
Solving Image Puzzles with a Simple Quadratic
Programming Formulation

Fernanda A. Andaló1, Gabriel Taubin2, Siome Goldenstein1
1 Institute of Computing, University of Campinas (UNICAMP), Campinas, SP, Brazil

{feandalo,siome}@ic.unicamp.br
2Division of Engineering, Brown University, Providence, RI, USA

taubin@brown.edu

Abstract—We present a new formulation to automatically solve
jigsaw puzzles considering only the information contained on the
image. Our formulation maps the problem of solving a jigsaw
puzzle to the maximization of a constrained quadratic function
that can be solved by a numerical method. The proposed method
is deterministic and it can handle arbitrary rectangular pieces.
We tested the validity of the method to solve problems up to
3300 puzzle pieces, and we compared our results to the current
state-of-the-art, obtaining superior accuracy.

Keywords-image puzzle; jigsaw puzzle; image analysis;
quadratic programming

I. INTRODUCTION

In the well-known jigsaw puzzle problem, numerous non-
overlapping tiles have to be assembled together, according to
a color pattern or shape fitting, with the goal of reconstructing
a single plane or image. Although this problem has been
proven to be NP-complete when the affinity between the
tiles is uncertain [1], several scientific challenges such as the
reconstruction of documents from shredded paper [2], and re-
assembling broken archeological artifacts from fragments [3],
can be reformulated as 2D or 3D jigsaw puzzle problems.

In this paper we focus on the problem of reconstructing
images from identically shaped rectangular tiles placed with-
out repetition within a regular rectangular grid of known
dimensions. Contrary to what occurs in traditional jigsaw
puzzles, here the tile shape does not provide any information,
making the problem even more challenging.

In solving this kind of problem, we first need to deal with
its combinatorial nature: since a tiling can be described as a
permutation of the tiles within the rectangular grid, the number
of possible tilings grows exponentially as a function of the
number of tiles. In addition, since the problem is global in
nature we seek local measures of pairwise tile matching to
help reduce the complexity of the search. However, no such
rule based solely on local boundary tile similarity is known to
date.

Automatic solvers for jigsaw puzzles have been proposed
since 1954, when the first method was presented by Freeman
and Garder [4]. It was able to solve apictorial puzzles with
9 fragments by analyzing critical points on the border of the
puzzle pieces.

Since then and based on the first method, several other
methods focused on matching the shape of the tiles only [5].

Kosiba et al. [6] were the first to consider not only the shape of
the tiles, but also the content of the image. In their method, the
matching process between the tiles considers many character-
istics: color samples along the borders, curvature parameters,
and the concavity and convexity of the tiles.

Nielsen et al. [7] proposed the first solver to assemble
successfully puzzles without shape information. The method
was able to solve puzzles with 320 square tiles using a greedy
approach.

Two recently proposed methods [8], [9] solve the square
jigsaw puzzle considering a pairwise compatibility metric
between tiles which compares the color information on the
shared boundary of two tiles.

Cho et al. [8] presents a solver for puzzles with 432 tiles
based on maximizing a probability function via loopy belief
propagation. Since they don’t have local evidence for their
graphical model, they rely on knowing the placement of some
tiles to solve the problem.

Pomeranz et al. [9] presented the current state-of-the-art
solver. By assuming a puzzle with square tiles, they solve
problems with up to 3300 tiles using a greedy approach.
However, this method requires solving each puzzle several
times starting from different random seeds to obtain good
results up to certain accuracy.

In this paper we propose a simple quadratic programming
formulation to solve jigsaw puzzles with identically shaped
rectangular tiles. We show that, for the same image sets, we
can achieve superior accuracy over the current state-of-the-art
method. Our method will be referenced as PSQP – Puzzle
Solving by Quadratic Programming.

