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Abstract—Sufficient image quality is a necessary prerequisite
for reliable automatic detection systems in several healthcare
environments. Specifically for Diabetic Retinopathy (DR) detec-
tion, poor quality fundus makes more difficult the analysis of
discontinuities that characterize lesions, as well as to generate
evidence that can incorrectly diagnose the presence of anomalies.
Several methods have been applied for classification of image
quality and recently, have shown satisfactory results. However,
most of the authors have focused only on the visibility of
blood vessels through detection of blurring. Furthermore, these
studies frequently only used fundus images from specific cameras
which are not validated on datasets obtained from different
retinographers. In this paper, we propose an approach to verify
essential requirements of retinal image quality for DR screening:
field definition and blur detection. The methods were developed
and validated on two large, representative datasets collected
by different cameras. The first dataset comprises 5,776 images
and the second, 920 images. For field definition, the method
yields a performance close to optimal with an area under the
Receiver Operating Characteristic curve (ROC) of 96.0%. For
blur detection, the method achieves an area under the ROC curve
of 95.5%.

Keywords-Retinal Quality Assessment; Field Definition; Blur
Detection.

I. INTRODUCTION

Diabetes and associated complications including diabetic
retinopathy (DR) is increasing with a predicted prevalence
tripling by 2050 in the United States [1]. Developing countries
and Indigenous populations are likely to exceed this percen-
tage [2]. In addition, DR is the leading cause of blindness
in developed countries and therefore screening and targeted
case management programs that are economically viable and
identify and implement early treatment are required [3].

Mobile screening of high-risk populations, especially in
rural and remote locations is an effective means of increasing
the screening coverage of DR prevention programs [4]. Two-
field photography in the hands of photographers with diverse
skill levels and irrespective of using mydriatic or nonmydriatic
photography compares favorably to ophthalmic investigations
by specialists in metropolitan clinics [5].

To further enhance rural and remote area screening, auto-
mated image analysis programs have been developed and are
now in use as a first line screening for microaneurysms in Scot-
land [6]. Several algorithms have been proposed for detecting

parts of the retina, the presence/absence of retinopathy as well
as specific lesions from mild nonproliferative to proliferative
retinopathy and maculopathy (see [7] and references therein).
An important aspect of automated image analysis and the
factor that successful image analysis relies on is image quality.

Assessing image quality has been discussed in the literature
by a number of authors [8]–[11] and represents an important
limiting factor for automated DR screening [12]. Image quality
is reduced by artifacts in the image such as eye lashes or dust
specs on the lens, only part of the retina is seen, the image
is out-of-focus or the image is badly illuminated or blurred,
among others. Image compression is often included with
current software packages, which affects quality as does the
resolution, field of view and type of camera [8]. Not directly
related to image quality is retinal epithelial background, which
often makes microaneurysm detection more difficult if the
classifier is not trained for the specific ethnic group [13].

Furthermore, to ensure that automatic screening will be able
to identify lesions like deep and superficial hemorrhages, it is
necessary that the retinal images cover the appropriate portion
of the retina, making the blood vessels visible. According
to [14], the photographs should be centered on the macular
region (See Fig. 2). Some authors have analyzed this aspect
of image quality, known as field definition [15].

This paper proposes methods to verify these important fac-
tors of retinal image quality: field definition and blur detection.
We aim at finding approaches that work well especially when
trained with one type and tested with other types of retinal
images. By introducing and adapting techniques such as visual
words, quality analysis by similarity measures and classifier
fusion to this context, we achieve promising classification re-
sults. In particular, for the field definition, our method is able to
accurately distinguish between appropriate and inappropriate
retinal images for automated DR screening.

II. RELATED WORK

Several methods for retinal image quality analysis are based
on edge intensity histograms or luminosity to characterize the
sharpness of the image [10]. In both approaches, the quality
of a given image is determined through the difference between
its histogram and the mean histogram of a small set of good-
quality images used as reference.



Retinal morphology-based methods such as detection of
blurring and its correlation to vessel visibility and retinal field
definition have been applied for automatic detection of retinal
image quality [9], [15]. The method of image assessment
proposed by Fleming et al. [15], similarly to our work, involves
two aspects: (1) image clarity and (2) field definition. The
clarity analysis is based upon the vasculature of a circular area
around the macula. The authors concluded whether or not a
given image has enough quality using the presence/absence
of small vessels in the selected circular area as evidence. The
approach proposed by Fleming et al. requires a segmentation
step to find the region of interest. However, for low-quality
images, detecting segmentation failures is trivial.

