
Ambient occlusion using cone tracing
with scene voxelization

Eduardo Ceretta Dalla Favera
Tecgraf/PUC-Rio - Computer Science Department

Pontifical Catholic University of Rio de Janeiro, Brazil
Email: eduardo.ceretta@gmail.com

Waldemar Celes
Tecgraf/PUC-Rio - Computer Science Department

Pontifical Catholic University of Rio de Janeiro, Brazil
Email: celes@tecgraf.puc-rio.br

Fig. 1. Ambient occlusion rendering using our proposal: Buddha – 75.36 fps (left), Brain – 68.82 fps (middle), Happy – 106.04 fps (right).

Abstract—Ambient occlusion is a low-cost technique to simu-
late indirect ambient illumination in a realistic way. The goal is
to estimate the amount of incident ambient light at each visible
point. In this paper, we propose a novel ambient occlusion method
that produces good quality results in real time. Using an efficient
voxelization algorithm, we create a volumetric description of the
scene geometry in a regular grid. During scene rendering, the
hemisphere around each visible point is sampled by a set of cones,
each one representing a package of rays. The volume of each cone
is sampled by a series of spheres. The obstructed volumes of the
spheres are used to estimate the amount of rays that are blocked
by the scene geometry. The final ambient occlusion at each visible
point is computed by considering all cones in the hemisphere.
This approach has shown to be quite adequate: the intersection
of each sphere with the voxelized scene is performed in a very
efficient manner, and good quality results are achieved with a
small number of cones. Computational experiments demonstrate
the efficiency and effectiveness of our proposal.

Keywords-Ambient occlusion; cone tracing; global ilumination

I. INTRODUCTION

The pursuit of realism of virtual scenes is one of the fields
of computer graphics in constant development. A good way to
achieve this realism is through the correct modeling of lighting
in a 3D environment. Global illumination comprises a set of
techniques that intend to approximate, as closely as possible,
the way light interacts with the objects in the scene. However,
in practice, few applications can incorporate these techniques,
because global illumination model is very complex and hardly
there exist available computational resources for it to be done
efficiently.

In order to achieve a global illumination aspect in real
time, some techniques can be dismembered and applied in-
dividually. One example is the ambient occlusion technique,
which produces a global illumination effect with relatively low
computational cost. Differently from other global techniques,
such as the computation of reflections and refractions, ambient
occlusion requires only the launch of primary rays to estimate
ambient illumination at each visible point, and only considers
the scene geometry in the neighborhood of the point. Hence,
the computation can be performed in real time. The result-
ing effect does enhance the tridimensional characteristics of
objects in the scene, making the final rendered image more
realistic.

When light directly hits a surface, this light is reflected
in several directions, which contributes to the illumination
of other objects; this creates the effect of indirect lighting:
light reflected from all surround objects contributes to the
illumination of a given point. The ambient illumination aims
to represent the incidence of such reflected light. If a point is
occluded by objects in its local vicinity, it will receive little
reflected light. The ambient occlusion technique estimates the
amount of light that is blocked by the surround objects.

To physically-correctly compute the amount of ambient light
that reaches a point, one can trace a set of rays to sample the
normal hemisphere of the corresponding surface point. The
ambient occlusion factor, the amount of light blocked by the
surround objects, is given by counting the number of rays that
hit objects in the scene. Figure 2 illustrates this idea.

The ambient occlusion at a point P of normal n̂ is calculated

mailto:eduardo.ceretta@gmail.com
mailto:celes@tecgraf.puc-rio.br

Fig. 2. Rays traced from P to diverse directions. The dashed rays did not
hit the surround geometry.

using the following equation [1]:

A(P, n̂) =
1
π

∫
Ω

V (P, ω̂)(ω̂ · n̂)dω (1)

where ω̂ represents the directions of the hemisphere Ω, and
V (P, ω̂) is the visibility function, which must be 1 if the
direction ω̂ is obstructed by the geometry and 0 otherwise.