II. PROBLEM DEFINITION

First consider an image partitioned into a regular 2D grid of
size Ncols × Nrows, forming N tiles t1, . . . , tN , of identical
dimensions. Now consider an empty grid of the same size
as the previous one with N locations labeled 1, . . . , N . The
problem is to determine a one-to-one correspondence between
the N tiles and the N locations, optimal with respect to
certain properly constructed global matching function. Since
this correspondence can be described by a permutation π of
the N tiles, the problem to be solved reduces to a discrete
optimization problem over the finite group of permutations of
N elements.

We organize the locations as a directed graph G = {V,E =
EH ∪ EV }, where the vertices are the tile locations, V =
{1, . . . , N}, and the set of edges E comprises all pairs of
neighboring tile locations. EH and EV denote the set of
horizontal and vertical neighboring locations, respectively. G
must be a direct graph because in general, swapping two tiles
from neighboring locations should result in a change in the
global matching function.

For each pair of tiles (ti, tj) so that 1 ≤ i, j ≤ N and i 6= j,
we define two local matching compatibilities CHi,j ≥ 0 and
CVi,j ≥ 0, that correspond to the compatibility of assigning ti
and tj to locations connected by any horizontal edge e ∈ EH
or vertical edge e ∈ EV , respectively.

We consider the following global matching function of a
permutation π

ε(π) =
∑

(i,j)∈EH

CHπ(i)π(j)
+
∑

(i,j)∈EV

CVπ(i)π(j)
, (1)

where e = (i, j) is the edge connecting the neighboring
locations i and j, and π(i) can be regarded as a 1-1 mapping
which assigns the tile tπ(i) to the location i.

Our goal is to maximize this function over all the permu-
tations π of N elements. Since this is a hard combinatorial
optimization problem, we first extend the domain of the global
matching function to the set of doubly stochastic matrices, and
we reformulate the problem as a constrained continuous opti-
mization problem, which we solve using numerical methods.
Then we describe how the coefficients of the matrices CH
and CV are computed so that the solution of the continuous
optimization problem correlates well with the original combi-
natorial optimization problem.

III. GLOBAL MATCHING FUNCTION

In this section we show how Equation 1 can be reformulated
as a homogeneous quadratic function of a square matrix,
which allows us to relate the problem to a simpler continuous
optimization problem. First of all, each permutation π of N
elements can be represented as a permutation matrix, i.e., a
binary square matrix P with exactly one entry equal to 1 in
each row and in each column:

Pik =

{
1, if k = π(i),
0, if k 6= π(i).

(2)

With this notation we can reformulate the global function as
follows

ε(P) =
∑

(i,j)∈EH

(P>CHP)ij +
∑

(i,j)∈EV

(P>CV P)ij , (3)

where a generic term (P>CP)ij , corresponding to the edge
e = (i, j), is the element (ij) of the square matrix (P>CP).

Note that for each edge e = (i, j), the term (P>CP) is a
homogeneous non-negative quadratic function of elements of
matrix P . It follows that the sum of all terms of ε(P) is also
a homogeneous non-negative quadratic function of P . If we
represent the columns of the N ×N matrix P as a vector p

of dimension N2, we get

ε(P) =
∑

(i,j)∈EH

p>i CHpj +
∑

(i,j)∈EV

p>i CV pj , (4)

where p is the vertical concatenation of the columns,
p1, . . . , pN of P . We can reformulate Equation 4 in the
canonical form p>Ap, where A is a symmetric N2 × N2

matrix, representing the Hessian of ε(P). In vector form and
in coordinates:

ε(P) = p>Ap =

N∑
i=1

N∑
k=1

N∑
l=1

N∑
j=1

PkiA(ki)(lj)Plj . (5)

Even though in practice we never construct the matrix A
explicitly, an analytic expression can be obtained. Since for a
generic matrix C we can write

(P>CP)ij =

N∑
k=1

N∑
l=1

PkiCklPlj , (6)

we have

ε(P) =
∑

(i,j)∈EH

N∑
k=1

N∑
l=1

PkiCHklPlj

+
∑

(i,j)∈EV

N∑
k=1

N∑
l=1

PkiCVklPlj . (7)

