developed).

V. RESULTS AND DISCUSSION

This section discusses the correlation analysis among di-
versity measures, behavior of each diversity measure into the
selection process, and results regarding the effectiveness of the
framework against different baselines from the literature.

A. Correlation Analysis of Diversity Measures

According to [13], the authors have used all five diversity
measures together in the classifier selection process (Sec-
tion II-C3). This experiment aims at showing that the use of
these measures may provide different opinions about which
classifiers can be better selected, thus potentially improving
the quality of results in classification tasks.

Table I shows obtained results when using the well-known
Kendall correlation scores [29] among ranked lists defined by
different diversity measures.

Table I
Kendall SCORE BETWEEN FIVE DIVERSITY MEASURES.

Diversity Measures COR DFM DM IA QSTAT
COR 1.00 0.14 0.87 -0.15 0.95
DFM 0.14 1.00 0.14 -0.09 0.15
DM 0.87 0.14 1.00 -0.15 0.88
IA -0.15 -0.09 -0.15 1.00 -0.16

QSTAT 0.95 0.15 0.88 -0.16 1.00

As we can observe, the measures COR, DM , and QSTAT
have high correlation coefficients between them. DFM shows
to be more correlated with COR, DM , and QSTAT and
less correlated with IA. In the case of IA, it has the lower
correlation coefficients for all other measures analyzed which
means it can be a very good candidate to consider when
selecting diversity measures. Notice that none of the used
measure is highly non-correlated with each other. This means
that, although they are different diversity measures, all of them
have an agreement degree about which classifiers should be
combined.

As we can observe in Table I, COR × QSTAT has the
highest correlation coefficient (in blue), while IA×QSTAT
has the lowest (in red). Although it is not expensive to
consider more diversity measures (their calculation requires
simple operations with lists), ruling out some of them might
be interesting.

Next section shows a study on combinations of diversity
measures and impacts of these combinations in the selection
process. In addition, we show how the methodology we
propose in this paper can be used for selecting the most
appropriate classifiers in a given problem.

B. Behavioral Analysis

This section shows three different analysis on the behavior
of diversity measures in the classifier selection process in the
framework proposed in [13]. First, we show an analysis of the
diversity measures in isolation, followed by the combination

Table II
KAPPA INDEX COMPUTED FOR ALL DIVERSITY MEASURES USING

5-FOLDS CROSS-VALIDATION PROTOCOL FOR DIFFERENT NUMBER OF
CLASSIFIERS (|C∗|). SIMILAR BEHAVIORS CAN BE OBSERVED FOR OTHER

EVALUATION MEASURES (ACCURACY AND TAU INDEX).

Type Diversity Number of Classifiers |C∗|
Measures 5 10 15 20 25 30

Single

COR 0.515 0.562 0.597 0.610 0.618 0.624
DFM 0.490 0.540 0.610 0.620 0.620 0.630
DM 0.507 0.549 0.577 0.611 0.622 0.622
IA 0.557 0.579 0.601 0.606 0.607 0.613

QSTAT 0.515 0.562 0.597 0.610 0.618 0.624
Baseline ALL 0.472 0.553 0.592 0.610 0.628 0.623

Kendall COR+QSTAT 0.515 0.562 0.597 0.610 0.618 0.624
IA+QSTAT 0.560 0.590 0.594 0.615 0.618 0.617

of all diversity measures envisaged in Section II-B. Finally, we
complete this study with the combination taking into account
our novel approach (see Section III-B) which relies upon the
Kendall’s scores defined in Table I.

For better understanding of this analysis, consider Figure 5.
The x-axis denotes the number of classifiers |C∗| than have
been selected in the selection process. Notice that the values
ranging from 5 to 36, where 5 is the lowest number of
classifiers selected and 36 is the total amount of possible
classifiers that can be selected (six descriptors and six learning
methods result in 36 different classifiers). The y-axis denotes
the classification effectiveness measured in terms of the kappa
index.

In this figure, ‘ALL’ represents the baseline curve published
in [13] that uses all of the five diversity measures into the
selection process.

Figure 5-(a) shows a comparison between the SINGLE
curves which use only one out of five diversity measures in
the selection process against ALL curve. In this figure, it can
be seen that for |C∗| = {5, 10}, the IA starts with the best
kappa scores, but the more classifiers are available, the lower
the effectiveness of this diversity measure. In fact, IA has the
worst performance after 20 classifiers are considered. COR
and QSTAT curves have similar behavior. This experiment
shows results in accordance with those in Table I. These mea-
sures show to have similar opinions and, therefore, are highly
correlated. DFM is generally the best curve, showing to have
the highest growth in the range |C∗| ∈ {5, . . . , 15}, achieving
the best kappa index when 30 classifiers are considered, i.e.,
|C∗| = 30. ALL starts with the worst kappa for |C∗| = 5, but
has the highest growth for |C∗| ∈ {5, . . . , 10}, and the best
kappa for |C∗| = 25. This fact shows that the combination of
different measures of diversity can be promising in order to
obtain better results than using the measures in isolation.

Figure 5-(b) shows a comparison between the fusion of
diversity measures with the lowest correlation coefficient (IA
and QSTAT — red scores in Table I), the fusion of the
diversity measures with the highest coefficient (COR and
QSTAT — blue scores in the Table I), and ALL. ALL has
achieved the worst kappa indices for |C∗| = {5, 20}, but it has
achieved the best kappa for |C∗| = 25. QSTAT combined
with IA (IA+QSTAT ) has achieved the best results for
|C∗| = {5, 10} and the worst for |C∗| = {25, 30}. This fact



shows that IA+QSTAT might be good for combining fewer
classifiers, but not recommended when |C∗| is large.