Several solutions have been proposed to incorporate the
ambient occlusion effect in 3D scene illumination. Ray tracing
results in very good image quality but presents a high com-
putational cost. Approaches that estimate the occlusion in a
pre-processing step generate good results efficiently, although
do not support dynamic scenes [2]. Real-time methods with
support for dynamic scenes, generally, utilize the information
in screen space to sample the neighborhood of a pixel to
approximate its occlusion [1], [3], [4]. However, due to limited
available information and view dependency, the estimated
results are not accurate and vary with camera position. These
limitations are overcome by algorithms that compute the
occlusion in object space. This however requires the use
of an appropriate data structure to accelerate the access to
geometry information. Despite acceleration techniques, object-
space methods tends to perform worse than screen-space
methods [5], [6].

This work proposes a novel object-space method that ef-
ficiently generates high-quality results. The proposed method
uses a regular grid to efficiently access the geometry informa-
tion of the scene, allowing a fast evaluation of ambient oc-
clusion at each pixel. We employ the real-time algorithm pro-
posed by Eisemann and Dcoret [7] to voxelize the scene in a
binary regular grid. The ambient occlusion at each visible point
is determined with the tracing of a set of cones distributed in
the corresponding hemisphere. Each cone represents a package
of rays. The volume of each cone is sampled by a sequence of
spheres, which are used to efficiently estimate the percentage
of obstructed volume and thus the amount of blocked rays.
The effectiveness of our method is demonstrated by applying
it to a set of different models. Figure 1 illustrates achieved
results. Our main contribution relies on the appropriate and
efficient use of spheres to compute obstructed volumes, which
are translated to a good estimation of the amount of ambient
light that is blocked.

The rest of this paper is organized as follows: Section II
briefly exposes some related and inspiring works. The pro-

posed method is explained in Section III. Achieved results are
exposed in Section IV, and Section V concludes the work and
presents final considerations.

II. RELATED WORK

Different methods have been proposed aiming to resolve
ambient occlusion. Among them, the ray tracing technique is
the direct translation of the ambient occlusion integral using
the Monte Carlo method. Although accurate, the computa-
tional cost of this method is too high.

Screen-space methods have been used to approximate the
occlusion integral in real time [8], [1], [9], [3], [4]. In general,
these methods use deferred shading [10] to save buffers with
geometry information in screen space. Only the information
available in the generated buffers are used to compute am-
bient occlusion. The main advantages of such methods are
good performance and natural support for dynamic scenes.
However, these techniques are view-dependent and can result
in inaccurate ambient occlusion due to the limited available
information [5].

Szirmay-Kalos et al. [4] proposed the conversion of the
directional integral of the ambient occlusion in a volumetric
integral easily resolved on the GPU. Instead of tracing rays to
sample the visibility of each point, they proposed to estimate
ambient occlusion by computing the occluded volume of a
sphere tangent to the point. The occluded volume of the
tangent sphere is computed by sampling the sphere with a
set of cylinders (pipes) in eye space. The cylinders have the
same sectional area and are parallel to the z axis. The occluded
volume of each cylinder is efficiently computed by fetching
the depth buffer. The final occlusion is defined by the ratio
between the occluded volume and the total volume.

Object-space algorithms tends to be more accurate, but have
to deal with a large amount of information. In order to gain
performance, different acceleration data structures have been
employed. Papaioannou et al. [5] proposed an accelerated ray-
marching technique in order to verify point visibility. Their
technique consists in casting rays in several directions of the
hemisphere, but the rays are iterated with constant steps in
a regular grid that voxelizes the scene. At each iteration, it
is checked if the ray hits a full voxel. For real-time scene
voxelization, the authors indicated the method presented by
Eisemann and Décoret [7].

Scene voxelization consists in representing the scene vol-
ume by a regular grid. Eisemann and Décoret [7] proposed a
single-pass algorithm to voxelize the interior of watertight 3D
models. According to Nooruddin and Turk [11], a model is
watertight if for any connected component in space (separated
by the geometry), all its points share the same classification:
being in the interior or exterior. A point in space is considered
interior/exterior if the number of intersections with the model
of any ray originating at this point is odd/even.

The efficient voxelization technique proposed by Eisemann
and Décoret [7] results in a binary regular grid represented
by a 2D texture. The size of the texture defines the x and y
dimensions of the grid, and the number of bits in the RGBA

representation of a texel forms the z dimension of the grid. The
z dimension of a grid represented by a 32-bit RGBA texture
is therefore 128.