And it follows that the coefficients of the matrix A can be
accumulated by a simple linear traversal of matrices CH and
CV . Fig. 1 illustrates the problem formulation.

t1 t2 t3

t4 t5 t6

Tiles

1

5 6

2 3

4

EH = {(1,2), (2,3), (4,5), (5,6)}
EV = {(1,4), (2,5), (3,6)}

Locations

0

0

0

0

0

0

0

0

0

0

0

0 0

0 0

0 0

0 0

0

0 0

CH

CT
H CH

CT
H

CH

CH

CT
H

CT
H

CV

CV

CV

CT
V

CT
V

CT
V

Matrix A

Fig. 1. Problem formulation. From left to right: tiles, locations with the two
edge sets, and matrix A represented as a block matrix. C>

H and C>
V are the

transpose of matrices CH and CV , respectively, and each block of matrix A
is a 6× 6 matrix.

IV. CONSTRAINED GRADIENT ASCENT

Permutation matrices are special cases of doubly stochastic
matrices [10]. A doubly stochastic matrix is a non-negative
matrix such that the sum of all the elements in each row is
equal to 1, and the sum of all the elements in each column is
also equal to 1. In fact, the set of doubly stochastic matrices
is the convex hull of the permutation matrices within the set
of N × N matrices. Each doubly stochastic matrix satisfies
N2 inequality constraints, which specify that the elements Pij
of P are non-negative; and 2N equality constraints, which
specify that the sum of the rows and columns of P are
equal to 1. By extending the domain of ε(P) to all the

doubly stochastic matrices, the problem reduces to solving the
following quadratic optimization problem

Maximize f(p) = p>Ap,

subject to P1 = 1, P>1 = 1, and pij ≥ 0, (8)

where 1 is a column vector of size N with all elements equal
to one. We use a constrained gradient ascent algorithm, with
gradient projection [11], to search for local maxima of this
problem.

Note that even though the objective function f(p) is positive
on the feasible set, it is not necessarily concave because matrix
A is not positive definite: all the diagonal values of A are 0 in
our formulation, which violates the necessary conditions for
positive definiteness, and also for positive semi-definiteness.
Therefore, we cannot guarantee f(p) to attain a maximum at
a permutation matrix. But in practice, we observe that we can
get as close as possible to a solution by working with the
constraints.

To maximize Equation 8, we propose a modified constrained
gradient ascent approach, with gradient projection [11]. To
locate a local maxima of a function, we need to update the
variables in steps proportional to the gradient at the current
point, while projecting the gradient.

In our approach we maintain a set of active variables.
An inactive variable is one that is at the boundary of the
feasible region and cannot be further updated. The method
starts from pkl = 1

N , 1 ≤ k, l ≤ N , and with all variables
active, activekl = true, where active indicates if a variable
is active or not. The ascent direction, d = ∇f(p) = A ∗ p, at
the current estimate p, in general does not satisfy the linear
constraints, so we must project it onto the space orthogonal
to the subspace defined by the linear equality constraints [11],
resulting in the constrained ascent direction c. Fig. 2 illustrates
a 2D simplification of the process of projecting the gradient.

linear constraint

Fig. 2. Projection of the gradient onto the space orthogonal to the space
defined by the linear equality constraints.

With the constrained ascent direction c, the method can
update the previously feasible point to a new feasible point p:
pkl = pkl + step ∗ c, for 1 ≤ k, l ≤ N , and activekl = true,
where step is the maximum value so that 0 ≤ pkl ≤ 1.

