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AUTOMATIC CORONARY ARTERY W ALL CONTOUR DETECTION 

L Moura 1 and R Kitney 2 

ABSTRACT - The paper describes an image processing 
technique for the detection and labelling of arterial wall 
contours from cross-sectional slides in pathology. A 
gradient operator is applied to the digitised image and 
generates points of interest at likely edges. These points 
are then used as starting points for a contour follower 
algorithm leading to the formation of one-pixel-wide line 
segments. Heuristic search is used to loca te closed sets 
of segments. A cost-funtion is used which is minimised by 
a circle so that the algorithm tends to find roundish 
structures. Further processing involves closed curve 
filtering and con textual contour labelling. 

Results have shown that the method's strength lies 
in its ability to correctly find the wall contours even 
when major gaps are present, provided that some long 
segments are formed. The method is suitable for locating 
and labelling other round-shaped structures such as blood 
vessel cross-sections and cell outlines. 

INTRODUCTION 

Coronary occlusion is a common cause of myocardial infarctíon and is often 
fatal. Ischaemic heart disease was responsible for approximately 160,000 deaths in 
England and Wales in 1985, nearly 27% of ali deaths that year (OPCS,l987). 

Although much is known about the pathogenesis of coronary artery 
occlusion, there are some aspects yet to be unveilled (Davies, 1984, Davies, 1985, 
Hangartner, 1986). Investigation of coronary artery pathology may be performed by 
examining arterial cross-sections under the optical microscope. The biological 
material is prepared so that some particular types of tissue will be staíned 
(Gray,1973). 

Occlusive disease is caused by atheromatous plaques which form underneath 
the intima. Enlargement of these plaques leads to constriction of the arterial lumen 
--- a condition known as stenosis. 

The degree of stenosis, measured as reduction in lumen size, has been a key 
concept for the study of arterial diseases in general. Methods for estimating cross
sectional surface area have varied from counting squares enclosed by outlines 
(Sissons, 1963) to paper-weighing techniques (Bell, 1967), and from planimeters 
(Aherne, 1971) to image processing (Gore, 1979, Hougardy, 1976). Understandably, 
compu ter techniques h a v e been increasingly used in the last few years. 
Nevertheless, whichever methods are used they concentrate essentially on the 
slide-by-slide study of arterial segments. 
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PRELIMINAR V CONSIDERA TIONS 

In this paper we describe the algorithm for automatic arterial wall contour 
detection that we have developed as part of a computer system for the recons
truction of coronary artery segments from series of cross-sectional slices 
(Moura, 1988). 

An example of such a series can be seen in Figure 1. It consists of ten slides 
taken at equally spaced depths. This series of images has been selected as very 
representativa of the type of data this work is concerned with. 

Ali the coronary artery slides used in this paper have been obtained using 
the procedure described in detail in (Moura,1988). Basically, the coronary arteries 
are dissected from hearts obtained at autopsy, fixed, pro,~essed and then thinly 
sliced using a microtome. Each slice is then attached to a rectangular piece of 
clear glass, stained, and covered with another piece of glass, smaller and much 
thinner. 

Figure 1 A Series oj Cross-Sections. The images jrom (a) to 
(j) are images of Coronary Artery cross-sections ajter being 
digitised. 

A glance at the slides in Figure 1 reveals that there are severa! leveis of 
detail in the vessel structure. Although these details can convey important 
information to the pathologist's eye and the inner compartments may be important 
for some studies (Davies, 1984, Hangartner, 1986), this work will be restricted to the 
structures defined by the externai and internai arterial walls. 

The reasons for this restriction are that: a) wall contours are more 
tractable than general, sometimes very fuzzy, compartments, b) arterial walls are 
the most important arterial structures and will always be the first structures to be 
searched for, c) in functional terms blood flow through the vessel is critically 
dependent on the lumen size, and d) the levei of detail the present computer 
system can represent is resctrited by the 3D processar. That resolution is below 
that required to represent finer details accurately. 

DATA ACQUISITION. 

Each slide is photographed under the optical microscope using a 35-mm 
camera and 100 ASA black and white negative film. The optical magnification is 
chosen in such a way that the Jargest arterial diameter in the series is nearly half 
as large as the visual field diameter. This allows that some space be left between 
the arterial wall and the photograph margins. Once the magnification is chosen it is 
kept constant throughout the series. In arder to have a spatial reference for !ater 
scaling, a microscale is photographed at that same magnification. The distance 
between slices and the specimen's reference number are also recorded. 
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• • The 35-mm nega tives are enlarged to the size o f 5" x 7" on glossy paper and 
the photographs are digitised into the computer by means of a Panasonic 1600 
camera with a Vidicom cathod-ray tube. Although the camera's resolution is of 770 
columns and 575 lines, these are decimated so that the usable final picture consists 
of 2222 pixels at 8-bit depth resolution. The reason for decimation is to make the 
image fit the computer system's standard image size, as described by (Moura, 1988). 