Crassin et al. [6] introduced an approach using an octree of
voxels to represent the geometry of the scene. This represen-
tation is constructed on the GPU and is used to make visibility
tests using cone tracing. The structure supports dynamic scenes
due to a real-time algorithm to update the octree: the octree
is built once for static objects and is updated when there
is movement or geometry modification. The cone tracing
technique attempts to approximate the effect of a package of
rays emitted from a point. The axis of the cone is traversed and
the octree structure is accessed at different levels according
to the corresponding cone radius. The ambient occlusion is
calculated through the casting of cones in the hemisphere
of a point, and the occlusion of each cone is summed and
normalized by the total number of cones.

A. Discussion and Proposal

Screen-space methods obtain results with considerable effi-
ciency, but suffer from the absence of enough information to
accurately compute ambient occlusion; the view dependency
aggravates inaccuracies when the main occluder is not visible.
The proposal by Papaioannou et al. [5] uses ray-marching in
a voxelized scene, reducing the view dependency; however,
the ray-marching process still requires the use of a large
number of rays to produce a high-quality result, what degrades
performance.

The technique presented by Crassin et al. [6] builds an
octree structure, taking advantage of graphics hardware, and
uses cones to guide the way the levels of the octree is accessed.
The performance is good and the results have good quality.
Nevertheless, the creation and maintenance of this structure
is complex, and an octree can be inappropriate to sample
neighbor regions across different octants.

Similar to Papaioannou et al. [5], we have decided to employ
the technique proposed by Eisemann and Décoret [7] and make
use of a binary regular grid to voxelize the scene. In order to
avoid the large number of rays being traced, similar to Crassin
et al. [6], we have opted for using cone tracing. However,
inspired by the work of Szirmay-Kalos et al. [4], we sample
each cone by a set of spheres and compute the occluded
volume of each sphere by efficiently fetching the binary
voxelization grid. The obstructed volumes of the spheres are
combined to express the amount of light blocked in each cone.
As a result, we end up with an efficient and reasonable accurate
object-space algorithm for ambient occlusion computation of
dynamic scenes.

III. PROPOSED METHOD

The proposed method relies on estimating the amount of
blocked light by a series of cones used to sample the hemi-
sphere at each visible point. Each cone is, in turn, sampled
by a sequence of spheres. The obstructed volume of each
sphere is efficiently computed by fetching the voxelization

data structure, and the amount of light blocked in each cone
is evaluated by combining the sphere obstructed volumes.

Our method consists in a three rendering-pass algorithm:
• Geometry buffer creation: an object-space procedure

based on the deferred shading technique.
• Scene voxelization: a second object-space procedure to

create a binary regular grid.
• Ambient occlusion computation: a screen-space proce-

dure to compute the occlusion of each visible point.
The next subsections describe in detail these procedures,

especially the third one where resides our main contribution.

A. Geometry Buffer Creation

Ambient occlusion computation is required only for the visi-
ble points. We thus employ a first pass to create the buffers that
hold the geometry data needed for this computation. Using the
conventional deferred shading technique, the scene objects are
sent through the graphics pipeline, using a fragment shader to
direct the information to the geometry buffers (G-buffers). In
our case, we create one buffer to hold the position and another
to hold the normal at each pixel, both in eye space. This
geometry information is used to determine the hemisphere
associated to each pixel, thus defining cone orientations.

B. Scene Voxelization

Our method uses scene voxelization as the structure to allow
easy access to the geometry information during the ambi-
ent occlusion computation. We use the efficient voxelization
technique proposed by Eisemann and Décoret [7], building
the grid at each frame. In this way, we provide support for
dynamic scenes. The advantage of using a regular grid relies
on its simplicity of computation and access. The voxelization
is represented by a binary regular grid encoded in a 2D texture
as shown in the Figure 3.

Fig. 3. Example of a regular grid. The x and y dimensions of the grid
are delimited by the texture dimension. The z dimension is delimited by the
number of bits in a texel (a value of 128 if we consider 32 bits per component).