When one of the variables reaches the boundary of the
feasible region, we should update the constraints so that
this variable stays at the boundary. However, in practice,
maintaining a group of modifying and orthogonal constraints
implies high computational costs and storage. Instead, we re-
initialize p every time there is no direction to maximize the

energy inside the feasible region. In order to do this, we
deactivate the variables that are on the limit of the feasible
region, i.e., the ones that are equal to either zero or one.
The process of deactivating a variable on the upper limit
corresponds to assigning the corresponding tile to the most
probable location. We then restart p without the inactive

variables, i.e., pkl =
1

N − nFixedT iles
, for 1 ≤ k, l ≤ N ,

and activekl = true, where nFixedT iles is the number of
tiles that have been assigned to a location. Then we repeat
these steps until all the tiles have been assigned to a location.

Algorithm 1 shows the pseudo-code for the ascent gradient
approach that maximizes Equation 8.

Algorithm 1 Constrained Gradient Ascent.
Input: Compatibility matrices CH and CV ; and the number
of tiles N .
Output: Permutation π of tiles.

nFixedT iles← 0; # Number of tiles that have been assigned to a location.

activekl ← true, for 1 ≤ k, l ≤ N ; # Active variables.

while nFixedT iles < N do
pkl ← 1

N − nFixedT iles
, for 1 ≤ k, l ≤

N and activekl = true;
d← ∇f(p)← A ∗ p; # Ascent direction.

c← Kd; # Ascent direction c. K is the projection matrix.

pkl ← pkl + step ∗ c, for 1 ≤ k, l ≤ N and activekl =
true;
for all pkl = 0, with 1 ≤ k, l ≤ N and activekl = true

do
activekl ← false;

end for
for all pkl = 1, with 1 ≤ k, l ≤ N and activekl = true

do
activekl ← false;
π(l)← k;
nFixedT iles← nFixedT iles+ 1;

end for
end while

V. COMPATIBILITY BETWEEN TILES

The compatibility between pairs of tiles has been studied
before [8], [9], and plays an important role in solving the
image puzzle. Demaine et al. [1] showed that if it is locally
possible to tell whether two tiles fit together in the final solu-
tion, then trying to join together all pairs of tiles in a greedy
manner solves the puzzle in polynomial time. But, in natural
images, it is easy to find examples of tiles with ambiguous
neighboring tiles. In this work, we consider the prediction-
based compatibility proposed by Pomeranz et al. [9]. The
horizontal dissimilarity between a left hand side tile ti and

right hand side tile tj is defined as

PredHij =[T∑
k=1

3∑
l=1

(| 2 ∗ ti(k, T, l)− ti(k, T − 1, l)− tj(k, 1, l) |)p

+ (| 2 ∗ tj(k, 1, l)− tj(k, 2, l)− ti(k, T, l) |)p
] q
p

, (9)

where tiles ti and tj are regarded as T × T × 3 matrices,
variables p and q are tunable parameters, and the color
difference is measured in the normalized LAB color space.
The vertical matching error DVij is computed in a similar
fashion.

Based on the predicted values, the compatibility between
tiles ti and tj is defined as [9]

CHij ∝ exp
(
−

PredHij
quartile(i)

)
, (10)

where quartile(i) is the quartile of the dissimilarity among
all other tiles and tile ti.

Unfortunately, the local matching dissimilarity (Equation 9)
does not provide enough information to solve the puzzle
globally. This is illustrated in Fig. 3, where it is shown the
dissimilarities considering only correctly assigned neighboring
tiles. We can see that in some constant parts of the image (the
sky, for example), the dissimilarity among all tiles is lower that
in other non-constant parts and thus they are not comparable.
The problem gets worse when we consider the errors between
every possible pair of tiles.

(a) Correctly assigned tiles.

Row Column

Max Max

0

H
o
ri

zo
n
ta

l
d
is

si
m

ila
ri

ti
e
s

(b) Horizontal dissimilarities.

Row Column

Max Max

0

V
e
rt

ic
a
l
d
is

si
m

ila
ri

ti
e
s

(c) Vertical dissimilarities.

Fig. 3. Dissimilarity between correctly assigned tiles.

