A 2D Shape Boundary Detection Algorithm
for VLSI Implementation

ELMAR MELCHER, JOAO MARQUES DE C'ARVALHO, MARCELO DE BARROS,
LirRIDA NAVINER, JEAN FRANGOIS NAVINER,
VALTEIR R. DA Siival,
FRED HENRIQUE Souza PaEs!,
RICARDO A. S. MOREIRA!,
JEANNE E. DE P. BRAQUEHAIS

Universidade Federal da Paraiba
Departamento de Engenharia Elétrica
58.109-790 Campina Grande - PB, Brasil
elmar@dee.ufpb.br

Abstract. In this work a parallel architecture is proposed for VLSI implementation of a data-flow
algorithm for 2D boundary (or contour) detection. The algorithm works on the gradient image and
uses a set of primitive paths to generate all possible contour paths on a neighborhood defined by a
3 x 3 window. The objective is to determine whether or not the neighborhood central pixel belongs
to a continuous boundary line passing across the window. Test results show that one-pixel wide
continuous boundary lines can be extracted using this algorithm.

1 Introduction

Polygonal modeling has traditionally been one of the
most popular methods for shape representation and
still is largely used in applications where shape recog-
nition of two-dimensional objects or surfaces is
needed [SR92, SM92].

Polygonal models have the advantage of being
a local representation, i.e., they preserve local shape
features therefore allowing for object recognition,
even in the presence of partial occlusion. Addition-
ally, they can be made insensitive to rotation, trans-
lation, and scaling, (a requirement for any practical
recognition system) and are much less computation-
ally expensive than higher-order polynomial approx-
imations. As a drawback, the representation pro-
vided by polygonal models is usually not as compact
as those based on global features such as moments or
transform descriptors. A more complete analysis of
the issues involved in those and other forms of shape
representation has been made by Pavlidis [Pav78].
Further details about the advantages of polygonal
modeling can also be found in the literature [AF86,
KD82].

In order to operate properly, algorithms for poly-
gonal modeling of 2D objects require shapes with
continuous and well defined boundaries. Generation
of this boundary is the objective of the preprocessing
phase to which the original image of the object to be

Iholsistas PIBIC/CNPq/UFPB

modeled is normally submitted. As part of a typical
preprocessing operation initially a discrete gradient
operator is employed to generate a gradient image,
upon which boundary tracking segmentation can be
performed [MM92].

Most of the work so far reported on algorithms
for boundary extraction on digital images assume a
sequential software implementation, either on a gen-
eral purpose computer or on an specialized signal
processor. This type of approach is inadequate if
real-time high speed operation is desired, due to the
computationally intensive character of low-level im-
age processing. Applications such as vision systems
for mobile robots may require 512 x 512 image frames
with 256 gray levels (8 bits) to be processed at a
rate of 30 frames per second. Real-time operation
at this rate would require a processing time of 120
nanoseconds for each 1mage element or purel. This
performance figure becomes clearly out of reach for
any sequential general purpose computer when one
considers the amount of multiplications, additions
and other operations usually involved in each output
pixel computation. The obvious solution is to design
parallel algorithms and architectures which can be
implemented in specialized integrated circuits called
ASIC's using CAD-based VLSI design tools.

The availability of very powerful and ease to
use VLSI design tools has fueled the development of
several real-time 1mage processing systems, partic-
ularly for low-level feature detection and extraction

Anais do VIII SIBGRAPI (1995) 191-196

192

applications. Bhanu et al. have designed and im-
plemented a real-time segmentation processor which
makes use of a gradient relaxation algorithm (iter-
ative) to assign pixels into classes, based on their
gray value and the gray values of neighboring pix-
els [BHS90]. Ranganathan et al. have proposed
a VLSI architecture which convolves images with
eight 15 x 15 kernels in order to implement a tech-
nique for corner detection which is based on the con-
cept of half-edge and on the first derivative of Gaus-
sian [RNM91]. Cheng et al. utilized the theory
of dynamic programming to develop a backtracking
method for curve detection and designed an asso-
ciated VLSI architecture which solves the problem
in O(n) time, where n is the length of the curve
to be found [CTLI0]. All these architectures make
use of pipelining and parallelism in order to achieve
real-time performance. More recently, Melcher at al.
have used the CAD toll called ALMA, a finite state
machine generator, to design a VLSI architecture
for polygonal modeling of two-dimensional shapes.
This circuit uses parallelism to simultaneously per-
form segmentation and vertex extraction, therefore
maximizing speed [MCa94]. A good critical survey of
parallel architectures and algorithms for image pro-
cessing has been done by Cypher and Sanz [CS89)].