The technique proposed by Eisemann and Décoret [7] works
for watertight models. It produces a solid voxelization of the
scene, assigning 1 to a voxel (represented by a bit) that is
interior to any object and 0 to a voxel that is exterior to all
objects. This is efficiently built by sending both the front and
back faces of each object through the graphics pipeline and by
employing XOR operations to correctly combine the rasterized
fragments. We build the voxelization of the scene also in eye
space.

The main limitation of this voxelization representation is its
small resolution along the z axis: 128 considering 32 bits per
component. To alleviate this limitation, we propose to use the
information acquired in the previous step to slightly improve
the voxelization along the z axis. As mentioned, the previous
step creates a buffer that holds the position in eye space of
each visible point. We then use the znearest coordinate stored
at each pixel to reduce the voxelized space along each pixel
in the z direction, instead of using the near plane distance for
all the pixels. This improvement is based on the concept of
local slice map, presented by Eisemann et al. [12]. Figure 4
exhibits the difference between a grid using the near plane and
the proposed one using the nearest fragment.

The voxel index, along the z axis, associated to a given z
coordinate, is given by the following equation:

zGridIndex =
z − znearest

zfar − znearest
(2)

where zfar represents the distance to the far plane.
One can note that a similar approach could be used to

replace the far plane distance. However, obtaining the informa-
tion of the farthest fragment would involve another geometry
rendering pass, what would be too costly. The nearest fragment
is gotten for free due to the previous G-buffer computation.

(a) (b)

Fig. 4. Conventional grid using the near plane (a); and proposed grid using
the nearest fragment (b).

C. Ambient Occlusion Computation

Our approach to resolve the ambient occlusion integral
involves the replacement of ray tracing by cone tracing. Thus,
the hemisphere associated to each point is sampled by a set of
cones. Figure 5a illustrates the hemisphere sampling process.

Each cone apex is positioned at the location stored in the
G-buffer (eye space). The hemisphere is oriented according
to the stored normal and is limited by choosing a distance of
influence, defining a spherical cap with the chosen distance
as its radius (Rmax). To orient the cones, the spherical cap
is regularly subdivided using spherical coordinates. The cone
aperture is set to 30 degrees; this value has delivered good
results: a smaller value covers less hemisphere volume than
needed; a higher value has turned difficult to accommodate
the sequence of spheres inside the cone.

In fact, the volume of each cone is sampled by disposing
a series of spheres along the cone’s axis. Consecutive spheres

are tangent to each other, and the radii are chosen according
to the cone aperture. Figure 5b shows this arrangement.

(a) (b)

Fig. 5. Sampling the hemisphere by a set of cones (a); sampling each cone
by a sequence of spheres (b).

The ambient occlusion is estimated by first evaluating the
obstructed volume of each sphere. This is resolved inspired by
the method proposed by Szirmay-Kalos et al. [4]. However,
instead of using the depth buffer, our technique computes the
number of full voxels inside the sphere to estimate its occluded
volume. This subject is detailed in Subsection III-C1. The
occluded sphere volumes are then combined to get the amount
of light blocked in each cone, and the final ambient occlusion
considers all the cones, as described in Subsection III-C2.

1) Sphere Occlusion: The obstructed volume of each
sphere is computed by using the Monte Carlo integration
scheme. We estimate the obstructed volume by a small set
of prisms (columns), within the sphere, oriented along the z-
axis. The obstructed sphere volume is set proportional to the
obstructed volumes of all prisms. The great disk of each sphere
(represented by the intersection between the sphere and a plane
containing the center of the sphere), perpendicular to the z-
axis, is sampled using Poisson disk distribution. Each sample
defines a prism delimited by the sphere, and each prism is
aligned to one column, along z, of the voxelization grid. Given
the x and y coordinates of each sample, it is easy to compute
the limits, along the z-axis, of the corresponding prism: zin

and zout. Figure 6 illustrates the sphere sampling process.
The obstructed volume of each prism is computed in a very

efficient way. The x and y coordinates of each sample is also
used to fetch the 2D texture representing the voxelization grid.
The corresponding texel encodes the obstructed volume of the
entire column along the scene. Knowing the prism limits, zin

and zout, our goal is to count the number of bits set to 1 within
this range.