Niemeijer et al. [11] proposed a method for image quality
verification that is comparable to the well-known visual words
dictionary classification technique, used extensively in pattern
recognition tasks [16] and also one of the methods we rely
upon in this paper. The purpose of Niemeijer et al. was to
identify image structures that were present in a set of images.
Local image structure at each pixel is described using the
outputs of a set of 25 filters. Because the raw features are
too numerous to be used directly in the classification process,
a clustering algorithm is used to express the features in a
compact way creating a visual dictionary. Once the visual
dictionary is built, the features of each pixel are mapped to
words and a histogram of word frequencies for each image is
created. These histograms are used to feed a classifier.

Visual words dictionaries constitute one of the approaches
proposed to analyze image quality in this work. However,
different to [11] we utilize visual words in the space of features
representing discontinuities in the retina and not directly on
every pixel. Second, our method is based on points of interest
which are reasonably robust to some image distortions (e.g.,
rotation) and exhibit high repeatability, which allows us to
easily find similar discontinuities in different images. Third,
we have used the same method to detect lesions associated
with DR in previous work of ours [17]. Finally, the visual
words dictionary calculated on the space of features exploits
the benefits of an all-in-one classification algorithm which
does not require any pre- or post-processing of the image.

Although good results for the assessment of diabetic retinal
image quality have been obtained previously, the authors
have not paid attention to one crucial factor needed for an
acceptable screening of diabetic retinopathy. The image has to
encompass the correct portion of the retina [14]. An analysis
of DR images can fail because of inadequate field definition.
As one exception, Fleming et al. [15] reported retinal image
field definition in their work. In the viewpoint of the authors,
an image is defined as having adequate field definition if it
satisfies a series of constraints, that aim at verifying distances
between important elements of the anatomy of the retina, such
as the optic disc and fovea (top left of Fig. 2).

III. TECHNIQUE FOR FIELD DEFINITION

Here, we discuss a simple method to verify the field
definition. In this problem, a good retinal image for further

DR analysis is one image centered on the macula (See Fig. 2).
The method we discuss here operates based on the metho-

dology of full-reference comparison. In this methodology, a
reference image with assured quality is assumed to be known
and quantitative measures of quality for any image are ex-
tracted by comparisons with the reference [18]. Given that the
macular region has a distinguishable contrast in comparison
with the remaining regions, and we are interested in the content
of the center of retinal images, metrics of similarity have
shown to be highly suitable for this objective.

We selected a set of images centered on the macular region
as well as a set of images not centered on the macular region
(centered on the optic disc or in any other location on the
retina). Then, we calculated similarities between a given image
and the reference images (positive and negative), with respect
to their central regions and created a feature vector for later
classification. In the next section, we explain the method
employed for the feature extraction as well as the learning
step of the technique for field definition.

A. Characterization

Wang et al. [18] proposed a new philosophy for comparison
of images that considers image degradation as perceived
changes in structural information instead of perceived errors
(visibility of errors). The method, known as Structural Simi-
larity (SSIM) [18] is calculated according to Eq. 3 which we
shall define later.

Given that we are interested in assessing if the macula is
present in the center of the image and it is clearly different
from other regions of the retina, we use one region of interest
(RoI) of pre-defined size (121 × 121) on the center of the
retinal image. Fig. 1 depicts some positive (centered on the
macular region) and negative (centered on the optic disc or in
other region) RoIs.

To characterize each retinal image, we measure the struc-
tural similarity between the RoI of the image of interest and
the RoIs of a set of reference images and calculate their
average. We selected a set of 40 retinal images for reference
(20 represent the retina with good field definition and 20 that
would be discarded for not being centered on the macula).
For the group not centered on the macula, we selected 12
RoIs centered on the optic disc and eight in any other area.
The reference images are not used further neither for training
nor for testing.

As we are comparing pixels directly, we investigated if a
simple contrast normalization technique helps to boost classi-
fication results. For that, we tested the use of the images in
grayscale as well as in RGB color space with and without the
normalization considering contrast limited adaptive histogram
equalization (CLAHE) [19]. CLAHE is suitable to improve
the local contrast of an image.

After comparing each image with the references, its feature
vector considering color images comprises 18 features: three
comparison functions from SSIM × three color channels
(RGB) × two sets of reference patches (positive and negative).



SSIM was calculated breaking Eq. 3 to three terms: luminance,
contrast, and structure according to [18].

Fig. 1. Examples of RoIs whose images are centered on the macula (left),
centered on the optic disc (middle), and non-representative (right).

B. Learning

At the end of the characterization process, we have a set
of feature vectors representing the structural similarities with
positive and negative reference images. The final classification
procedure is performed using the Support Vector Machine
(SVM) algorithm [20]. We train the classifier with feature
vectors calculated from training images containing positive
(images centered on the macular region) and negative (images
centered on any other region of the retina) examples. When
training the SVM, we use “grid search” for fine tuning the
SVM parameters based only on the training examples [20].