In this work a parallel architecture is proposed
for VLSI implementation of a data-flow algorithm for
2D boundary (or contour) detection. The algorithm
works on the gradient image and uses a set of primi-
tive paths to generate all possible contour paths on a
neighborhood defined by a 3 x 3 window. The objec-
tive is to determine whether or not the neighborhood
central pixel belongs to a continuous boundary line
passing across the window.

The rest of the work is organized as follows: Sec-
tion 2 describes the algorithm for boundary detec-
tion. Sections 3 and 4 present VLSI hardware im-
plementations of the proposed algorithm. Section 5
shows results obtained by simulating actual circuit
operation. Finally, conclusions are drawn in sec-
tion 6.

2 Algorithm

For hardware implementation of image processing,
the most performant algorithms are those of the data-
flow type. The image pixels come in serially, pixel by
pixel, one line after the other. For every incoming im-
age pixel, a data-flow algorithm produces one output
pixel. The output pixel is determined by a function
of the corresponding input pixel and neighboring pix-
els. These pixels form a window. Apart from the
function, the performance and the data storage re-
quirements of data-flow algorithms depend on the

Anais do VIII SIBGRAPI, outubro de 1995

" E. MELCHER, J.M. CARVALHO, M. BARROS, L. NAVINER, J.F. NAVINER, ET ALII

i
NI

Figure 2: Primitive paths for pathfinder I

size of the window, as shown in table 1. The stor-
age size and delay times are for images with 8 bits
per pixel, 512 pixels per line, 512 lines per image, 30
images per second.

The performance characteristics of data-flow al-
gorithms makes them the best choice for real time
image processing. The boundary detection algorithm
proposed in this paper consists of three processing
stages, as shown in figure 1. Each stage will be de-
scribed in detail in the following paragraphs.

2.1 Robert’s Gradient

Robert’s Gradient is based on a 2 x 2 window and
approximates the image gradient at pixel coordinates
(m,n) by:

Py(m,n) = |P,(m—1,n—=1) = P,(m,n)| (1)
+ |Po(m — 1,n) — Py(m,n — 1)|

where P, is a pixel gray level value of the orig-
inal image, and P, is a pixel gray level value of the
gradient image.

2.2 Local Maximum and Pathfinder I

This phase works with two criteria. If both criteria
are validated, the center pixel of the window becomes
the output pixel, otherwise the output pixel becomes
zero. Note that the output image at this phase is not
a binary image. It has as many gray levels as the
input image.

The local maximum criterion is based on a 5 x 5
window. It is validated if the center pixel value is
greater than 10% of the full scale value and if it is
among the five biggest values in the window.

The pathfinder criterion works on a 3 x 3 win-
dow. This criterion determines whether the center
pixel of the window belongs to a continuous border
line passing across the window. To accomplish this,
all possible border paths across a 3 x 3 window must
be checked. The possible paths are derived from the
primitives in figure 2 by mirror and rotation opera-
tions. Eliminating repetitive patterns, a total of 44
distinct paths was obtained. Note that the paths
in figure 2 do not contain any sharp corners, which
would difficult subsequent border tracking.

BoUNDARY DETECTION ALGORITHM

193

window storage space image
pixel x pixel required delay
2x%x2 1 line + 2 pixel = 4112 bits 1 pixel = 0.1us
3x3 2 lines + 3 pixels = 8216 bits 1 line + 2 pixels = 61.7us
bxb 4 lines + 5 pixels = 16424 bits | 2 lines + 4 pixels = 123.3us

Table 1: Window size and performance of data-flow algorithms

gradient

maximum

pathfinder I

& pathfinder II

S h%

. . . .
1=} 1=} 1=} 1=}

original image gradient image

D >

1=} 1=} o 1=}

first border image second border image

Figure 1: The image processing stages of the proposed algorithm

-

[]
[
[]

Figure 3: Primitive paths for pathfinder 11

The pathfinder criterion is validated if the center
pixel belongs to one of the six paths with the largest
value. The value of a path is determined by the
weighted sum of its pixel values:

N,

12
S =% ; Py(mi,n;) (2)
where N, is the number of pixels of the path and
m; and n; are the image coordinates of the path in
the window. Note that S, is always an integer value.