To do that, we employ a two-step procedure. First, we
eliminate the bits outside the limits; then, we count the number
of remaining bits. This procedure is performed with the help
of built-in functions supported by modern graphics card, and is
illustrated in Figure 7. For each color channel, the bits outside
the limits are eliminated using the function bitfieldExtract and
the remaining bits are counted using the function bitCount.
Both functions perform very efficiently.

2) Amount of Blocked Light: Once we have the obstructed
volume of each sphere, we compute the amount of blocked

(a) (b)

Fig. 6. A sphere in the voxelized space with the great disk and samples
(blue dots). The points zin and zout indicate the limits of the prisms within
the sphere (a); the resulting range of full voxels inside the sphere is displayed
in blue (b).

Fig. 7. Procedure to count the number of bits set to 1 along a prism inside
a sphere.

light in the cones. Each cone represents a package of rays. To
compute the amount of blocked light is to compute the amount
of rays that hit the geometry of the scene before the distance
of influence is reached.

The amount of blocked rays in a cone results from accu-
mulating the amount of obstructed volume by the sequence of
spheres in a front-to-back fashion [13]. Figure 8 illustrates the
adopted procedure. We first consider the smallest sphere, the
one closest to the cone apex. Let us consider that x rays are
emitted from P . Without losing the generality, let us say that
the obstructed volume of this sphere is 30%. We then assume
that this sphere absorbs 30% of the rays; as a consequence, the
amount of rays that enters the second sphere is x(1−0.30). If
the second sphere obstructs 25% of the rays, the third sphere
will be reached by only x(1−0.30)(1−0.25) rays, and so on.
After accumulating the result of the last sphere, we have the

amount of blocked rays in the cone, which is directly translated
to represent the amount of blocked light.

Fig. 8. Cone with occlusions values of each sphere. The column in the
middle indicates the portion of the rays not occluded before and after each
sphere. The occlusion along the axis of the cone is displayed in the right
column.

Finally, we average the results of all cones to estimate
the amount of blocked light at each visible point. Note that
all the procedure can be efficiently implemented on graphics
hardware. A few parameters control the quality of the resulting
images: the number of cones to sample the hemisphere, the
number of spheres to sample each cone, and the number of
prisms to sample each sphere.

IV. RESULTS

Our method was implemented in C++ using OpenGL and
the GLSL shading language. Several computational tests were
accomplished aiming to measure the performance and to
analyze the quality of the obtained results. The tests were run
on a machine with a 2.8 GHz Intel i7 processor equipped
with a Nvidia GeForce GTX 480 graphics card. All the frame
rates presented here represent average performance of the
algorithms.

We first present an analysis of the achieved results by
varying the parameters that control the proposed method,
testing with three different models. We compare both image
quality and performance. Then, we analyze the performance of
each rendering pass of our algorithm varying screen resolution
and geometry complexity. Finally, we compare our achieved
results with the results produced by a screen-space algorithm.

A. Quality Test

In order to verify the quality of the achieved results of
our proposal, we vary the parameters that control the method.
Three settings were defined: low, medium, and high quality.
The best choice may depend on the available graphics hard-
ware. Our goal is to analyze the quality of the results for
different settings. Table I exhibits the parameters used in each
quality setting. Note that we have opted for fixing the number
of cones to 6. In fact, this has shown to be an appropriate, and
relatively cheap, choice.

TABLE I
PARAMETERS USED FOR EACH QUALITY SETTING.

Quality Number of Number of spheres Number of prisms
cones per cone per sphere

Low 6 3 3
Medium 6 5 6

High 6 7 12

As a quality reference, we used the ray-tracing ambient
occlusion application Optix [14]. It was developed by Nvidia
using CUDA and thus runs on the GPU. It produces high
quality results but does not run in real time.

We ran the quality test considering three distinct models:
karburator, jsyrlin, and buddha. Table II shows the observed
time of execution of our algorithm considering the three dif-
ferent parameter configurations. Figures 9, 10, and 11 display
the achieved results for a visual comparison. These results
show that our algorithm tends to get closer to Optix results
as we tune the quality parameters. One can also note that the
proposed method generates good results even with the defined
low-quality parameters.