IV. TECHNIQUE FOR BLUR DETECTION

Although image quality analysis can have several ramifica-
tions before arbitrating on the quality of an image, we focus on
two very common problems during image acquisition: blurring
and out-of-focus capture.

A. Characterization

The method involves a series of different blurring classifiers
and classifier fusion to optimize the classification. Next, we
present the details of the methods we use for blurring
classification. Basically, we rely upon four descriptors: vessel
area, visual dictionaries, progressive blurring and progressive
sharpening. We also explore combinations of them.

Area Descriptor: Given that blurring affects the visibility
of the blood vessels, our first descriptor consists of the
measurement of the area occupied by the retinal vessels. For
that, we calculate the image’s edge map using the Canny
algorithm [21]. Next, we measure the area occupied by the
vessels counting the quantity of pixels on the edges and
dividing it by the retina’s total number of pixels. Fig. 2 depicts
retinal images followed by their respective Canny edge maps.

In the end of the characterization phase, we have an 1-d
feature vector whose area descriptor is the unique feature.

Visual Dictionary Descriptor: In this descriptor, each
image is characterized by finding stable points of interest
(PoIs) across multiple image scales that capture image dis-
continuities. We are interested in characterizing an image in
order to capture any inconsistencies/discontinuities it might
have (e.g., blood vessels) in order to classify it.
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Fig. 2. Retina with enough quality (left) and with blurring (right) with their
respective Canny edge maps (inverted for visualization purposes). The top left
image also shows the typical elements present in the retina.

To build a visual dictionary and define whether a specific
retinal image has enough quality, training images tagged as
having quality (no blur) by a medical specialist as well as
images associated with blurring are required. After collecting
the training images, the next step consists of finding the points
of interest in all training images. To detect the points, we use
the Speeded Up Robust Features (SURF) [22] as it is a good
feature detector with reasonable speed.

From the points of interest representing the images with
quality as well as blurred images during training, we randomly
select a set of PoIs for each group. At this stage the number of
PoIs (k) to be retained as representative of the quality or non-
quality images is decided. We find the k/2 points of interest
associated with a high-quality image and repeat the process
to find the k/2 points associated with images with blurring.
We refer to these k points of interest as a visual dictionary.
Note that this is different from other approaches in the
literature (e.g., [23], [24]) which normally find a global unique
dictionary and not one per class. In our experience, class-based
dictionaries are more appropriate for retinal images.

In order to use any machine learning method, the next step
is to map the PoIs within each image to the most representative
points in the dictionary. For each image, we associate each one
of its PoIs to the closest word in the dictionary using Euclidean
distance. In the end, each training image is represented by a
histogram of k bins which counts the number of times each
PoI in the image was mapped to that word in the dictionary.
We used such histogram as the image’s feature vector. During
testing, the process is simple: we extract the points of interest
of the test image and map its PoIs to the dictionary creating
its k dimensional feature vector.

Determining the optimal number of clusters for any given
set is still an open problem and is therefore best determined
empirically. In our experiments, we evaluated the performance
of the visual dictionary descriptor with k = 30, 50, 70, 100
and 150. We avoided bigger dictionaries in order to keep the
classification process fast and accurate.



Blurring, Sharpening, Blurring + Sharpening des-
criptors: We propose a variation of the traditional method
widely employed in the literature to quantify the visibility of
errors: full-reference method for assessment of quality [18].
In our variation, the reference image is not defined previously,
but each image under analysis is elected as a reference and
compared to progressive transformations of itself.

For the blurring descriptor, we progressively blur the input
image with different intensities and measure how much the
image can lose the discontinuities that characterize the blood
vessels. It is expected that an image with poor quality be more
similar to its transformed version than a good-quality image
in comparison with its transformed version.

For the sharpening descriptor, we employ different unshar-
pening filters that enhance edges and provide higher similarity
values for good-quality images than for blurred images. The
unsharpening filter is a simple sharpening operator which
enhances edges (and other high frequency components in an
image) via a procedure which subtracts a smoothed version of
an image from the input image.

To explore simultaneously the two features, we investigated
a Blurring + Sharpening descriptor to represent retinal images.

Each input retinal image is considered as a reference image
and is compared with its filtered images. For that, we define a
filter-bank as a set of rotationally symmetric Gaussian lowpass
filters Gσ(i, j). The set comprises 12 filters with kernel sizes
ks × ks where ks ∈ {3, 5, 7}, and standard deviations σ ∈
{0.5, 1.5, 3.0, 4.5}.