2.3 Pathfinder II

The pathfinder II algorithm works only with paths
containing at least 3 pixels. These 28 paths were
derived from the primitives in figure 3.

The same equation (2) is used to calculate the
weighted sum for each path. If the center pixel of the
window belongs to the path with the highest sum,
the output pixel is set to 1.

If the two paths with the largest weighted sums
have equal value and the center pixel of the window

belongs to one of those paths, an arbitrary choice has
to be made: if in this situation the sum of the three
pixels in the upper right corner of the window is big-
ger than the sum of the three pixels in the lower left
corner, the output pixel is set to 1. In all other cases
the output pixel is set to 0. The criterion assures
that only one of the pixels of the different paths is
set to 1, providing a one pixel wide border line. In
the examples shown in section 5, this situation occurs
at about 4% of the border pixels.

3 ASIC Hardware Implementation

The implementation of a data-flow algorithm in an
ASIC is relatively easy compared to the implemen-
tation of other algorithms. Virtually no control cir-
cuitry is needed because the sequential part of the
circuit deals only with the uniform pixel flow. In
many cases the design can be done automatically by
using high level synthesis tools [dMCa90].

For these reasons and in order to be concise, this
section only estimates the complexity of the hard-
ware, i.e. the chip area required. The estimation
is based on the ES2’s RAM generator [Eur90] in
ECPDI12 technology and an average density of 10.000
transistors per mm?. The estimation results are sum-
marized in table 2.

The gradient operator needs two subtractors and
one adder/subtractor, i.e. only 675 transistors.

The local maximum operator has to compare 24

Anais do VIII SIBGRAPI, outubro de 1995

194

operator storage computation
bits | area tran- | area

mm? | sistors | mm?

gradient 4112 | 2.40 675 1 0.07
maximuin 16424 9.63 2082 0.21
pathfinder 1 ; .| 30660 | 3.07
pathfinder 1T | 8216 | 4.81 | 20570 | 2.06

Table 2: Complexity of the hardware implementation

peripheral pixel values to the center pixel value. The
result bits “greater than or equal™ of the comparisons
have to be added and compared to 5. That is done by
24 comparators, an adder tree of 24 operands of 1 bit
each, and one additional comparator. This sums up
to 2082 transistors.

The pathfinder I operator uses the same stor-
age memory as the maximum operator. The compu-
tation here is done by 136 adders for the weighted
sums, one comparison tree that determines the max-
imal weighted sum among the 12 paths that include
the center pixel, 32 comparators that compare this
value to the weighted sums of the remaining paths,
an adder tree for 32 operands of 1 bit each, and one
additional comparator.

The pathfinder II operator needs 92 adders for
the 28 weighted sums, one comparison tree that de-
termines the maximal weighted sum among the 12
paths that include the center pixel, 16 comparators
that compare this value to the weighted sums of the
remaining paths, and one logic NOR with 16 inputs.

The total chip area is thus estimated to 22mm>.
Note that the chip area is almost directly propor-
tional to the number of pixels per line and to the
number of bits per pixel.

4 Low-Cost FPGA Implementation for Hard-
ware Validation

In order to perform an evaluation of the hardware im-
plementation proposed, a low-cost prototyping plat-
form is under development. It consists of a highly
programmable prototyping board with an adapted
(high throughput) interface with the host machine of
the image processing system. This board holds two
XC4013 Xilinx FPGA (Field Programmable Gate
Array) circuits [Xil94].