TABLE II
COMPARISON AMONG DIFFERENT QUALITY SETTINGS FOR THREE

DISTINCT MODELS.

Model # Verts # Triangs Quality Time (ms) FPS
Low 5.03 198.81

karburator 251k 500k Medium 12.12 82.51
High 29.92 33.42
Low 5.08 196.85

jsyrlin 253k 505k Medium 12.55 79.68
High 31.30 31.95
Low 6.81 146.84

buddha 757k 1,514k Medium 13.27 75.36
High 29.59 33.80

A limitation of our method is the low voxelization resolution
along the z axis. In its current implementation, it is limited
to 128 voxels due to the maximum number of bits in a
single texel. This restriction makes little details, mainly small
cavities, to be incorrectly illuminated. Figure 9 exhibits this
limitation at the cavity of a pipe: it appears dark in the refer-
ence image but only slightly darkened in the images produced
by our algorithm. The grid resolution can be extended by using
more textures. However, this affects the overall performance
due to the need of more time to build the grid and more
accesses to the grid texture during the occlusion calculation;
such an extension will be considered in a future research.

Table II shows that the performance decreases as we im-
prove image quality. As graphics hardware evolves, higher
quality configurations may be employed in real-time appli-
cations. Even though, we evaluate that the defined medium-
quality configuration has presented a good tradeoff between
quality and performance. Based on these results, we have
chosen the medium-quality setting as the one used in the
subsequent tests.

B. Performance Analysis

The proposed algorithm consists in three steps: geometry
buffer creation, scene voxelization, and ambient occlusion
computation. To better analyze the performance of our method,
we measured the rendering time spent at each step in diverse
situations, running the algorithm with the increase of image
resolution and of geometry complexity.

Table III shows the rendering time of a model composed of 3
million vertices and 6 million triangles in different resolutions.
The plot in Figure 12a depicts that the algorithm performance
varies linearly with the number of pixels, as expected. The
plot in Figure 12b presents the percentage of time spent at
each step of the algorithm as the screen resolution increases.

TABLE III
EXECUTION TIME FOR DIFFERENT SCREEN RESOLUTIONS.

Resolution Time (ms) FPS
640x480 23.37 42.78
800x600 28.34 35.28

1024x768 36.45 27.43
1280x960 47.87 20.88

1600x1200 65.52 15.26
2048x1536 99.18 10.08

15

25

35

45

55

65

75

85

95

105

0 500 1000 1500 2000 2500 3000 3500

To
ta

l T
im

e
 (

m
s)

Resolution (x1000 pixels)

(a)

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000 3500

P
e

rc
e

n
tu

al
 o

f
 T

o
ta

l T
im

e
 (

%
)

Resolution (x1000 pixels)

G-buffer creation

Scene voxelization

Occlusion computation

(b)

Fig. 12. Performance variation with respect to image resolution for rendering
the image (a), and the percentage of time spent at each step (b).

Table IV arranges the rendering time considering scenes
with different geometry complexities. In order to eliminate
screen-space interferences, all the scenes were rendered main-
taining, as closely as possible, the same amount of visible
pixels (an auxiliary procedure using occlusion query was
applied to count the pixels). The plot in Figure 13a exhibits
a global tendency of linear variation, again as expected. The
plot in Figure 13b presents the percentage of time spent at
each step of the algorithm as the complexity of the geometry
increases.

TABLE IV
EXECUTION TIME FOR DIFFERENT GEOMETRY COMPLEXITIES.

Model # Verts # Triangs Time (ms) FPS
bunzipper 36k 69k 6.11 163.67

jsyrlin 253k 505k 8.13 123.00
hand 327k 655k 8.46 118.20

bareliefply 507k 1,000k 10.49 95.33
happyvrip 544k 1,088k 10.45 95.69

buddha 757k 1,514k 10.65 93.90

(a) Low (b) Medium (c) High (d) Optix

Fig. 9. Comparison among different quality settings for the karburator model.

(a) Low (b) Medium (c) High (d) Optix

Fig. 10. Comparison among different quality settings for the jsyrlin model.

(a) Low (b) Medium (c) High (d) Optix

Fig. 11. Comparison among different quality settings for the buddha model.