For the blurring descriptor, each resulting image
f ismooth(x, y) is a filtered version of the original image
f(x, y), denoted as

f ismooth(x, y) =

ks∑
i,j

Gσ(i, j)f(x+ i, y + j) (1)

For the sharpening descriptor, each resulting image
f isharp(x, y) is calculated as

f isharp(x, y) = f(x, y) + λ(f(x, y)− f ismooth(x, y)) (2)

where λ is a scaling constant ∈ [0.0, 1.0]. Here, we fixed the
constant, λ = 0.7 without any further analysis.

For each retinal image, we measured the similarity bet-
ween the input image f(x, y) (considered as reference) and
each response image f i(x, y) blurred or sharpened according
to the descriptor of interest. We calculated the similarity
sim(f(x, y), f i(x, y)) using three different metrics:

• SSIM: the structural similarity index between two images
can be viewed as a quality measure of one of the images
being compared, provided the other image is regarded as
of good quality. We calculated SSIM for 11×11 windows
centered on every pixel. The result is a matrix with the
same dimensions as the compared images. We report the
final similarity value as the average of such matrix. The
SSIM(R,S) where R and S are two 11× 11 windows
centered on a pixel (x, y) is given by

SSIM(R,S) = (2µRµS + c1)(2σRS + c2)× (3)
1/[(µ2

R + µ2
S + c1)(σ

2
R + σ2

S + c2)]

where µR and µS are the average of R and S regions,
σ2
R and σ2

S their variances, σRS their covariance, c1 and
c2 are two variables to stabilize the division with weak
denominator. These variables depend upon two constants
k � 1 (k1 = 0.01 and k2 = 0.03) and the image’s
dynamic range L which is 255 in our case. The final
values, for c = (k ∗ L)2, are: c1 = 6.5 and c2 = 58.5.

• SSD: the sum of squared differences is calculated by sub-
tracting pixels between the reference image f(x, y) and
the target image f i(x, y). The differences are squared.

SSD(f(x, y), f i(x, y)) =
1

MN

∑
x,y

[f(x, y)− f i(x, y)]2, (4)

where M and N are the number of rows and columns.
• NCC: the normalized cross correlation is defined as

NCC(f(x, y), f
i
(x, y)) =

1

MN

∑
x,y

f(x, y)fi(x, y)√
f(x, y)2

√
fi(x, y)2

, (5)

where M and N are the number of rows and columns.
For each image, the blurring and the sharpening descriptors

have feature vectors with 108 similarity measures: 12 gaussian
filters × 3 metrics of similarity × 3 color channels (RGB).
The blurring + sharpening descriptor is the concatenation of
the feature vectors extracted by the blurring and the sharpening
descriptors leading to a 216-d feature vector.

B. Learning

In the end, for each retinal image, we have a set of five
feature vectors considering the area descriptor, visual dictio-
nary descriptor, blurring and sharpening descriptors and their
concatenation. The final classification procedure is performed
using the SVM algorithm [20]. We trained the classifier with
feature vectors calculated from training images containing
positive (images tagged by a medical specialist as good
quality) and negative (images tagged by a medical specialist
as containing blur) examples. When training the SVM, we use
“grid search” for fine tuning the SVM parameters based only
on the training examples [20].

C. Fusion

It is possible that a series of complementary classifiers are
more suited to accurately assess the quality of retinal images
operating over several instances observed in the two classes
of images. For example, analyzing not only one characteristic,
but a series as the area occupied by visible blood vessels,
the distributions of positive/negative visual words, similarities
with blurred images and similarities with sharpened images
provide a higher probability of correctly evaluating any retinal
image from any camera.

We evaluated two approaches for fusion: at feature-level
combining the feature vectors directly by concatenation and at
classifier level by creating a Meta-SVM classifier trained over
the outputs of individual classifiers, in this case, the marginal
distances to the decision hyperplane produced by the SVMs.



V. EXPERIMENTS AND VALIDATION

This section shows the results for evaluating the quality of
an image with respect to field definition and blurring artifacts
as an effective pre-processing before using any classifier for
detecting diabetic retinopathy lesions.

There are many metrics to measure the success of a detec-
tion/classification algorithm. For the purposes of this project,
we are interested in per image metrics, such as sensitivity
(number of images tagged as having enough quality over the
total number of images with quality), and specificity (number
of images tagged as blurred over the total number of blurred
images). However, for quantifying the performance of the
proposed methods, we calculated the area under the receiver
operating characteristic curve (ROC). The area under the curve
(AUC) is an accuracy measurement that explores how well
the classifier is based on its ROC curve. An AUC of 100%
represents a perfect test while an area of 50% represents a
worthless test.