PRE-PROCESSING 

Once the images have been digitised into the computer they are pre
processed in arder to enhance image quality. In this work pre-processing consists 
basically of two steps: background remova} and histogram strecth. 

Background Remova!. 

Background remova} is intended to compensate for variations in lighting that 
may have occurred when digitising the image or photographing the slides. It is 
assumed that any possible trend in illumination is linear in i and j. In other words, 
it is assumed that images digitised using the image acquisition subsystem are given 
by 

1 (i, j) = 10 (i, j) + B(i, j) (1) 

with 
B(i,j)=a.i + b.j + c (2) 

where l(i,j) is the digitised image, l 0 (i,j) is the original image, a,b and c are 
constants and B(i,j) is the trend in background lighting. 

I f B(i, j) could be estimated from the data it would then be possible to 
reconstruct 10 U, j) by making 

10 (i, j) =I( i, j) - B (i, j). (3) 

In this paper B(i,j) is estimated using Least Squares fitting. The type of 
image under consideration ts characterised by dark objects in a brighter 
background. Therefore, the bright regions of the image are the ones to be scanned 
when looking for trends in background illumination. 

The method we have developed for background estimation consists of fitting 
a plane to the set of image pixels whose intensity is greater than a given threshold 
T. The plane is fitted in so as to minimise the square errar, given by 

N N 
E= LL [a.i+b.j+c-/(i,j)J, for l(i,j)~T, (4) 

i=l J·=l 

where N is size of the image. The threshold T can be chosen arbitrarily but for 
the type of image under consideration this threshold has been set to the image's 
mean intensity value. 

Histogram Stretch. 

Once trends in backgrourid have been removed the histogram of intensities is 
stretched. The aim of this operation is twofold. Histogram stretch not only 
enhances visual contrast but it can also be used to bring together some data 
standardisation. 
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AUTOMA TIC CONTOUR DETECTION 

The input data to this stage are the pre-processed images. These are well
balanced and contrast-enhanced images in which coronary artery cross-sections 
appear against a lighter background. Images in Figures 1 are very representative of 
the type of images to be processed and must be analysed visually in order to 
create a feeling about the task to be executed automatically. 

Here, it is more important to comprehend the general difficulties involved in 
characterising the contours for automatic detection than to be strictly accurate. 

In these images, for example, the externai and internai wall contours are 
roundish and the contour lines appear reasonably clear both in the normal images 
as well as in a gradient magnitude version of them - Figure 3. However, some 
large gaps may exist due to either superimposition of structures or image noise. 

Any edge detection method which can take advantage of this a priori 
knowledge of contour characteriscs is a good candidate for the application in view. 
A particularly strong boundary detection method when contours are of known 
shape is given by Heuristic Search. 

The applica tion of Heuristic Search is basically a three-step method. In the 
first, the original image is smoothed in order to remove unwanted details and a 
gradient operalor is applied to it. The brighter lhe pixels in the resulting gradient 
magnitude image are the higher th~ir likelihood of being part of edges. The second 
step explores this fact using bright gradient pixels as starting points for a 
contour-follower algorithm so that long one-pixel-wide edge segments are formed. 
The final step in the procedure is to connect the edge segments using some 
geometric criteria to form closed set of segments, called paths. A cost function is 
associa ted to each path and a contour is a minimum cost path. In order to succeed 
the cost-function must be chosen in such a way that it is minimised by conlours 
wi th the desired forms -- in the case in view circle-like shapes. 

Smoothing and Gradient Opera to r. 

Before a gradient operator is applied, the original image is smoothed in order 
to reduce the influence of high-frequency and low-amplitude noise. 

A gradient operator is then applied to the resulting image in order to reveal 
probable edge pixels. The gradient operator in use has been described by Grattoni 
(Grattoni, 1985) and consists of two first-difference matrices Ax and Ay being 
convolved with the image. These two matrices are shown below. 

Ax=~~~ ~ ~~andAy=[~ ~ ~~ 
-1 o 1 -1 -2 -1 

(5) 

They provide good estimators for the image's partia! derivatives in x and y. 
These der i v atives are gi ven by 

(6) 

where the symbol '*' denotes convolution. The gradient magnitude is then computed 
as 

M(i,j)= ~[X(i, j)f+ [ Y(i,j)f 

and the gradient direction as 
D( . . ) t [Y(i,j)] 

z,J =are an_X(i,j). 

(7) 

(8) 
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The gradient direction gives the direction of maximum local increase in pixel 
intensity. Therefore, the gradient direction at any image point tends to be 
perpendicular to the direction of any existing edge, a fact that will be employed in 
locating edges as well as testing the coherence of potential contour paths. 