5,5

6,5

7,5

8,5

9,5

10,5

11,5

0 100 200 300 400 500 600 700 800

To
ta

l T
im

e
 (

m
s)

Geometry Complexity (x1000 vertices)

(a)

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800

P
e

rc
e

n
tu

al
 o

f
 T

o
ta

l T
im

e
 (

%
)

Geometry Complexity (x1000 vertices)

G-buffer creation

Scene voxelization

Occlusion computation

(b)

Fig. 13. Performance variation with respect to geometry complexity for
rendering the image (a), and the percentage of time spent at each step (b).

C. Comparison with a Screen-Space Algorithm

Our last test compares our method with a screen-space
algorithm. The screen-space algorithm, denoted by SSAO,
was developed by NVidia and is part of the Direct3D SDK
examples [15].

Table V compares the performance achieved by each algo-
rithm to render the dragon model using two different poses.
Figure 14 displays the achieved images, comparing both with

the quality reference Optix. The results are in accordance
with the expected behavior: a better performance for the
screen-space algorithm, and a better quality for our object-
space algorithm. However, it is worth mentioning that our
proposal presents quite competitive performance and much
better quality.

TABLE V
PERFORMANCE COMPARISON BETWEEN SSAO ALGORITHM AND OUR

METHOD.

Algorithm Pose 1 (FPS) Pose 2 (FPS)
SSAO 87.8 88.2

Our method 80.1 78.3

Figure 15 highlights the differences between the achieved
results and points out critical parts for the screen-space algo-
rithm.

V. CONCLUSION

In this paper, we presented a novel method to compute
ambient occlusion in real time. The proposed method per-

(a) SSAO (b) Our method (c) Optix

(d) SSAO (e) Our method (f) Optix

Fig. 14. Image comparison between SSAO algorithm and our method.

(a) SSAO (b) Our method (c) Optix

(d) SSAO (e) Our method (f) Optix

Fig. 15. Details not correctly captured by the screen-space algorithm.

forms the occlusion computation in object space and uses
the efficient voxelization algorithm presented by Eisemann
and Décoret [7]. This allows fast computation of obstructed
volume of spheres. The ambient occlusion of each visible point
is defined by sampling the corresponding hemisphere with a
set of cones, each one representing a package of rays. The
amount of rays emanating in each cone that is obstructed by
the geometry of the scene is computed by sampling each cone
by a sequence of spheres. A set of computational experiments
were used to analysis both performance and quality of the
proposed method. The achieved results demonstrate that our
method produces images in real time with quality similar to a
ray casting algorithm. Still, the performance of our proposal
is competitive when compared to a screen-space algorithm.

In the future, we plan to investigate the use of a grid with
higher resolution in the z direction to voxelize the scene.
We also intend to investigate the use of ambient occlusion in
scientific visualization of unstructured meshes. The generation
of a regular grid for static scenes in a pre-processing phase can
also be explored in order to improve the overall performance
for static scenes.

ACKNOWLEDGMENT

We thank CAPES (Brazilian National Research and Devel-
opment Council) and CNPq (Brazilian National Council for
Scientific and Technological Development) for the financial
support to conduct this research. We also thank the anonymous
reviewers for the valuable feedback.

REFERENCES

[1] P. Shanmugam and O. Arikan, “Hardware accelerated ambient occlusion
techniques on gpus,” in In I3D 07: Proceedings of the 2007 symposium
on Interactive 3D graphics and games, ACM. Press.

[2] M. Sattler, R. Sarlette, G. Zachmann, and R. Klein, “Hardware-
accelerated ambient occlusion computation,” in Vision, Modeling, and
Visualization 2004, B. Girod, M. Magnor, and H.-P. Seidel, Eds.
Akademische Verlagsgesellschaft Aka GmbH, Berlin, Nov. 2004, pp.
331–338.

[3] L. Bavoil, M. Sainz, and R. Dimitrov, “Image-space horizon-based
ambient occlusion,” in SIGGRAPH ’08: ACM SIGGRAPH 2008 talks.
New York, NY, USA: ACM, 2008, pp. 1–1.