Table II shows kappa indices for all performed experiments.
In bold, the best kappa index for each number of classifiers
(|C∗|) defined in the selection process.

In Table II, we can see that there is no selection approach
that achieves the best results for any number of classifiers. This
illustrates the difficulty of automatically finding the optimal
combination among diversity measures. The investigation of
optimal combinations of diversity measures has showed to be
a promising research venue and will be targeted in future work.

C. Effectiveness Analysis

In these experiments, seven fusion techniques are compared:
the approach using SVM (FSVM-KERNEL-|C|) considering
|C| ∈ {36, 49}, the approach considering fewer classifiers
(FSVM-KERNEL-10) which effectively selects more promis-
ing learning and description methods using the Kendall method
(combination of diversity measures IA+QSTAT , as showed
in red, in Table II), Adaboost (BOOST-36), Bagging (BAGG-
36), and Majority Voting (MV-36 and MV-49). Recall that
FSVM-RBF-49 and MV-49 have been presented in [10].

Table III presents the results obtained for each fusion
technique, considering three different evaluation measures
(Accuracy, Kappa, and Tau). Notice that BOOST and BAGG
techniques show up with the suffix ‘ALL’, which means the
concatenation of the feature vectors produced by the six
different image descriptors considered. Thus BAGG-ALL-36,
BOOST-ALL-36 techniques are 36 iterations using six image
descriptors.

Table III
CLASSIFICATION EFFECTIVENESS OF THE PROPOSED SELECTION

FRAMEWORK AND BASELINES, WITH THEIR RESPECTIVE STANDARD
DEVIATIONS.

Techniques Accuracy kappa Tau
FSVM-RBF-49 89.09%±1.09 0.62±0.02 0.70±0.02
FSVM-NORM-36 89.09%±1.16 0.63±0.02 0.70±0.02
FSVM-NORM-10 87.88%±1.34 0.59±0.03 0.67±0.02
MV-49 88.50%±1.34 0.59±0.04 0.68±0.03
MV-36 89.13%±0.77 0.63±0.03 0.70±0.02
BAGG-ALL-36 88.33%±0.87 0.60±0.04 0.68±0.02
BOOST-ALL-36 89.46%±0.97 0.64±0.03 071±0.02

D. Statistical Test of Significance (t-test)

T-tests have been performed to verify the statistical sig-
nificance of the results. In these tests, if the p-value is less
than 0.05 (confidence of 95%) there is a significant difference
between a pair of classifiers. If the p-value is greater than 0.05,
there is no statistical difference.

Table IV shows a comparison among our approach (FSVM-
NORM-10) with fewer classifiers selected using the method-
ology proposed in Section III (the result of the best selection
process from Table II – IA+QSTAT , in red) against each
one of the baselines.

Notice that FSVM-NORM-10 has not statistical difference
with any baseline. This means that our selection approach
achieved similar results than all baselines but using far fewer

Table IV
SIGNIFICANCE TESTS FOR OUR APPROACH AGAINST ALL BASELINES USED

IN THE EXPERIMENTS.
Pair of Techniques t-test Significant
FSVM-NORM-10 × FSVM-RBF-49 0.0679 No
FSVM-NORM-10 × FSVM-NORM-36 0.0585 No
FSVM-NORM-10 × MV-49 0.3619 No
FSVM-NORM-10 × MV-36 0.1815 No
FSVM-NORM-10 × BAGG-ALL-36 0.5575 No
FSVM-NORM-10 × BOOST-ALL-36 0.0765 No

classifiers. For example, FSVM-NORM-10 has used 10 clas-
sifiers against MV-36 that has used 36 to perform the same
classification task. In addition, if all diversity measures are
employed (ALL approach) as proposed in [13], 15 classifiers
would be necessary to get the same result (kappa = 0.592,
result in blue in Table II).

VI. FINAL REMARKS AND FUTURE WORK

This paper presented a novel strategy for selecting classifiers
to be combined based on the Kendall correlation among
different diversity measures. Those diversity measures were
used to rank pairs of classifiers and the agreement of ranked
lists was employed to guide the classifier selection process. In
addition, we performed three different analysis with diversity
measures in the classifier selection process of a classifier
selection and fusion framework [13].

First, a correlation analysis using Kendall score has showed
to be possible that different diversity measures have different
opinions. In this experiment, we have showed that COR ×
QSTAT achieved the highest correlation coefficients, while
IA×QSTAT , the lowest . High correlation coefficients mean
that both diversity measures have similar opinions about which
classifiers might be selected. Low correlation coefficients in
turn, mean that both diversity measure have a certain degree
of divergence about which classifiers to select.

We also performed a behavioral analysis, based on which we
showed two forms for selecting classifiers: (1) Single, which
used only one diversity measure in the classifier selection
process; (2) Kendall, which used two measures combined
through Kendall correlation coefficients.

Finally, a comparison using the classifier accuracy has been
performed using the best classifier selection approach that we
could find using Table II by means of the use of diversity
measures and the proposed methodology based on Kendall.
The IA + QSTAT approach has achieved the same results
than all baselines using fewer classifiers than the original
approach (ALL). Statistical tests have been performed to
corroborate the claims.

As a future work, we plan to investigate additional strategies
and metrics to automatically select the optimal diversity mea-
sures set for the classifier selection process, use non-pairwise
diversity measures, and perform other experiments in other
applications.
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