Segment Formation. 

Once the gradient operator has been applied, segment formation is to take 
place. The gradient magnitude image is scanned for points of interest. This image is 
divided into square windows of L 2 pixels. If the intensity of the maximum pixel 
value within a window is greater than a certain application-dependent threshold T, 
then the pixel intensity and position is recorded in a list PO/ of points of interest. 

The list POI is sorted in decreasing arder so that the brigther pixels will be 
closer to the top of the list. The list POI is then scanned from top to bottom and 
every point of interest is used as a starting point for a contour follower algorithm 
which performs the operations depicted in Figure 2. 
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Figure 2 The Contour Follower Algorithm I. A list of points of interest (a) is 
created on the grounds of intensity of the gradient magnitude pixels. 
These points are used as starting points for the search of edge 
segments whose direction tend to be perpendicular to the gradient 
direction at each pixel (b). The search, however, is done according to 
one of eight diretions (c). After the searching region is defined (d) 
straight lines departing from the current pixel are matched for edges 
(e). The end of each edgy straight line is used as the starting point 
for the next., thus forming long edge segments. 
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H~_l.!!_is_ti_c ?ear<.:_l_I (~_i_'!_~_ll!~m C~st Se,~rch). 

Figure 3 
The Contour FoUower AZgorithm li. 
The dots are the interest points. 
The polygons define the search 
region and the lines are the 
segments thus formed. 3 

The input to this stage are the segments found using the contour follower 
algortthm, the gradient magnitude and the gradient direction. 

Heuristic search will be used to connect segments together and declare as a 
valid conlour any gemnetricaUy coherent path whose cost is a minimum for the 
segments 111 it. 

A path is a closed contour formed by segments and their- connections. 
Althougli segments can be easily connected using straight !ines we have decided to 
use Ferguson's curves (Ferguson, 1964) so that the connections tend to follow the 
segments behaviour, as described in (Moura, 1988). 

For the purpose of this work, a geometrical.ly coherent path is any path for 
which a) a path does not intersect any segment, b) the gradient direction along the 
path keeps always the same orientation (inwards/outwards) in relation to the path 
itself c) the angle formed between any two consecutive segments on the path is 
always less than an app!ication-defined tolerance (3 and d) any two consecutive 
segments on the pa th are within a sq uare window o f size Jv'. 

Heuristic search can be seen as a graph search where the segments are the 
graph nades and the graph branches are ali the connections which lead to paths 
that satisfy conditions a to d above. A cost is associated to each path and a 
contour is any valid path with a minimum cost for the segments in it. 

This cost-function has been chosen in arder to favour the formation of 
paths whose segments are close to each other and also to favour the formation of 
roundish shapes. The distance-related cost component can be achieved by making 

(9) 

where (Sxh Sy1) are the coordinates of the starting point of the i-th segment in the 
path, (Extt Ey1) are the coordinates of the ending point of the i-th segment in the 
path, Ns is the number of segments in the path and P is the path's perimeter. 

3Some photographs have been retouched manually in arder to improve 
visibility in black and white. 
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AUTOMA TIC CONTOUR LABELLING 

The technique described in the previous section has been successfully used 
to detect the arterial wall contours. However, it has also detected a third contour. 
This contour - marked by an arrow in Figure 4 - is caused by coagulated blood 
which has shrunken during specimen preparation and is usually present in the type 
of slide under consideration. This contour must be disregarded as it does not bring 
any useful information. 

This fact highlights the need for some sort of semantic contour 
classification which allows that the externai and internai wall contours be properly 
recognised and labelled. 

The approach we have devised for automatic contour labelling is based on 
two contour features, both contextual. The first is the gradient direction -
inwards/outwards - in relation to the contour centre. We define this direction as 
inwards if the contour defines a structure which is lighter than its surroundings 
and outwards otherwise. The second contour feature is its position relative to 
other contours. 

The gradient direction can be detected by analysing the straight line which 
goes from the contour centre to the contour pixel with the highest gradient 
magnitude value. The relative contour position can be extracted by straight lines 
that go from the bottom of the image to its top through each contour centre. If a 
number is assigned to each contour and if these numbers are recorded as the 
contours are intersected by the straight !ines, the resulting Contour Position 
Strings will yield information regarding their relative position, as described in 
(Moura, 1988). 

The two contextual features are combined so that the required contours can 
be found, as shown in Figure S. The Contour Position String which describes the 
two arterial wall contours is the one which starts with an outward-gradient contour 
number and is followed by an inward-gradient contour number. 

If more than one Contour Position String satisfy these conditions for two 
different sets of contours then the contours cannot be properly classified and the 
algorithm will have failed. In the current system, the program asks for operator 
assistance if it is unable to classify the contours. 