[4] L. Szirmay-Kalos, T. Umenhoffer, B. Tth, L. Szcsi, and M. Sbert,
“Volumetric ambient occlusion for real-time rendering and games.”
IEEE Computer Graphics and Applications, vol. 30, no. 1, pp. 70–79,
2010. [Online]. Available: http://dblp.uni-trier.de/db/journals/cga/cga30.
html#Szirmay-KalosUTSS10

[5] G. Papaioannou, M. L. Menexi, and C. Papadopoulos, “Real-time
volume-based ambient occlusion,” IEEE Transactions on Visualization
and Computer Graphics, vol. 16, pp. 752–762, 2010.

[6] C. Crassin, F. Neyret, M. Sainz, S. Green, and E. Eisemann, “Interactive
indirect illumination using voxel cone tracing: An insight,” Technical
Talk at SIGGRAPH, aug 2011.

[7] E. Eisemann and X. Décoret, “Single-pass GPU solid voxelization for
real-time applications,” in Graphics Interface 2008, GI ’08, May, 2008.
Windsor, Canada: Canadian Information Processing Society, May 2008,
pp. 73–80.

[8] M. Mittring, “Finding next gen: Cryengine 2,” in SIGGRAPH ’07: ACM
SIGGRAPH 2007 courses. New York, NY, USA: ACM, 2007, pp. 97–
121.

[9] R. Dimitrov, L. Bavoil, and M. Sainz, “Horizon-split ambient occlusion,”
in Proceedings of the 2008 symposium on Interactive 3D graphics and
games, ser. I3D ’08. New York, NY, USA: ACM, 2008, pp. 5:1–5:1.
[Online]. Available: http://doi.acm.org/10.1145/1342250.1357017

[10] M. Deering, S. Winner, B. Schediwy, C. Duffy, and N. Hunt, “The
triangle processor and normal vector shader: a vlsi system for high
performance graphics,” in SIGGRAPH, 1988, pp. 21–30.

[11] F. S. Nooruddin and G. Turk, “Simplification and repair of polygonal
models using volumetric techniques,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 9, pp. 191–205, 2003.

[12] E. Eisemann and X. Dcoret, “Fast scene voxelization and applications,”
ACM SIGGRAPH 2006 Sketches on SIGGRAPH 06, p. 8, 2006. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1179849.1179859

[13] N. Max, “Optical models for direct volume rendering,” IEEE
Transactions on Visualization and Computer Graphics, vol. 1, pp. 99–
108, June 1995. [Online]. Available: http://dl.acm.org/citation.cfm?id=
614258.614298

[14] Nvidia, “Nvidia optix 2 ray tracing engine examples,” Jun. 2011,
http://developer.nvidia.com/
optix-interactive-examples. [Online]. Available: http:
//developer.nvidia.com/optix-interactive-examples

[15] ——, “Nvidia direct3d sdk 10 code samples,” Jun. 2011,
http://developer.download.nvidia.com/SDK/10.5/
direct3d/samples.html. [Online]. Available: http://developer.
download.nvidia.com/SDK/10.5/direct3d/samples.html

http://dblp.uni-trier.de/db/journals/cga/cga30.html#Szirmay-KalosUTSS10
http://dblp.uni-trier.de/db/journals/cga/cga30.html#Szirmay-KalosUTSS10
http://doi.acm.org/10.1145/1342250.1357017
http://portal.acm.org/citation.cfm?doid=1179849.1179859
http://dl.acm.org/citation.cfm?id=614258.614298
http://dl.acm.org/citation.cfm?id=614258.614298
http://developer.nvidia.com/optix-interactive-examples
http://developer.nvidia.com/optix-interactive-examples
http://developer.download.nvidia.com/SDK/10.5/direct3d/samples.html
http://developer.download.nvidia.com/SDK/10.5/direct3d/samples.html

	Introduction
	Related Work
	Discussion and Proposal

	Proposed Method
	Geometry Buffer Creation
	Scene Voxelization
	Ambient Occlusion Computation
	Sphere Occlusion
	Amount of Blocked Light

	Results
	Quality Test
	Performance Analysis
	Comparison with a Screen-Space Algorithm

	Conclusion
	References