We organized the experiments in four rounds:
• Round #1 – Single results for field definition. Field

definition approach using single classifiers. We performed
all tests on single datasets using 5-fold cross-validation.

• Round #2 – Cross-dataset results for field definition.
Cross-dataset approach, in which we trained the field
definition classifiers in one dataset and test in another.
We evaluated the ability of the field definition system to
operate over images from different acquisition conditions.

• Round #3 – Single results for blur detection. Blur
classification using single classifiers. We also evaluated
fusion methods to check if they improved the classifi-
cation results. We performed all tests on single datasets
using 5-fold cross-validation.

• Round #4 – Cross-dataset results for blur detection.
Cross-dataset approach, in which we trained the blur clas-
sifiers in one dataset and tested in another. We evaluated
the ability of the blur classifiers to operate over images
from different acquisition conditions.

In the 5-fold cross-validation protocol, we split the dataset
into five parts, train with four parts and test on the fifth, re-
peating the process five times each time changing the training
and testing sets.

A. Datasets
We performed the experiments for quality analysis using the

DR1 and DR2 datasets annotated by medical specialists.
The DR1 dataset is from the ophthalmology department of

Federal University of São Paulo (Unifesp), collected during
2010. It comprises 5,776 images with an average resolution
of 640 × 480 pixels. 1,300 images have good quality (do
not contain blur and are correctly centered on the macula),
1,392 represent poor quality (blur) and 3,084 are diagnosed as
images of the periphery (not centered on the macula). Three
medical specialists manually annotated all of the images. The
images were captured using a TRC-50X (Topcon Inc., Tokyo,
Japan) mydriatic camera with maximum resolution of one
megapixel and a field of view of 45 degrees.

The DR2 dataset is from the same ophthalmology depart-
ment, collected during 2011. One medical specialist graded
the images. DR2 comprises 920 12.2MP images decimated to
867 × 575 for speed purposes and containing 260 images not
centered on the macula (146 centered on the optic disc and
114 not centered on any interesting region) and 660 images
centered on the macula (466 good and 194 low quality). The
images were captured using a TRC-NW8 retinographer with
a Nikon D90 camera.

For more details and for downloading the datasets, please
refer to http://www.recod.ic.unicamp.br/site/asdr.

B. Round #1: Single Results for Field Definition

Here, we explore the measures of structural similarity in
order to create a classifier able to analyze a retinal image
and evaluate if it comprises the correct portion for diabetic
retinopathy screening (centered on the macula).

We performed four experiments for field definition. In
the first experiment, the images were analyzed in grayscale.
The second experiment also was performed with the images
in grayscale, but after an adaptive histogram equalization
(CLAHE). Next, we considered the case of color images with
and without histogram equalization.

For all experiments of field definition, we used 40 reference
images. All of them were not considered further for training
and for testing.

Fig. 3 and Fig. 4 depict the ROC curves for the field
definition approach using 5-fold cross-validation protocol of
the DR1 and DR2 datasets, respectively.
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Fig. 3. DR1 field definition using 5-fold cross-validation.

As we can observe in Fig. 4, the method achieves reasonably
successful results for field definition. The experiments using
the DR2 dataset present even better results. The experiment
with color images considering histogram equalization provides
the best result, but this result in not statistically different to
the others in DR2. However, in the experiments using the
DR1 dataset (Fig. 3), that comprises a larger quantity of
images (1,300 positives and 3,084 negatives), we can note
a great difference of AUCs between the different techniques.
The method that uses the color images without requiring an
adaptive histogram equalization is the highlight.
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Fig. 4. DR2 field definition using 5-fold cross-validation.

As mentioned, there is not a considerable difference bet-
ween the experiments with and without adaptive histogram
equalization using the DR2 dataset. The reason is that the
images from DR2 present small variations in illumination.
The images from DR1 dataset exhibit a high variation of
illumination making the CLAHE insufficient to distinguish
them and improve classification.

C. Round #2: Cross-dataset Results for Field Definition

Conventional detectors usually build a classifier from la-
beled examples and assume the testing samples are generated
from the same distribution. When a new dataset has a different
distribution from the training dataset (e.g., different acquisition
conditions), the performance may not be as expected.

In this round, we validated the field definition approaches
considering the problem of cross-dataset field definition tes-
ting, which aims at generalizing field definition models built
from a source dataset to a target dataset. We refer the DR1 as
the source dataset (training), and the DR2 as the target dataset
(testing). We emphasize that the two datasets were collected
in very different environments with different cameras, at least
one year apart and in different hospitals.