The two procedures for contour feature extraction may not work for some 
markedly non-convex contours. Such contours, however, are most unlikely to 
happen in practice and they do not fit our previous assumption that wall contours 
are roundish. A more important factor for these technique's success is the choice 
of the contour centre required for both algorithms. If this point is too close to 
the edges it may cause errors in both cases. 

We have developed a very reliable technique for fitting a circle to a set of 
points using Least Squares. This technique is described in full in (Moura, 1988) and 
is used to determine the contour centres for contour classification. 

CONTOUR FILTERING. 

Wall contours detected by the automatic procedure tend to be somewhat 
rough, as can be seen in Figures Sa and Se. If the edges in the original image are 
noisy then the contour may be inaccurately detected, as in Figure Sa. However, as 
pointed out earlier in this paper, arterial wall contours are expected to be smooth. 
This property can be used to correct regional roughness. 
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The cost component designed to favour roundish shapes ís based on the fact 
that the ratio between contour area and square perimeter is maximised by a circle. 
This component is given by 

Cs= 1- 471" 4.__ 
p2' 

where P is the path's perimeter and A is the area enclosed by the path. 

(lO) 

From its own definition it is easy to verify that the minimum Cs occurs for 
a circle - in whích case it is null - and tends to 1 when the area defined by the 
shape tends to O. Thus, Cs can be seen as a measure of roundness. A shape can be 
said to be roundish if Cs is greater than some given threshold. 

The total cost function is computed as 

(11) 

where a 1 and a2 are application dependent weighing constants. 

For each segment whose length is greater than a given Smúu the heuristic 
search algorithm finds all the possible paths and records in a list MCPATHS the 
one which leads to the minimum cost, if any. If this cost is greater than a certain 
Cmaa: the path is disregarded. 

After all the segments longer than Smtn have been processed, the minimum 
cost pa th among ali the minimum-cost pa ths in list MCPA THS is declared the first 
valid wall contour. Ali other paths which include any of the segments in this first 
wall contour are written off the list MCPATHS. The mínimum-cost path among the 
remaining paths in the list is declared the second valid wall contour and the 
process is repeated until the list MCPATHS is empty. 

Figure 4 
The Detected Contuurs. 
The three detected contours are the 
minimum cost paths for the segments 
they use. The thicker lines on the 
contours represent Ferguson Curves 
connections. 

Figure 4 shows an example of contours detected using the algorithm just 
described. Note that the algorithm has been able to bridge very wide gaps 
automatical!y. 
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Figure 5 
Contour Filtering. 
This technique can be used to 
generate smooth contours (b) and (d), 
jrom the detected contours. It can 
remove regional roughness (b). 
Note that only the two relevant 
contours have been filtered. 

We have developed a technique for closed contour filtering which produces 
smooth contours fitted to the original curve in the Least Squares sense. This 
contour filtering technique is fully described and discussed in (Moura, 1988). 

The basic concept involved in this technique is that well behaved contours 
can be expressed in polar coordinates in terms of a contour centre and a function 
R(O). If R(O) is defined by piece-wise polynomials in e then it is possible to force 
the contour and its derivativas to be continuous. Such a contour, continuous up to 
the second deriva tive is defined in (Moura, 1988) as a piece-wise polynomial-radius 
contour, or simply a pw-contour. 

A pw-contour can be fitted to a set of data points so that a mmtmum square 
errar is achieved. In arder to standardise the data, every pw-contour is described 
by its centre (Xc, yc) and a set of 360 radii Rto i= O, 1, 2, ... 359, taken at equally
spaced angles. 

The pw-contour fitting can be seen as a non-linear filter whose output is a 
smooth representation of the input contour. There are two parameters which 
contrai the fit. The first is the number of intervals N 1 into which the pw-contour 
is divided and the second is the arder Mp of the polynomial used to represent 
R(e). Although 1ncreases in Mp and N 1 tend to improve the fit, N 1 is more related 
to general fitting whereas increases in i1..1p tend to improve the fit at contour 
details. 

The results shown in Figure Sb and Sd have been achieved with N 1 = 12 and 
MP= 3. These values have been set up for all contour filtering in this thesis. 

CONCLUSIONS 

In this paper we have described an implementation for the automatic 
detection of the arterial wall contours. These are assumed to be roundish or -
more precisely - the most roundish structures in an image. We have described a 
cost-function which measures roundness and that is used to locate the wall 
contours . 
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This assumption restricts the classes of images the system will successfully 
process but on the other hand allows that wall contours with very wide gaps be 
detected. 

The use of the contour filtering technique we have developed has allowed 
that the condition of roundness be monitored and automatically corrected. The use 
of pw-contours warrants that wall contours be smooth. 
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