Due to this difficulty, we present a new compatibility
measure, based on [9], that imposes a stronger global order to
the tiles’ dissimilarities. The horizontal compatibility between
tiles ti and tj is defined as

CHij ∝ exp
(
−ϕ(i)−

PredHij
quartil(i)

)
, (11)

where ϕ(i) is used to impose a global order to the dissimi-
larities. It is the position of tile tj in respect to ti, when all
dissimilarities PredHik , for 1 ≤ k ≤ N , are ordered, added to

the position of tile ti in respect to tj , when all dissimilarities
PredHkj , for 1 ≤ k ≤ N , are ordered. For example, if tile
tj is the second tile closest to ti (based on their dissimilarity)
and ti is the first tile closest to tj on the opposite border, then
ϕ(i) = 3. The vertical compatibility is computed using the
same idea.

There are two other differences on the predictions’ compu-
tation compared to the work of Pomeranz et al. [9]. First, the
color differences are computed in the YIQ color space instead
of the LAB space. For best results, the channels have been
normalized to have the same variance.

Pomeranz et al. [9] studied the dissimilarity measure varying
parameters p and q and concluded that there are optimal values
to be fixed and used across all image puzzles. However we
observed that, for our method, there are optimal p and q
for each image and the values can greatly influence the final
permutation. For this reason, in this work we test several sets

of parameters, p ∈
[
3

10
, 3

]
and q ∈

[
1

20
,
10

3

]
, and we choose

the set that yields the highest global matching value. This
range of parameters was defined running the method PSQP
on 20 training images randomly chosen from the internet.

VI. IMPLEMENTATION

In the implementation of the gradient ascent method, the
memory footprint is a major concern, because matrices CH
and CV , vector p, and the ascent direction c have N × N
entries each. To save up memory, we observed that the term
ϕ(i) (Equation 11) makes the compatibility values really
small when distant neighbors of ti are considered. Thus,
using a safe threshold (10−6) we can zero out compatibility
values that are already almost zero. By doing this, matrices
CH and CV become sparse. In the optimal case, CH will
have Nrows(Ncols − 1) non-zero entries and CV will have
Ncols(Nrows − 1) non-zero entries, a drastically reduction on
memory usage.

In terms of computational complexity, our algorithm runs in
quadratic time in the number of tiles, i.e, PSQP is O(n2). The
ascent direction computation is done by traversing matrices
CH and CV , and the projection of the ascent direction is done
by traversing the corresponding vector two times.

In practice, we have two problems that were not discussed
before. First, the constant tiles – group of tiles that have equal
feature vectors on all sides – impose a hard problem to solve.
These tiles have total compatibility among them and to the
neighboring non-constant tiles. To address this, we simply do
not take them into account by zeroing out their compatibility.
By doing this, the constant tiles will fit in the holes left by
the optimization process. Note that, because they are equal,
it doesn’t matter which permutation will be adopted among
them.

The second problem is the non-concavity property of the
energy function that we want to maximize. There is no
guarantee that the maximum provided by the Constrained
Gradient Ascent algorithm is the global maximum, only a
local one. For a few puzzles, especially the ones that contain

constant tiles (and the compatibility values were altered), the
final permutation does not represent a global maximum, but
a local maximum that is a shift of the global permutation
(Fig. 4).

(a) Initial configuration.

(b) Permutation associated
with a local maxima.

(c) Permutation associated with
the global maxima.

Fig. 4. Example of the non-concavity property of the global matching
function. Note that this puzzle contains several constant (white) tiles.

In such cases, the method performs an ultimate step to
adjust the permutation shift. The global matching function
ε(π) is computed for every possible permutation resulting
from shifting the final π in every row and column, and with
p and q equal to one.

The formulation of the entire method is present in Al-
gorithm 2, where function ConstrainedGradientAscent
gives the permutation π according to Algorithm 1;
GlobalMatching computes the global matching value ε(π)
for permutation π after shifting it by sH horizontally and sV
vertically; and finally function Shift applies, to π, the shift
that generates the highest global matching value horizontally
(sHmax) and vertically (sVmax).