For this round, we trained the classifiers with DR1 dataset
(3,064 images located on the periphery of the retina, 1,280
images centered on the macula and 40 images removed and
used as reference), and tested with DR2 dataset (260 images
not centered on the interest region and 660 images centered
on the macular region).

Fig. 5 presents the ROC curves achieved by the method
under the cross-dataset validation.

As discussed in the previous section, the high variation
of the illumination in DR1 in comparison with DR2 makes
the histogram equalization technique unable to improve the
results. Table I summarizes the results for field definition for
the single and cross-dataset tests.

Comparison with state-of-the-art: in a previous work, Fle-
ming et al. [15] introduced the first automatic field definition
study. The authors obtained 95.3% for sensitivity and 96.4%
for specificity. Our results for field definition are somewhat
comparable to the previous results (96% AUC, and 93%
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Fig. 5. Cross-dataset validation for field definition using DR1 as training
and DR2 as testing sets.

TABLE I
FIELD DEFINITION: AUC FOR THE EXPERIMENTS.

Method DR1 DR2 Cross
Grayscale 87.6%±0.7% 95.5%±1.3% 84.7%
Grayscale (CLAHE) 81.5%±0.6% 95.9%±1.2% 83.2%
RGB 92.5%±0.7% 95.4%±1.1% 75.5%
RGB (CLAHE) 90.5%±0.9% 96.0%±0.8% 75.5%

sensitivity and 92% specificity using DR2 and RGB-CLAHE).
However, Fleming at al. used a different dataset with 1,039
retinal images and did not evaluate the algorithms in a cross-
dataset scenario.

D. Round #3: Single Results for Blur Detection

In the third round, we performed experiments to verify
the descriptors and classifiers to separate good-quality images
from blurred ones. We explored several descriptors, each
one trying to take full advantage of the differences observed
between poor and good-quality images, aimed at providing
a series of blur classifiers. In this experiment, we developed
classifiers that work in parallel, assuming competitive opera-
tion and contributing equally to the final decision.

Fig. 6 and Fig. 7 depict the results for DR1 and DR2
datasets.
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Fig. 6. DR1 blur classification using 5-fold cross-validation.
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Fig. 7. DR2 blur classification using 5-fold cross-validation

Table II summarizes the results. The ROC curves as well
as the areas under the curves reflect that interesting results are
obtained for blur classification. We observe in the table that,
for single classifiers, the best result using the DR1 dataset
was achieved by the visual words approach (a dictionary size
of 150 words was previously defined as the best number of
words for the dictionary and not shown here). For the DR2
dataset, the visual words approach also presents good results
but are outperformed by classifiers trained with the blurring
and sharpening descriptors. The blurring, sharpening and the
blurring + sharpening descriptors provide acceptable results in
both datasets.

As expected, the more exciting results were provided by the
fusion methods. As discussed before, exploring not only one
evidence of incoherence, but several complementary informa-
tion of poor and good-quality images, gives more chances of
obtaining better results. In our case, the ensemble method that
uses only the concatenation of the feature vectors provides the
highest result for DR1 (AUC = 90.8%), followed closely by
the Meta-SVM fusion method (AUC = 90.7%).

Here, it is important to emphasize that the ensemble by
concatenation operates on large feature vectors making the
method highly sensitive to the curse of dimensionality, and
presents limitations for classification for specific classifiers
and specific machines [25]. In addition, it is often necessary
to deal with complicated normalization techniques to put
different features in the same domain [25]. Conversely, the
Meta-SVM fusion method is less subject to such limitations,
since it only adds a new level of classification on a response
vector composed of five classification scores (distances to the
decision hyperplane) provided by the individual classifiers.

For the DR2 dataset, the highest AUC was obtained
with a large difference using the Meta-SVM fusion method
(AUC = 95.5%), followed by the fusion by concatenation
technique (AUC = 93.4%).

E. Round #4: Cross-dataset Results for Blur Detection

The last round of experiments explored the cross-dataset
validation to evaluate how the classifier models built from a
source dataset (DR1) to a target dataset (DR2) generalize.

TABLE II
BLUR DETECTION: AUC FOR THE EXPERIMENTS.

Descriptor/Fusion DR1 DR2 Cross
Area 83.9%±2.4% 87.2%±2.6% 87.1%
Visual words 90.3%±1.2% 90.3%±2.3% 85.6%
Blurring 87.6%±1.3% 90.3%±2.6% 60.8%
Sharpening 88.8%±1.4% 90.3%±3.9% 83.9%
Blurring and Sharpening 89.0%±0.9% 90.2%±3.0% 69.0%
Fusion by Concatenation 90.8%±0.9% 93.4%±1.4% 87.0%
Fusion by Meta-SVM 90.7%±2.3% 95.5%±1.6% 87.5%

For this round, we trained the classifiers with DR1 (1,392
images with poor quality and 1,300 images with good quality)
and tested the classifiers with DR2 dataset (194 retinal images
with enough quality and 660 images with no quality). Fig. 8
depicts the resulting ROC curves.
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Fig. 8. Cross-dataset validation for blur classification using DR1 as training
and DR2 as testing sets.