Such an approach allows a system level valida-
tion of the designed architecture step by step. Each
step is performed by customizing the prototyping
board with the specific architectures of gradient, max-
imum, pathfinder I and pathfinder IT modules. This
is made by programming sequentially the FPGA cir-

Anais do VIIT SIBGRAPI. outubro de 1995

E. MELCHER. J.M. CarvarLno. M. BARROS. L. NAVINER. J.F. NAVINER. ET ALII

time | area in use
mns |- CLBs | in %
Add/Sub 15 5 2.5
Comparator 15 5 2,5
Multiplexor 6 4 2

Table 3: Complexity of FPGA Implementation: de-
lay time, number of Configurable Logic Blocs needed,
percentage of FPGA used.

1

d

Figure 4: Original image of toy block (a), gradient
image (b). first border (c) and second border (d)

cuits. After each step, the intermediate processing
results are stored back in the host machine and then
used as data entry for the following step.

To allow validation of real time image process-
ing operators, the FPGA implementation of the al-
gorithms needs special adaptation at algorithm. ar-
chitecture and technology levels [dB94]. So, the ele-
mentary operators of boundary detection algorithm
(comparators, multiplexers, adders and subtractors)
were implemented by a “full-custom-like” design ap-
proach and present the characteristics in table 3 when
using XC4013 SRAM FPGA circuits from Xilinx.

5 Simulation Results

Operation of the border detection hardware im-
plementation was simulated by a program written

. BOUNDARY DETECTION ALGORITHM

in C language. The choice of C is justified by the
fact that it allows fast simulations at functional level,
providing fast turn-around time for debugging and
parameter adjustment. A hardware description lan-
guage like VHDL runs slower and is more compli-
cated to debug. The use of C language made it pos-
sible to involve a team of undergraduate students in

M
e
i T s,
H
% e

Figure 5: Original image of the screwdriver (a), gra-

dient image (b), first border (c) and third border (d) *

195

the project, who where actually making their first
real-world experience with both C language and VLSI
implementation.

Images of two objects were used to validate the
algorithm: An arch-shaped toy block, figure 4 and a
screwdriver, figure 5.

The toy block is made of 64 x 64 pixels. 16 grey
levels (4 bits) are used.

Figure 5a shows a shape with sharp contrast.
The gradient’s image 5b reaches strong grey level
values all around the border and the contour line is
relatively thin. This makes the task of border extrac-

_ tion rather easy, resulting in a perfectly continuous

line no more than one pixel wide in figure 5d.

The screwdriver is made of 220 x 128 pixels. 32
grey levels (5 bits) are used.

In comparison to the toy block, the screwdriver
in figure 5a has poor contrast, mainly due to its
round shape in perpendicular sections of the image
plane and because of the shadow caused by light that
falls onto the image plane in angle from the left side.
To avoid the shadow, the light source should be lo-
cated next to the camera. The contrast is particu-
larly bad at the tip of the screwdriver and at the top
of the handle.

The gradient image (figure 5b) reaches good
(high) grey level values at a few points only and the
contour line is wider than in figure 4b. After the sec-
ond processing stage, employing the maximum oper-
ator and pathfinder I, the border is much finer (fig-
ure 5¢), but still far from perfect.

Two stages with the pathfinder I operator were
needed to reach an acceptable result in figure 5d.
The first stage resets the pixels that are not consid-
ered to belong to the border line but lets the border
pixels unchanged. Only the second stage reduces the
image to a binary image. The border line is perfectly
continuous, but there are a few locations where the
border line is more than one pixel wide. There also
is a spurious border that appears near the tip of the
screwdriver. Comparing with the original image we
recognize the contour of the flat part of the srew-
driver’s tip at that location.

Still, the quality of the contour in figure 5d is
clearly sufficient for a subsequent vertex extraction
procedure.

6 Conclusion

The simulation results show that the hardware im-
plementation of the proposed algorithm is capable
of producing good results even for images with poor
contrast. In both cases a continuous, well defined,
one pixel wide contour was extracted by the circuit,
which will ease considerably the task of the vertex ex-

Anais do VIII SIBGRAPI, outubro de 1995

196

traction algorithm, last stage of the polygonal mod-
eling operation.