Algorithm 2 PSQP method.
π ← ConstrainedGradientAscent(CH , CV , N);
sHmax , sVmax ← argmax

sH∈[0,Ncols−1],
sV ∈[0,Nrows−1]

GlobalMatching(π, sH , sV);

πfinal ← Shift(π, sHmax , sVmax)

Note that this last step is linear on the number of tiles.

VII. EXPERIMENTAL RESULTS

To compare PSQP to the recently proposed state-of-the-art
method [9], we use the same database of 20 images provided
by [8], where each puzzle consists of 432 tiles of 28 × 28
pixels. We also consider two performance metrics presented
in [8]:

Direct comparison: the obtained permutation is com-
pared directly to the ground-truth permutation. This met-
ric calculates the ratio between the number of tiles in the
obtained solution that are assigned to the correct location
and the total number of tiles.

Neighbor comparison: for each assigned tile, this metric
computes the fraction of its correctly assigned neighbor-
ing tiles (tiles that are adjacent in the correct assignment).
The reconstruction accuracy is the average fraction of
correct neighboring tiles.

PSQP was implemented in C++ and, for each image, we
executed it several times to test different sets of parameters:
p = 3

10 and q = 1
20 ; p = 1 and q = 1

6 ; p = 1 and q = 1;
p = 1 and q = 10

3 ; and p = 3 and q = 3. The sets are tested
in order and, when the same result is achieved with different
sets, the best solution so far is considered (there is no need to
continue testing other sets in this case). For each execution,
the two performance metrics were computed. Table I shows
the results with the best set of parameters for each image. The
experiment was executed in a 2 GHz machine with 6 GB of
RAM memory.

TABLE I
PERFORMANCE METRICS COMPUTED FOR EACH OF THE TWENTY IMAGES.
D STANDS FOR Direct comparison AND N FOR neighbor comparison. THE

RESULTS OF POMERANZ ET AL.’S METHOD ARE REPORTED IN THE
SUPPLEMENTAL MATERIAL OF THE RELATED PUBLICATION [9].

PSQP Pomeranz et al. [9]
Imagem D (%) N (%) D (%) N (%)

1 88.5 85.5 77 80
2 83.2 82.1 82 81
3 100.0 100.0 100 100
4 65.9 65.0 2 67
5 100.0 100.0 100 100
6 98.4 98.3 100 100
7 100.0 100.0 84 86
8 100.0 100.0 100 100
9 100.0 100.0 100 100

10 100.0 100.0 100 100
11 100.0 100.0 100 100
12 99.5 99.4 100 100
13 88.9 87.8 87 86
14 100.0 100.0 100 100
15 95.6 94.2 90 89
16 100.0 100.0 100 100
17 100.0 100.0 97 96
18 100.0 100.0 100 100
19 100.0 100.0 100 100
20 100.0 100.0 100 100

Mean 96.0 95.6 91 94

The average performance is 96.0% under Direct comparison
and 95.6% under Neighbor comparison. The average running
time to obtain the final permutation with the correct parameters
is 3.5 minutes per execution. To perform the parameters testing
and to obtain the final permutation, the average time per image
is 12 minutes.

It is important to note that higher accuracy can be obtained
if other parameters are tested. But if fewer sets are tested, for
example only p = 1 and q = 1

6 , we still get high accuracy:
91.7% and 94.3%. If we add another set, for example p = 1
and q = 10

3 , we get 95.1% and 95.3%.

The reported accuracy for the method of Pomeranz et al. [9]
is 91% and 94%1. To achieve this accuracy, the method needs
to be executed 10 times with random seeds, and the best result
according to a metric is selected. The reported execution time
is 1.2 minute in average per image in a 3.2 GHz machine
with 4 GB of RAM memory. To compare the running times,
we re-executed their experiments in the same machine used
here. With the MATLAB code provided by the authors, we
obtained an average of 1.5 minute per execution, adding up
to 15 minutes to obtain the final solution for each image.