Observing the AUCs in Fig. 8 and summarized in Table II,
we note that the visual words descriptor presents satisfactory
results using the cross-dataset protocol. However, the simple
area descriptor is the highlight in this experiment, showing
that the density of blood vessels may be considered as an
acceptable approach to assess the quality of retinal images.

Fortunately, with this experiment we can show the im-
portance of a cross-dataset validation protocol. Although the
blurring descriptor showed interesting results in the validation
with single datasets, here it failed along with blurring +
sharpening combination. With them, a large number of images
from the DR2 dataset was classified at the same distance
to the SVM decision hyperplane. This fact happens because
the DR1 has greater contrast and illumination variation than
DR2 dataset and, therefore, the descriptions of the DR2
match to approximate scores given by a classifier trained
with DR1. Consequently, a small amount of operating points
are available, as we can see in Fig. 8. This effect might be
reverted using image normalization techniques more complex
than CLAHE but we did not investigate this in this paper.

As we expected, detector fusion with the Meta-SVM method
provides the best AUC with the caveat that in this analysis the
Meta-SVM results are not statistically better than the single
classifier using the single area descriptor.



Comparison with state-of-the-art: our results are compa-
rable to several prior results. The approach proposed by
Niemeijer et. al. [11] and explained in Sec. II provided an
AUC of 99.6% operating over a dataset comprising 1,000
images. Davis et. al. [8] achieved a sensitivity of 100.0% and a
specificity of 96.0% using a dataset comprising 2,000 images.
However, no conclusion can be drawed observing only the final
results, since we must consider that the datasets are different
(camera model, acquisition conditions) and the methodologies
employed are distinct. We emphasize that only one dataset is
not enough as a validation protocol for a reliable system.

VI. CONCLUSIONS AND FUTURE WORK

The assessment of diabetic retinal image quality presented
in this paper shows promising results. Several studies have
obtained satisfactory results for image quality verification in
the literature. However, these have only focused on image
quality as a generalized approach and have not paid attention
to field definition, which is one crucial factor for an effective
automatic screening of diabetic retinopathy. In addition, cross-
dataset validation is hardly performed.

In the approach we discuss in this paper, image quality was
defined by two aspects: field definition and blur analysis. For
field definition, we proposed the use of structural similarity
measures to evaluate the quality of retinal images. We obtained
an AUC of 96.0% using color images and the DR2 dataset.

For blur analysis, we explored several descriptors, each one
taking full advantage of the specific variations between poor
and good-quality images. Furthermore, we aimed at providing
a series of blur classifiers that work in parallel, assuming
competitive operations and contributing equally to the final
decision. We also evaluated the use of fusion techniques and
the best result was reached with the Meta-SVM fusion method
(AUC = 95.5% on DR2 dataset).

With the proposed methods for assessment of diabetic
retinal images, it is possible to devise and deploy a system
capable of robustly identifying images with low quality and,
afterwards, discard them. A retinal camera equipped with
quality assessment methods would be adequate to analyze
fundus images taken in real-time, preventing misdiagnosis and
posterior retake.

Our future works include building lesion-based classifiers
specialized in the detection of single anomalies, and investi-
gating methods to combine the single detectors, providing a
final high-level classifier able to label a retinal image according
the presence/absence of any DR lesion.

ACKNOWLEDGMENT

We would like to thank Microsoft Research and the São
Paulo Research Foundation (FAPESP) for the financial sup-
port. We also thank Dr. Eduardo Dib for technical assistance
with image acquisition.

REFERENCES

[1] J. Saaddine, A. Honeycutt, K. Narayan, X. Zhang, R. Klein, and
J. Boyle, “Projection of diabetic retinopathy and other major eye diseases
among people with diabetes mellitus: United states, 2005-2050,” Arch
Ophthalmol., vol. 126, no. 12, pp. 1740–1747, 2008.

[2] G. Spurling, D. Askew, N. H. N. Hansar, A. Cooney, and C. Jackson,
“Retinal photography for diabetic retinopathy screening in indigenous
primary health care: the inala experience,” Australian and New Zealand
Journal of Public Health, vol. 34, pp. S30–S33, 2010.