A data-flow solution for the vertex extraction
procedure is rather more complicated than a sequen-
tial one. Sequential algorithms progress pixel by
pixel along the shape contour, testing each new pixel
in order to detect vertex for the polygonal approxi-
mation. A list of the boundary points has to be avail-
able beforehand, which precludes its use on high-
speed real-time operation. In the other hand, data-
flow algorithms work on the image as it is being ac-
quired line by line. Therefore, they represent the
only possible solution if real-time performance is to
be achieved. However, data-flow algorithms look at
the image through a rectangular window of a given
size, 3 x 3 or Hhx 5, for instance. This fact makes it dif-
ficult to determine to which shape a contour segment
belongs, when more than one object (or shapes) are
present in the image scene being modeled. A com-
promise solution to the above problem may be a hy-
brid architecture, where vertex detection would be
followed by a non data-flow procedure in charge of
assigning detected vertex to objects.

The development of an algorithm for VLSI im-
plementation of the complete polygonal modeling pro-
cedure is presently under way. Once it is completed
and integrated with the circuit described in this pa-
per, a complete high-speed system for polygonal mod-
eling of 2D shapes will be available, capable of per-
forming at the rates required for real-time applica-
tions.

References

[AF86] N. Ayache and O.D. Faugeras. HYPER:
A new approach for the recognition and
positioning of two-dimensional objects.
IEEE Transactions on Pattern Analy-
sis and Machine Inteligence, 8(1):44-54,
1986.

[BHS90] B. Bhanu, B.L. Hutchings, and K.F.

Smith. VLSI design and implementation

of a real-time image segmentation proces-

sor. Machine Vision and Applications,

3:21-44, 1990.

[CS89] R. Cypher and J.L.C. Sanz. SIMD

architectures and algorithms for image

processing and computer vision. [FEE

Transac. Acoustics, Speech and Signal

Proc., 37:2158-2174, 1989.

[CTLY0] H.D. Cheng, C. Tong, and Y.J. Lu.

VLSI curve detector. Pattern Recognition,

23:35-50, 1990.

Anais do VIII SIBGRAPI, outubro de 1995

[dB94]

[AMCa90]

[Eur90]

[KD82]

[MCa94]

[MM92]

[PavT78]

[RNMY1]

[SM92]

[SR92]

[Xil94]

E. MELCHER, J.M. CARVALHO, M. BARROS, L. NAVINER, J.F. NAVINER, ET ALII

Marcelo Alves de Barros. “Low Level im-
age Processing Operators on FPGA: Im-
plementation Exemples and Performance
Evaluation”. Proc. of the 12th Interna-
tional Conference on Pattern Recognition,

Oct. 1994.

H. de Man, F. Catthoor, and alii.
“Architecture-Driven Synthesis of tech-
niques for VLSI Implementation of DSP
Algorithms”. Proc. of the IEEE, Feb.
1990.

European Silicon Structures. Solo 2000
Famaly Libraries, 3rd edition, July 1990.

Y. Kurozumi and W. A. Davis. Polygonal
approximation by the minimax method.
Computer Graphics and Image Process-
ing, 19:248-264, 1982.

Elmar U.K. Melcher, Joao M. Carvalho,
and alii. VLSI circuit for polygonal mod-
elling of 2D shapes designed using the fi-
nite state generator ALMA. In Anais do
IX SBMICRQO, Congresso da Sociedade
Brasileira de Microeletronica, pages 359—
368, Rio de Janeiro - RJ, Agosto 1994.

A.D Marshall and R.R. Martin. Computer
Vision, Models and Inspection. World Sci-
entific, London, U.K., 1992.

T. Pavlidis. Survey: A review of al-
gorithms for shape analysis. Computer
Graphics and Image Processing, 7:243-
258, 1978.

N. Ranganathan, S.J. Nichani, and
R. Mehrotra. A VLSI architecture for a
half-edge based corner detector. Machine
Vision and Applications, 4:165-181, 1991.

F. Stein and G. Medioni. Structural in-
dexing: Efficient 2-d object recognition.
IEEE Transactions on Pattern Analy-
sis and Machine Inteligence, 14(12):1198-
1204, 1992.

I. K. Sethi and N. Ramesh. Local associa-
tion based recognition of two-dimensional
objects. Machine Vision and Applica-
tions, 5:265-276, 1992.

Xilinx. “The XC/4000 Programmable Gate
Array Data Book”. San Jose, CA, USA,
1994.