The method of Pomeranz et al. [9] is probabilistic, i.e, with
10 executions of the method, there is no guarantee that the
reported accuracy will be achieved. For example, to obtain the
same level of accuracy, we had to run the method more than
10 times for images 9 and 12. PSQP is deterministic, i.e, it
yields the same result independent of the initial configuration
of the puzzle2 and without random seeds.

Fig. 5 shows some image puzzles in which PSQP is more
accurate according to both metrics, and Fig. 6 shows some
image puzzles in which the method of Pomeranz et al. [9] is
more accurate.

Another advantage of PSQP is that it can solve puzzles
with rectangular (not only square) tiles. This is an impor-
tant characteristic when using automatic solvers for shredded
document reconstruction, for example. The same experiment
was repeated, but now with puzzles consisting of 432 tiles of
56×14 pixels each. The average performance is 89.7% under
Direct comparison and 95.2% under Neighbor comparison.
Fig. 7 shows some of the results obtained with non-square
tiles.

PSQP can also reconstruct larger jigsaw puzzles. We used
40 additional images provided by [9] to test the method
with 540 and 805-piece puzzles. The overall performance for
540-piece puzzles is 90.6% and 95.3%, and for 805-piece
puzzles the performance is 82.5% and 93.4%, under direct
and neighbor comparison, respectively. Pomeranz et al. [9]
reported the accuracy of 83.5% and 90.9% for 504-pieces, and
80.3% and 89.7% for 805-pieces, under direct and neighbor
comparison, respectively, using the same database. Fig. 8
shows reconstructed images for two of these images.

Also using images provided by [9], we tested PSQP with
2360 and 3300-piece puzzles (Fig. 9), which resulted in
reconstructions with 100% accuracy.

VIII. CONCLUSION

We introduced a new formulation for solving image jigsaw
puzzle problems, the method PSQP – Puzzle Solving by
Quadratic Programming. In our formulation, a solved puzzle
is a one-to-one assignment of tiles to locations, according to
a energy function. Since this is a hard combinatorial problem,
we reformulate it as a quadratic programming approach, where

1These accuracy values were reported in the supplemental material of [9]
and confirmed by the re-execution of the experiments.

2This is true for all images, except the ones with constant tiles. The
permutation of the constant tiles is taken into consideration when computing
the performance metrics.

we can find an approximate solution by means of a gradient
ascent algorithm.

We compared PSQP to the current state-of-the-art and it
provided superior results according to the used metrics. PSQP
also has some advantages. First, it can solve puzzles not only
with square tiles, but also with rectangular ones. Second, it
is deterministic and although several parameter sets have to
be tested, the method always yields the same results, while
the current state-of-the-art method has to be executed several
times to attain a certain accuracy. For the size of the puzzles
tested, PSQP is faster, considering all the necessary executions
in both methods.

By analyzing the results, we observed that image puzzles
that contain constant tiles are a weakness of PSQP. Constant
tiles are difficult to order in a global sense, so we cannot
consider them as a normal piece. We also observed that the
right parameter set for each image may be determined a
priori by analyzing the image and tiles properties. These two
observations will be included in future studies.

ACKNOWLEDGMENT

This work is primarily supported by CNPq grant
201238/2010-1, with additional funding from NSF (grants
IIS-0808718, CCF-0729126, and CCF-0915661), CNPq
(grants 309254/2007-8, 551007/2007-9, 551623/2009-8 and
200717/2010-3), FAPESP, and CAPES.

REFERENCES

[1] E. Demaine and M. Demaine, “Jigsaw puzzles, edge matching, and
polyomino packing: Connections and complexity,” Graphs and Com-
binatorics, vol. 23, pp. 195–208, 2007.