[3] D. Pettitt, A. Wollitzer, L. Jovanovic, H. Guozhong, and I. Eli, “De-
creasing the risk of diabetic retinopathy in a study of case management:
the california medical type 2 diabetes study,” Diabetes Care, vol. 28,
no. 12, pp. 2819–2822, 2005.

[4] P. Bragge, R. Gruen, M. Chau, A. Forbes, and H. Taylor, “Screening for
Presence or Absence of Diabetic Retinopathy: A Meta-analysis,” Arch
Ophthalmol., vol. 129, no. 4, pp. 435–444, 2011.

[5] D. Maberley, A. Morris, D. Hay, A. Chang, L. Hall, and N. Mandava,
“A comparison of digital retinal image quality among photographers
with different levels of training using a non-mydriatic fundus camera,”
Ophthalmic Epidemiology, vol. 11, no. 3, pp. 191–197, 2004.

[6] S. Philip, A. Fleming, K. Goatman, S. Fonseca, P. Mcnamee, G. Scot-
land, G. Prescott, P. Sharp, and J. Olson, “The efficacy of automated
disease/no disease grading for diabetic retinopathy in a systematic scree-
ning programme,” British Journal of Ophthalmology, vol. 91, no. 11, pp.
1512–1517, 2007.

[7] H. Jelinek and M. Cree, Eds., Automated Image Detection of Retinal
Pathology. Boca Raton: CRC Press, 2010.

[8] H. Davis, S. Russell, E. Barriga, M. Abramoff, and P. Soliz, “Vision-
based, real-time retinal image quality assessment,” in IEEE CMBS, 2009,
pp. 1–6.

[9] L. Giancardo, F. Meriaudeau, T. Karnowski, E. Chaum, and K. Tobin,
New Developments in Biomedical Engineering. InTech, 2010, ch.
Quality Assessment of Retinal Fundus Images using Elliptical Local
Vessel Density, pp. 201–224.

[10] M. Lalonde, L. Gagnon, and M.-C. Boucher, “Automatic visual quality
assessment in optical fundus images,” Vision Interface, pp. 259–264,
2001.

[11] M. Niemeijer, M. Abramoff, and B. van Ginneken, “Image structure
clustering for image quality verification of color retina images in diabetic
retinopathy screening.” IEEE Med. Image Analysis, vol. 10, no. 6, pp.
888–898, 2006.

[12] N. Patton, T. Aslam, T. MacGillivray, I. Deary, B. Dhillon, R. Eikel-
boom, K. Yogesan, and I. Constable, “Retinal image analysis: concepts,
applications and potential,” Progress in Retinal and Eye Research,
vol. 25, no. 1, pp. 99–127, 2006.

[13] H. Jelinek, A. Rocha, T. Carvalho, S. Goldenstein, and J. Wainer, “Ma-
chine learning and pattern classification in identification of indigenous
retinal pathology,” in IEEE EMBS, 2011.

[14] K. Facey, Health Tech. Assessment: Organisation of services for diabetic
retinopathy screening. Health Tech. Board for Scotland, 2002.

[15] A. Fleming, S. Philip, K. Goatman, J. Olson, and P. Sharp, “Automated
assessment of diabetic retinal image quality based on clarity and field
definition,” Investigative Ophthalmology & Visual Science, vol. 47, no. 3,
pp. 1120–1125, 2006.

[16] J. Winn, A. Criminisi, and T. Minka, “Object categorization by learned
universal visual dictionary,” in IEEE ICCV, 2005, pp. 1800–1807.

[17] J. Herbert, R. Pires, R. Padilha, S. Goldenstein, J. Wainer, T. Bosso-
maier, and A. Rocha, “Data fusion for multi-lesion diabetic retinopathy
detection,” in IEEE EMBS, 2012.

[18] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE Trans.
on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[19] S. Pizer, E. Amburn, J. Austin, R. Cromartie, A. Geselowitz, T. Greer,
B. Romeny, and J. Zimmerman, “Adaptive histogram equalization and
its variations,” Comput. Vision Graph. Image Process., vol. 39, no. 3,
pp. 355–368, Sep. 1987.

[20] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. on Intelligent Systems and Tech., vol. 2, pp.
27:1–27:27, 2011.

[21] R. Gonzalez and R. Woods, Digital Image Processing (3rd Ed.). Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 2006.

[22] H. Bay, T. Tuytelaars, and L. van Gool, “SURF: Speeded up robust
features,” in ECCV, 2006, pp. 404–417.

[23] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to
object matching in videos,” in IEEE ICCV, 2003, pp. 1470–1477.

[24] E. A. do Valle Jr., “Local-descriptor matching for image identification
systems,” Ph.D. dissertation, Université de Cergy-Pontoise École Doc-
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