[2] E. Justino, L. Oliveira, and C. Freitas, “Reconstructing shredded doc-
uments through feature matching,” Forensic science international, vol.
160, no. 2, pp. 140–147, 2006.

[3] J. McBride and B. Kimia, “Archaeological fragment reconstruction
using curve-matching,” in Conference on Computer Vision and Pattern
Recognition Workshop. (CVPRW), vol. 1, 2003, pp. 3–3.

[4] H. Freeman and L. Garder, “Apictorial jigsaw puzzles: The computer
solution of a problem in pattern recognition,” IEEE Transactions on
Electronic Computers, no. 2, pp. 118–127, 1964.

[5] D. Goldberg, C. Malon, and M. Bern, “A global approach to automatic
solution of jigsaw puzzles,” in Proceedings of the eighteenth annual
symposium on Computational geometry, 2002, pp. 82–87.

[6] D. Kosiba, P. Devaux, S. Balasubramanian, T. Gandhi, and K. Kasturi,
“An automatic jigsaw puzzle solver,” in Proceedings of the 12th Inter-
national Conference on Pattern Recognition (IAPR), vol. 1, 1994, pp.
616–618.

[7] T. Nielsen, P. Drewsen, and K. Hansen, “Solving jigsaw puzzles using
image features,” Pattern Recognition Letters, vol. 29, no. 14, pp. 1924–
1933, 2008.

[8] T. Cho, S. Avidan, and W. Freeman, “A probabilistic image jigsaw puz-
zle solver,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2010, pp. 183–190.

[9] D. Pomeranz, M. Shemesh, and O. Ben-Shahar, “A fully automated
greedy square jigsaw puzzle solver,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2011, pp. 9–16.

[10] E. Seneta, Non-negative matrices and Markov chains. Springer Verlag,
2006.

[11] J. Rosen, “The gradient projection method for nonlinear programming.
part i. linear constraints,” Journal of the Society for Industrial and
Applied Mathematics, vol. 8, no. 1, pp. 181–217, 1960.

(a) Image 7.

(b) Image 13.

(c) Image 15.

(d) Image 17.

Fig. 5. Image puzzles with 432 tiles of 28 × 28 pixels each. For each
sub-image, the upper left is the original image, the upper right is the initial
configuration of the puzzle for PSQP, the lower left is the final result for
PSQP, and the lower right is Pomeranz et al.’s result.

(a) Image 6.

(b) Image 12.

Fig. 6. Image puzzles with 432 tiles of 28 × 28 pixels each. For each
sub-image, the upper left is the original image, the upper right is the initial
configuration of the puzzle for PSQP, the lower left is the final result for
PSQP, and the lower right is Pomeranz et al.’s result.

(a) Image 4. Performance: 66.0% under Direct comparison
and 65.6% under Neighbor comparison. The non-constant
part of the image is perfectly reconstructed.

(b) Image 18. Performance: 100% accuracy under both
metrics.

Fig. 7. Image puzzles with 432 tiles of 56×14 pixels each. The first image
represents the initial configuration of the puzzle and the second image is the
final result for PSQP.

(a) Reconstructed image puzzle with 540 tiles, with 28 × 28 pixels each. Left: PSQP result
with 100% accuracy under both metrics. Right: Pomeranz et al. [9], with 1.0% under direct
comparison and 64% under neighbor comparison.

(b) Reconstructed image puzzle with 805 tiles, with 28 × 28 pixels each. Left: PSQP result with 91.9%
accuracy under direct comparison and 90.6% under neighbor comparison. Right: Pomeranz et al. [9], with
83.0% under both metrics.

Fig. 8. Image puzzles with 540 and 805 tiles.

Fig. 9. PSQP applied to larger puzzles. First row shows the initial configuration and the reconstructed image puzzle with 2360 tiles of 28× 28 pixels each.
The second row shows the initial configuration and the reconstructed image puzzle with 3300 tiles of 28× 28 pixels each.

